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Abstract

This thesis deals with wormhole attack discovery in mobile wireless ad hoc
networks. T'wo separate approaches to wormhole attack discovery are developed
in this thesis. One approach — based on protocol-breaking — allows detection of
wormbholes that disrupt network operations by dropping network packets. An-
other — a novel frequency-based analysis of periodic network messages — detects
wormholes that do not drop traffic. The developed wormhole attack discov-
ery techniques are local, do not rely on specialized hardware or clock synchro-
nization, and do not require modification to existing ad hoc network routing
protocols.

In addition, tools that are necessary for ad hoc network attack research are
created. Network traffic analyzer modules applicable to ad hoc network research
are developed and tested. Also, a realistic implementation of a wormhole attack

in the NS-2 network simulator is created.
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Chapter 1

Introduction

Mobile wireless ad hoc networks (MANETS) are a relatively new field of research.
Such networks are fundamentally different from wired networks, as they use a
wireless medium to communicate, do not rely on fixed infrastructure, and can
arrange themselves into a network quickly and efficiently. In a MANET, each
node can serve as a router for other nodes, which allows data to travel, utilizing
multi-hop network paths, beyond the line of sight.

MANETSs are particularly attractive for situations where deployment of in-
frastructure is costly or impractical, such as military deployments, emergency
rescue operations, and short-lived conference or classroom activities. The se-
curity of such networks, however, is a great concern [1]. The open nature of
the wireless medium makes it easy for outsiders to listen to network traffic or
interfere with it. Lack of centralized control authority makes deployment of tra-
ditional centralized security mechanisms difficult, if not impossible. Since there
are not, necessarily, any clear network entry points, it is difficult to implement
perimeter-based defence mechanisms such as firewalls. Finally, in a MANET

nodes might be battery-powered and have very limited resources, making the
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use of heavy-weight security solutions undesirable [1, 2, 3].

A large number of routing protocols for MANETSs have been proposed to
enable quick and efficient network creation and restructuring. However, common
ad hoc routing protocols were not designed with security in mind and assume
a trusting and cooperative environment [1]. Security of MANET routing is an

active research area at this time.

Wormhole attacks are among the most severe attacks on ad hoc networks
and are perhaps the most difficult attacks to prevent or detect [5, 6]. A worm-
hole attack takes its name from physics, where a wormbhole is a thin tube of
space-time that connects distant regions of the universe. A network wormhole
attack ‘connects’ distant parts of the network. A wormhole is created by two
collaborating attackers. One attacker records the traffic on one end of the net-
work, and tunnels the traffic, using an off-channel link, to the other attacker
located at another end of the network. The second attacker then rebroadcasts
the traffic at the other network end. These attackers’ actions fool distant net-
work nodes into believing that they are direct neighbours, forcing these nodes
to communicate through the wormhole adversaries, thus giving wormhole at-
tackers full control of the link between valid network nodes. Wormhole attacks
are very difficult to detect and prevent because cryptography-based measures
do not alleviate them, as wormholes do not introduce new network messages,

nor do they alter existing network messages.

1.1 Contributions to the field

This thesis deals with wormhole attack discovery in wireless ad hoc networks.
The contributions from this work to the field are two-fold: the tools allowing the

study of wormbhole attacks and the techniques for wormhole attack detection.

The tools that are necessary for the study of wormhole attacks in wireless ad
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hoc networks are developed in this thesis. These are: a network traffic analyser
suite capable of working with wireless ad hoc network traffic and an NS-2 worm-
hole attack simulator. The developed network traffic analyzer suite should allow
researchers to easily study ad hoc network traffic. The NS-2 wormhole attack
simulation is a realistic, detailed representation of a wormhole attack in a sim-
ulator environment; it will allow researchers to easily modify wormhole attack

parameters and test novel wormhole attack detection/prevention mechanisms.

Two different traffic analysis techniques that are applicable to wormhole
attack detection in MANETSs are developed in this thesis. These techniques

have the following properties:

e They rely on routing messages and neither introduce overhead nor require

changes to existing routing protocols

e They do not require specialized hardware or clock synchronization between

network nodes

e They are local techniques that are to be performed by individual nodes;

no cooperation between nodes is required

One of these techniques — based on protocol-breaking — allows for easy detec-
tion of a malicious wormhole that disrupts network communications by dropping
packets. Another — frequency-based analysis of routing messages — allows de-
tection of wormholes that are ‘dormant’ i.e. merely present on a network but
not yet malicious. This latter technique presents a novel approach to worm-
hole attack detection: rather than trying to detect that packets have travelled
farther than they should or faster than they should (as other wormhole attack
detection techniques do), this technique works by detecting that packets have

been processed more than they should.

A paper based on this work was published in the proceedings of the IEEE
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Military Communications conference:

e M.A. Gorlatova, P.C. Mason, M. Wang, L. Lamont, R. Liscano, Detecting
Wormhole Attacks in Mobile Ad Hoc Networks Through Protocol Breaking
and Packet Timing Analysis, in Proceedings of IEEE Military Communi-
cations (MILCOM), Washington, DC, October 2006

The structure of this thesis is as follows. Chapter 2 presents the background
for this thesis and summarizes the prior art in the wormhole attack detection
research area. This chapter also describes the testbed experiment conducted as
part of this thesis work. Chapter 3 describes the tools that were created in this
thesis: a network traffic analyzer MANET suite and an NS-2 wormhole attack
implementation. Chapter 4 describes the developed wormbhole attack detection
technique that allows detection of wormholes that drop traffic. Chapter 5 de-
scribes a novel wormhole attack detection approach based on frequency-space
analysis of routing message timing. Finally, chapter 6 summarizes this thesis

contributions and provides further work directions.
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Chapter 2

Background, Literature
Review, and Experimental

Settings

This chapter provides background information about certain ad hoc network-
ing protocols, traffic analyzers, and network simulators, as well as an ad hoc
networking testbed that is used in this work. It also introduces the field of
wormbhole attack detection and prevention, giving a brief overview of the state
of the art of wormhole attack studies.

Section 2.1 provides background information pertaining to this thesis. Sec-
tion 2.2 describes the wormhole attack in detail and summarizes the published
work that deals with wormhole attacks in ad hoc networks. Section 2.3 describes
the experimental testbed network setup that is used throughout this thesis for

the demonstration of wormhole attack detection results.
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2.1 Background

As this thesis deals mostly with IEEE 802.11-based ad hoc networks that use
OLSR as their routing protocol, this section describes both 802.11 and OLSR.
Section 2.1.1 describes IEEE 802.11, and talks about 802.11 traffic captures and
traffic analyzers. Section 2.1.2 describes OLSR. Finally, section 2.1.3 introduces

a network simulator NS-2 that is used in this thesis.

2.1.1 IEEE 802.11: standard, traffic captures, and analyz-

ers

A de facto standard for wireless ad hoc networks is IEEE 802.11 [7], the same
wireless communication standard that is used in home wireless networks. IEEE
802.11 specifies physical-layer and MAC-layer behaviour of nodes.

There are three basic packet types in 802.11: data, control, and manage-
ment packets. Data packets carry data from higher-layer protocols (such as,
for example, ARP or TCP/IP), control packets assist in data delivery between
stations, and management packets enable stations to maintain communications.
802.11 packets can be either broadcast or unicast (sent to a specific node).!
IEEE 802.11, like other wireless protocols, uses collision-avoidance techniques
for data transfer. Before transmitting, a node listens to the media. If the media
is busy, a node waits for the media to become free, then waits a random time
before transmitting. Also, 802.11 uses acknowledgements and packet retrans-
mission mechanisms to ensure data delivery over unreliable wireless channels.
For example, unicast data packets need to be acknowledged with a special con-

trol packet ‘ACK’. If no acknowledgement is received after a certain time, a

1Of course, since the media used is wireless, both broadcast and unicast packets can be
heard by all nodes in the vicinity of a transmitting station. However, if a packet is broadcast,
it is recorded by all nodes that overhear it. A unicasted packet is heard by everyone, but is
discarded by the nodes that it is not addressed to.
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packet is retransmitted. 802.11 allows for encryption at the MAC level. Origi-
nally, 802.11 used Wired Equivalent Privacy (WEP) security mechanism based
on RC-4 stream cipher [8]. Later on, the 802.11i standard specified a more
advanced Wi-Fi Protected Access (WPA), based on AES [8] instead of RC-4.

In order to study network traffic, the traffic must be captured and decoded.
This is done with a wireless sniffer. Since IEEE 802.11 is a popular protocol,
a number of sniffers and analyzers capable of working with it have been de-
veloped over the years. Some wireless sniffers, in addition to traffic capturing
capabilities, include sophisticated network traffic analysis modules. For exam-
ple, Ethereal [9] and AiroPeek [10] can both parse wireless packets and perform
a set of analysis functions on them. They are both quite sophisticated tools,
capable of parsing a wide number of different protocols on different OSI stack
levels. In addition, AiroPeek can, for example, decrypt network packets that are
WEP-encrypted, and identify a number of known attacks on a network (ARP
spoofing, for example). However, one major drawback of prominent network
traffic analyzers is that they are not easily customizable: while it is easy to use
the functions they already have built in, writing custom add-ons for exploratory

data analysis with these tools is complicated.

2.1.2 MANET routing and OLSR

Routing in MANETS is an active research area. In general, MANET routing
protocols fall into two categories: proactive routing protocols that rely on pe-
riodic transmission of routing updates, and on-demand routing protocols that
search for routes only when necessary. Among on-demand routing protocols,
AODV [11] is perhaps the most popular choice. This thesis deals mostly with
proactive protocols, among which the most prominent is Optimized Link-State

Routing (OLSR) [12] .
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OLSR is an adaptation of the Open Shortest Path First (OSPF) protocol
for wired networks [13]. In OLSR, certain network nodes are selected as multi-
point relay nodes (MPRs) — these nodes are responsible for data forwarding,
acting as network routers. Each network node periodically sends out a HELLO
message in which it lists its neighbours, their ‘quality’, and specifies its own
‘willingness’ to become an MPR. OLSR HELLO messages are ‘local’, they are
not supposed to be forwarded by other nodes. Based on the information con-
tained in HELLO messages coming from a node’s neighbours, a node selects
an MPR set such that through these MPRs all of node’s two-hop neighbours
are reachable. Periodically, nodes that are selected as MPRs flood the network
with Topology Control (TC) messages, in which an MPR node specifies what
nodes have selected it to be their MPR. The TC messages are generated only
by MPRs and are relayed by other network MPRs [14].

In OLSR, HELLO messages are, by default, sent out every 2 seconds, and
TC messages are sent out every 5 seconds. In order to avoid collisions, jitter
- a random delay — can be added to each of the periodic messages [12]. More

detail on this routing protocol can be found in OLSR RFCs [12].

2.1.3 Ad Hoc Network Simulations and NS-2

Several network simulators are capable of simulating mobile ad hoc networks.
The most commonly used ad hoc network simulators are NS-2 [15], OPNET [16],
and, to a lesser extend, GloMoSim [17]. For this thesis, either OPNET or NS-2
were originally considered. After careful examination of both simulators, it was
determined that OPNET is poorly suited for attack detection work, as OPNET
seemed to be geared towards network performance studies and does not offer a
clear and easy way to lock at the network traffic packet-by-packet, and, within

packets, field by field. Thus, NS-2 was chosen for the simulation component of
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this thesis work.

NS-2 is a prominent discrete event simulator which is focused on modeling
network protocols [18]. It is free, open-source software, available for a wide
variety of platforms and contains implementations of numerous networking pro-
tocols on all stack layers. The greatest advantage of NS-2 over other simulators
is that NS-2 is both free (while OPNET is very expensive) and immensely pop-
ular (GloMoSim and others are not as widely adopted).

Unfortunately, NS-2 also has a number of significant issues that make work-
ing with it challenging. First of all, NS-2 is somewhat difficult to get accustomed
to. Its written in a mixture of C++ and OTcl (object-oriented Tcl) [19] which is
not intuitive. Also, the wireless NS-2 package is an add-on, not fully integrated
with the rest of NS-2. NS-2 does not scale well and is, in general, quite slow with
substantial memory requirements. Finally, documentation on NS-2 often offers
contradictory and/or dated information. Originally released in 1996, NS-2 has
been significantly updated throughout the years and has had a wide number of
components added to it, yet it is quickly becoming outdated. In the summer of

2006, a four-year project aimed at the creation of NS-3 was announced [20].

For more detailed information on NS-2, the reader is encouraged to visit
the NS-2 website [15], and to consult the NS-2 lecture notes [19] and the NS-2
manual [21]. Excellent discussion on history of NS-2 and its current limitations

is provided in [20].

2.2 Literature review: wormhole attacks and pro-

posed solutions

Routing security in ad hoc networks is often equated with strong and feasible

node authentication and lightweight cryptography. A wide variety of secure
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extensions to existing routing protocols have been proposed over the years.
However, the majority of these protocols are focused on using cryptographical
solutions to prevent unauthorized nodes from creating seemingly valid packets
[1]. Unfortunately, the wormhole attack cannot be defeated by cryptographical
measures, as wormbhole attackers do not create separate packets — they simply
replay packets already existing on the network, which pass cryptographic checks.

Virtually all generalized secure extensions proposed for currently popular
routing protocols do not alleviate wormhole attacks. However, since wormhole
attacks pose such a severe threat to ad hoc network security, several researchers
have worked on preventing or detecting wormhole attacks specifically. Their
efforts are summarized in this section.

Section 2.2.1 describes wormhole attacks. Section 2.2.2 discusses a tech-
nique called ‘packet leashes’, which disallows packets traveling farther than ra-
dio transmission range (as they are likely to do in a wormhole attack). Section
2.2.3 talks about wormhole prevention methods that rely on round trip message
time (RTT) to ensure nodes claiming to be located close together really are.
Section 2.2.4 discusses the work of researchers who, instead of treating worm-
holes, treat the network disruptions wormholes introduce. These approaches —
packet leashes, message travel times, and wormhole disruption -— are general.
Section 2.2.5 summarized other, more specialized wormhole detection and pre-
vention techniques suitable for only particular kinds of networks and networks
with particular protocols. Finally, section 2.2.6 summarizes and discusses the

current state-of-the-art in the wormhole attack research area.

2.2.1 Wormbhole attack
A wormhole attack is a particularly severe attack on MANET routing where two

attackers, connected by a high-speed off-channel link, are strategically placed at

10
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different ends of a network, as shown in Figure 2.1. These attackers then record
the wireless data they overhear, forward it to each other, and replay the packets
at the other end of the network. By replaying valid network messages from one
part of the network, wormhole attackers can make far apart nodes believe they
are immediate neighbours, and force all communications between affected nodes

to go through them.

B -
=4 {_\8/}
- J
o 6 )
o &
.‘ it {(:%u t\;
£ L3
| b e ]
SRR er W BB MR NS RN R R NI R AR R R e !
Ay v} / }4
C”é/ High-speed off-channel link \Y

Figure 2.1: A network under a wormhole attack. Intruders A and B are con-
nected by an off-channel link (e.g. a wired or satellite link), which they use
to tunnel network data from one part of the network to the other. Without
a wormhole, nodes 7 and 3 are 4 hops apart — their messages to each other
should go through nodes 2, 6, and 5. When intruders A and B activate a worm-
hole, nodes 7 and 3 are able to directly overhear one another’s messages, and
are lead to believe they are immediate neighbours. Once this happens, all fur-
ther communications between nodes 3 and 7 will go through the wormhole link
introduced by A and B.

A wormhole attack is dangerous for both proactive and on-demand protocols
[2]. When a proactive routing protocol such as OLSR [12] is used, ad hoc
network nodes send periodic HELLO messages to each other indicating their
participation in the network. In Figure 2.1, when node 3 sends a HELLO
message, intruder A forwards it to the other end of the network and node 7
hears this HELLO message. Since 7 can hear a HELLO message from 3, it

assumes itself and node 3 are direct neighbours. Thus, if 7 wants to forward
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anything to 3, it will do so through the wormbhole link, effectively giving the
wormhole attackers full control of the communication link. If a network uses
an on-demand routing protocol, such as AODV [11], the wormhole is just as
effective. In on-demand protocols, when a node wants to communicate with
another node, it floods its neighbours with requests, trying to determine the
shortest path to the destination. In Figure 2.1, if 3 wants to communicate with
7, it sends out a request which a wormhole, once again, forwards without change
to the other end of the network — directly to node 7. A request also propagates
through the network via the normal channels, so 7 is lead to believe it has two
possible routes to node 3: a 4-hop route through nodes 2, 6, and 5, and a single-
hop direct link. Protocols will then select the shortest route, once again giving
wormhole attackers full control of the link.

The majority of ad hoc routing protocols rely on the correctness of their
neighbours’ information for routing decisions, thus allowing wormhole-induced
disruptions to have greater effects. For example, in the situation described in
Figure 2.1, where nodes 3 and 7 think they are direct neighbours, nodes 5 and
8 will then think they are two hops away from node 3 (going through node 7),
and will communicate with node 3 through the wormhole link as well.

Once the wormhole attackers have control of a link, they can do a number
of things to actively disrupt the network. Attackers can drop the packets their
link is meant to be forwarding. They can drop all packets, a random selection
of packets, or specifically targeted packets.? Attackers can also forward packets
out of order or ‘switch’ their link on and off.

It should, however, be noted that wormholes are dangerous by themselves,

even if attackers are diligently forwarding all packets without any disruptions

2Two distinct situations are possible here. When no encryption is used, attackers know
exactly what they are forwarding, and can target specific packets. When strong multi-layer
encryption is used, attackers can either drop packets at random, or try to figure out (based
on traffic patterns, packet sizes, etc.) what they are going to drop
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-—— on some level, providing a communication service to the network. With
wormbholes in place, affected network nodes do not have an accurate picture of
the network, which may disrupt localization-based schemes, lead to the deci-
sions based on incorrect reasoning, etc. Wormholes can also be used to simply
aggregate a large number of network packets for the purpose of traffic analysis
for encryption compromise. Finally, a wormhole link is simply unreliable, as
there is no way to predict what the attackers can do and when they will do it.
Simply put, the wormholes are compromising network security whether they are

actively disrupting routing or not.

Wormbholes can be staged by insider nodes (those that are authorized to use
the network), or by outsiders. An ‘in-band’ wormbhole is a special kind of insider
wormhole, where two nodes that belong to the network tunnel the packets to
each other using the network’s own multi-hop connections (that is, the attackers
encapsulate packets and send them to each other over the network). This thesis
focuses on outsider attacks, although the techniques developed in this thesis
apply to the insider attacks as well. A special kind of a wormhole attack is a
‘short-range’ wormhole, which is formed when the wormhole attackers connect
parts of the network that are distant in the network topology, but are physically
located close together [5]. As will be seen later on, the methods developed in

this thesis are able to detect such attacks where other methods fall short.

2.2.2 Packet leashes

Perhaps the most commonly cited wormhole prevention mechanism is ‘packet
leashes’ by Hu et al. [4, 5]. Hu proposes to add a secure ‘leash’ containing
timing and/or GPS information to each packet on a hop-by-hop basis. Based
on the information contained in a packet leash, a node receiving the packet

would be able to determine whether the packet has traveled a distance larger
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than possible given the physical constraints.

Hu proposes two different kinds of leashes: geographical leashes and temporal
leashes. Geographic leashes require each node to have access to up-to-date
GPS information, and rely on loose (on the order of ms) clock synchronization.
When geographical leashes are used, a node sending a packet appends to it the
time the packet is sent £, and its location ps. A receiving node uses its own
location p, and the time it receives a packet ¢, to determine the distance the
packet could have traveled. Keeping in mind maximum possible node velocity v,
clock synchronization error A, and possible GPS distance error o, the distance

between the sender and the receiver ds,. is upper-bounded by:

dsr < |lps —prll +2v(tr —ts + A) + 0 (2.1)

Geographical leashes cannot detect ‘short-range’ wormholes, but should func-
tion with other types of wormholes in situations when GPS coordinates are prac-
tical and available. However, modern GPS technology has significant limitations
that should not be overlooked. While the price of GPS devices is going down,
it remains substantial. Also, while, as Hu [4] specifies, it is possible to achieve
GPS precision of about 3m with state-of-the-art GPS devices, consumer-level
devices do not get (and do not require) this level of resolution. Finally, GPS
systems are not versatile, as GPS devices do not function well inside buildings,
under water, in the presence of strong magnetic radiation, they can be easily
jammed, etc.

As opposed to geographical leashes, temporal leashes require much tighter
clock synchronization (on the order of nanoseconds), but do not rely on GPS
information. When temporal leashes are used, the sending node specifies the
time it sends a packet t, in a packet leash, and the receiving node uses its own

packet reception time ¢, for verification . In a slightly different variation of
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temporal packet leashes, the sending node calculates an expiration time ¢, after
which a packet should not be accepted and puts that information in the leash.
To prevent a packet from traveling farther than distance L, the expiration time
is set to:

L

te=t,+ = A (2.2)

where c is the speed of light and A is the maximum clock synchronization error.

The level of time synchronization required for temporal leashes entails the
use of specialized hardware not currently practical in wireless ad hoc networks.

In sensor networks, such levels of synchronization are impossible [4] at this time.

Wang [22] proposes an approach inspired by packet leashes [4], but based on
end-to-end location information, rather than hop-by-hop leashes in [4]. Similar
to geographic packet leashes, Wang’s method requires each node to have access
to up-to-date GPS information, and relies on loosely synchronized clocks. In
Wang’s approach, each node appends its location and time to a packet it is
forwarding, and secures this information with an authentication code. The
packet’s destination node then verifies the nodes’ coordinates (i.e. verifies that
reported coordinates are within the communication range) and speeds. A minor
disadvantage of this approach is that the end node is left to do all verification.
Like geographical packet leashes proposed by Hu, this approach should work

where GPS coordinates are appropriate.

2.2.3 Time-of-flight

Another set of wormhole prevention techniques, somewhat similar to temporal
packet leashes [4], is based on the time of flight of individual packets. Worm-
hole attacks are possible because an attacker can make two far-apart nodes see
themselves as neighbours. One possible way to prevent wormholes, as used by

Capkun et al. [23], Hu et al. [24], Hong et al. [25], and Korkmaz [26], is to
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measure round-trip travel time (RTT) of a message and its acknowledgement,
estimate the distance between the nodes based on this travel time, and determine
whether the calculated distance is within the maximum possible communication
range.

The basis of all these approaches is the following. The RTT § of a message
in a wireless medium can, theoretically, be related to the distance d between

nodes, assuming that the wireless signal travels with a speed of light ¢:

dx*c
d= 5 (2.3)
2d
y = — .
y 24)

The neighbour status of nodes is verified if d is within the radio transmission

range R :

R > d (d within transmission range) =

R> 55% = (2.5)
5< 2B (2.6)
C

In essence, the use of RTT eliminates the need for tight clock synchronization
required in temporal leashes: a node only uses its own clock to measure time.
However, this approach, while accounting for message propagation, completely
ignores message processing time. When a message is sent by one node and is
acknowledged by another, the time it takes for a node to process a message and
to reply to it is generally non-negligible, particularly in the context of bounding

short distances using signals whose speed is similar to that of light in vacuum.
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Outstanding clock precision and almost no capacity for error are required to
bound distances on the order of hundreds of meters.

When a de facto standard of wireless ad hoc networks, the 802.11 MAC
protocol [7] is used, such calculations are effectively impossible. 802.11 imposes
a short wait time of 10us (SIFS?®) between the reception of a packet and sending
of 802.11 acknowledgement. When 802.11 is used, transmission range R is
generally about 300 meters. The speed of light ¢ is 3 x 108 m/second. Then,

from equation 2.4:

2d 600 m

6 = — =
¢ 300,000,000 m/s

= 0.000002s = 2% 107° = 2us (2.7)

Therefore, the RTT is an order of magnitude smaller than the delay required
by the protocol. It is, of course, possible to account for this processing time by

modifying formula 2.4 in the following manner:

d= 2d +5 (2.8)

c
where S is SIFS. However, note that wormhole attackers are not limited by
the rules of the network, and could, with some ingenuity, send their packets
without 802.11-imposed delay — thus breaking this type of defence altogether.
On the other hand, if nodes were to use formula 2.4 directly, they would have to
ignore 802.11-mandated delays, breaking 802.11 specifications. Hence, in order

to use the approaches based on time of flight, special arrangements are required.

Capkun et al. [23] propose using specialized hardware that enables fast send-
ing of one-bit challenge messages without CPU involvement so as to minimize
all possible processing delays. To verify distance between the nodes, each node

sends a one-bit challenge to the nodes it ‘encounters’, and waits for a response.

3This wait time is SIFS . The SIFS value depends on the version of 802.11 protocol. 802.11a
specifies SIFS of 16us, 802.11b and 802.11g - 10us [7]
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A receiving node immediately sends a single-bit reply. While Capkun’s use of
specialized hardware is somewhat cumbersome, his method is nonetheless in-
teresting. Hu [24] proposes a mechanism very similar to Capkun’s [23], but
does not use single-bit challenge approach. Instead, Hu relies on the round-trip
travel time of full packets with CPU involvement, explicitly assuming medium
access delays to be negligible. In addition, Hu’s approach requires substantial
processing of messages: upon the reception of a message, a node verifies the
message correctness (i.e. performs one hash function operation) and sends an
authenticated reply. Hong [25] uses a mechanism practically identical to Hu’s.

Korkmaz [26] studied in detail the distance-bounding techniques described
by other authors. He found that using round-trip time may lead to a high
percentage of valid neighbours being rejected. He notes that although a wireless
signal is akin to a light signal in vacuum, its speed is slower [26]. He also notes
that even small errors in measuring time delays alter the distance measurements
significantly, as was alluded to above.

Korkmaz proposes a modified statistical method based on RTT 4. He sug-
gests using two different bounds for RTT, one based on the speed of light ¢
(boundC = Z—CE), and another based on experimentally determined speed of
travel of the wireless signal s (boundS = %) If the RTT ¢ is under Q—CR-, the
nodes are considered neighbours. If § is larger than %, the nodes are consid-
ered non-neighbours. For the nodes with J in between these bounds, Korkmaz
suggests a probabilistic measure of ‘neighbourness’. In addition, Korkmaz also
proposes using received signal strength to verify the ‘neighbourness’ determined
from the time of flight. In summary, Korkmaz’s approach modifies and extends
the RTT-based technique described above.

It is worth noting that while Capkun [23] proposes to use special hardware to

drive the message processing time down, Hu [24] and Hong [25] simply assume
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MAC delays to be negligible.

Approaches based on RTT of a packet are similar in nature to temporal
packet leashes, [5], but do not require clock synchronization between nodes.
The idea of these approaches is very simple: wireless nodes that claim to be
neighbours should be physically close to each other, and when one node sends
a packet to another, the answer should arrive very shortly, ideally within the
amount, of time a wireless signal would travel between the nodes. If there is a
wormhole attacker involved, packets end up traveling farther, and thus cannot

be returned within the time required.

2.2.4 ‘Effects-based’ wormhole attack discovery

Several researchers have worked on the wormhole attack problem by treating
a wormhole as a misbehaving link. In such approaches, a wormhole attack
is not specifically identified. Rather, the wormhole’s destructive behaviour is
mitigated.

Baruch [27] and Chigan [28] use link rating schemes to prevent blackhole
and wormhole attacks. They both rely on authenticated acknowledgements of
data packets to rate links -— if a link is dropping packets, the acknowledgements
do not get through, the link is rated low and avoided in the future.

These approaches are geared towards discovery and prevention of only one
kind of wormhole behaviour: packet loss. Wormholes can do much more than
that — they can send packets out of order, confuse location-based schemes, or
simply aggregate packets for traffic analysis. Even the distortion of topology
information that a wormhole introduce can be a significant problem in certain
networks. The real problem with wormholes is that unauthorized nodes (worm-
hole attackers) are able to transmit valid network messages. Techniques based

on a link’s performance may be suitable in certain cases, but they do not fully
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address the wormhole problem.

Node B

Node G

WNode 13

Made

Node I

oft-channel link

Figure 2.2: When a wormbhole is treated as a misbehaving link, attackers are not
detected and can create wormhole attacks targeting other nodes on the network.
Detection only occurs after performance metrics are triggered, meaning there is
latency in attack identification.

Consider the scenario shown in Figure 2.2. Say that, originally, intruders
are creating a wormhole between nodes A and M. To the network, it seems that
nodes A and M are direct neighbours, and the link between them is evaluated
using a link rating system. When the rating system determines the link A-M
to be lossy, it avoids it — which can be detected by the attackers. They can
then simply move on: create a fake link between, say, nodes B and L, or even B
and M. Since the methods proposed in [27] and [28] do not differentiate between
poorly performing links and wormhole intruders, discovery of a bad link between
A and M does not trigger a security investigation, and the attackers can thus

indefinitely continue to disrupt the network.
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2.2.5 Specialized techniques

A wide variety of wormhole attack mitigation techniques have been proposed
for specific kinds of networks: sensor networks, static networks, networks run-
ning particular protocols, or networks where nodes use directional antennas. In
this section, these techniques are described and their applicability to general

MANETS is discussed.

Nodes with directional antennas

Node B

Node A

Figure 2.3: Nodes using directional antennas. When nodes A and B commu-
nicate, they send their messages on specific ‘sectors’: node A uses its North-
East sector, node B - South-West. Therefore both nodes know how they are
located with respect to each other. From knowing the sector on which it receives
B’s messages, A knows that B is located to the North-East. Had nodes A and
B used omni-directional antennas, A would not be able to say anything at all
about B’s location.

Directional antennas have been extensively studied in the literature [29].
When directional antennas are used, nodes use specific ‘sectors’ of their antennas
to communicate with each other, as shown in Figure 2.3. Therefore, a node
receiving a message from its neighbour has some information about the location
of that neighbour — it knows the relative orientation of the neighbour with

respect to itself, as demonstrated in Figure 2.3. This extra bit of information
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makes wormhole discovery much easier than in networks with exclusively omni-
directional antennas.

In [29], Hu and Evans propose a solution to wormhole attacks for ad hoc
networks in which all nodes are equipped with directional antennas. Wormholes
introduce substantial inconsistencies in the network, and can easily be detected.
In SERLOC [30], Lazos et al. use a slightly different approach: only a few nodes
need to be equipped with directional antennas, but these nodes also have to be
location-aware. These nodes then send out localization beacons, based on which
regular network nodes determine their own relative location.

The methods proposed by Hu [29] and Lazos [30] are both promising, and
could be easily applied to networks that use directional antennas. However,
such methods do require directional antennas and would not be suitable for

most MANETSs.

Sensor networks: network visualization

Wang and Bhargava [31] introduce an approach in which network visualization
is used for discovery of wormhole attacks in stationary sensor networks. In
their approach, each sensor estimates the distance to its neighbours using the
received signal strength. During the initial sensor deployment, all sensors send
this distance information to the central controller, which calculates the network’s
physical topology based on individual sensor distance measurements. With no
wormbholes present, the network topology should be more or less flat, while
a wormhole would be seen as a ‘string’ pulling different ends of the network
together.

Wang’s approach [31] has several aspects that may limit its applicability to
general ad hoc networks. Wang assumes a dense sensor network of a polygon
shape deployed on a flat surface — an assumption perhaps justified for sen-

sor networks, but not practical for ad hoc networks. For sparsely located ad
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hoc network nodes, the estimated physical topology may not be precise. Also,
this method requires a central controller and is thus not readily suitable for
decentralized networks. Finally, while this method should, theoretically, be ex-
tendable to mobile networks, Wang does not study how node mobility would
affect the results.

Overall, Wang’s method requires more research to be applicable to sparse,

decentralized, or mobile ad hoc networks, but seems promising.

Sensor networks: use of location-aware guards

Lazos et al. [32] develop a ‘graph-theoretical’ approach to wormhole attack
prevention based on the use of Location-Aware ‘Guard’ Nodes* (LAGNs).

In [32], Lazos uses ‘local broadcast keys’ — keys valid only between one-hop
neighbours — to defy wormhole attackers: a message encrypted with a local key
at one end of the network cannot be decrypted at another end. However, the
establishment of such keys is non-trivial in the possible presence of wormholes.
Lazos proposes to use hashed messages from LAGNSs to detect wormholes during
the key establishment. LAGNs are assumed to be trusted, and, since their
location is known, a node can detect certain inconsistencies in messages from
different LAGNSs if a wormhole is present. Without a wormhole, a node should
not be able to hear two LAGNS that are far from each other, and should not
be able to hear the same message from one guard twice. Use of LAGNS, in
essence, allows the nodes not equipped with GPS devices to perceive network
irregularities a wormhole introduces, and to get some idea about their relative
position in space.

Lazos’s method [32] is elegant. However, it seems more suitable for dense sta-

tionary sensor networks than for mobile ad hoc networks.For example, LAGNs

4As explained above, Lazos also worked on a wormhole-resistant localization scheme for
sensor networks [30], from which this wormhole attack prevention technique seems to directly
follow
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in this scheme are assumed to have longer communication range than regular
network nodes — a good assumption for sensor networks (i.e. where sensor
motes are regular nodes, laptops are LAGNs), but not usually available with
mobile ad hoc networks. Also, the assumption of trusted LAGNs is better justi-
fied for sensor networks (where controllers can act as LAGNs) than for standard
ad hoc networks. Nonetheless, Lazos’ method is relatively lightweight and may
hold promise for sensor networks and particular types of non-sensor ad hoc

networks.?

Stationary networks: LiteWorp

Khalil et al. [33] propose a protocol for wormhole attack discovery in static
networks they call LiteWorp. In LiteWorp, once deployed, nodes obtain full
two-hop routing information from their neighbours. While in a standard ad
hoc routing protocol nodes usually keep track of who their neighbours are,
in LiteWorp they also know who the neighbours’ neighbours are — they can
take advantage of two-hop, rather than one-hop, neighbour information. This
information can be exploited to detect wormhole attacks.®

After authentication, nodes do not accept messages from those they did
not originally register as neighbours. Also, nodes observe their neighbours’ be-
haviour to determine whether data packets are being properly forwarded by the
neighbour — a so-called ‘watchdog’ approach. LiteWorp adds a novel wormhole-
specific twist to the standard watchdog behaviour: nodes not only verify that
all packets are forwarded properly, but also make sure that no node is sending

packets it did not receive (as would be the case with a wormhole)

5While the need for specialized high-range location-aware ‘guards’ is probably limiting for
emergency and tactical operations, it may be suitable for a mixed wired/wireless networks
(i.e. office networks, rooftop, etc.) where stationary high-power wireless access points may
serve as LAGNs

8To exploit this data fully, LiteWorp packets not only include ‘sender’ information, but
also ‘previous hop’ information, rarely found in other routing protocols
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LiteWorp, however, would not work in a scenario where node mobility is
a factor. Since node’s neighbours are determined and detected only once in
LiteWorp and the packets from non-neighbouring nodes are rejected, no node
movement, is allowable. Therefore, LiteWorp is applicable to static networks

only.”

Networks with on-demand multipath routing: a statistical analysis

approach

Song et al. [34] approach the wormhole attack from a different angle. They pro-
pose a wormbhole discovery mechanism based on statistical analysis of multipath
routing, observing that a link created by a wormhole is very attractive in rout-
ing sense, and will be selected and requested (for routing) with unusually high
frequency. This unusual route selection frequency can be statistically detected
and used to identify wormhole links. Such a statistical analysis approach is fun-
damentally different from the majority of others where, in general, wormhole
detection is related to locating a node in absolute or relative terms (based on
network topology, time of packet transmission, GPS coordinates, with respect
to GPS-aware nodes, etc).

Song’s method requires neither special hardware nor any changes to existing
routing protocols. In fact, it does not even require aggregation of any special
information, as it only uses routing data already available to a node. These
factors allow for easy integration of this method into intrusion detection systems.

However, Song’s method is somewhat limited in scope as it applies only to
routing protocols that are both on-demand and multipath. Non-multipath on-
demand protocols do not provide enough information for the determination of

link frequencies. While on-demand routing protocols keep complete information

"Note, that for purely static networks there is also a trivial solution to wormhole attacks:
static routing
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about routes they discover, proactive ones rely on next-hop information only,
which does not allow the calculation of link frequencies. Nonetheless, within
its scope Song’s method is promising, and could be integrated in a real-world

system with little effort.

2.2.6 Summary

Wormbhole attacks, in which adversaries tunnel network data from one end of
the network to another using an off-channel link, are a severe routing security
concern in mobile wireless ad hoc networks. Wormhole attacks cannot be pre-
vented by cryptographic measures as in a wormbhole attack the attackers do not
create any packets themselves, but simply forward the packets they hear coming
from valid network nodes.

Several researchers use distance-bounding techniques to detect network pack-
ets that travel distances beyond radio range, thus preventing packets that have
gone through the wormhole from being accepted. However, the majority of
these techniques rely on specialized hardware and may not be practical. Of
distance-bounding techniques, GPS-based ones are particularly interesting, as,
of the specialized hardware proposed to combat wormhole attacks, GPS is per-
haps the most general in purpose and most widely available. The effectiveness of
GPS-based wormhole attack solutions is intuitively solid: a packet cannot travel
to another end of the network undetected if all nodes know precisely where they
are located and where their neighbours are (a ‘short-range’ wormbhole is an
exception to this; it cannot be detected by GPS-based measures). Unfortu-

" nately, GPS-based wormhole-combatting techniques inherit the limitations of
GPS technology. They cannot be used where GPS does not work (underwater,
inside buildings, etc.), or in small sensor networks(due to the resolution of GPS

devices).
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Some of the techniques created for particular network types appear promis-
ing. Network visualization techniques presented in [31] for dense sensor net-
works do not require special hardware and work well in specific instances. The
technique based on anomalous frequency of route selection with the presence of
wormholes [34] is intriguing. This technique, although it applies to multipath
on-demand protocols only, is appealing because it is lightweight and, unlike
many others, can be easily and immediately integrated into a MANET intru-
sion detection system (IDS). In essence, this technique is akin to those employed
by IDS systems in wired networks (for example, on a wired network a port scan
can be detected by observing high and abnormal rate of port requests) and could

potentially be useful.

Overall, a significant amount of work has been done on solving wormhole
attack problem. In itself, this body of work demonstrates the complexity of,
and concern about, this type of attack. A standard solution is still lacking,
although several promising solutions applicable to specific types of networks

and situations have been described.

2.3 A MANET testbed and a wormhole exper-
iment setup

A number of previous works in the area of wormhole attack discovery focus
on analytical work and simulations. There is, however, much to learn from a
physical implementation of a wormhole attack. The Communications Research
Center Canada (CRC) [35] MANET lab has set up a MANET testbed, and
has programmed a wormhole attack in it; the network traffic generated by their
testbed wormhole attack implementation was collected in order to study worm-

hole behaviour. In this section, the experimental testbed created by the CRC
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MANET lab is described. Then, the experimental setup that was used for the
purpose of collecting the network traffic of a network under the wormhole attack

is detailed.

The MANET testbed created by CRC MANET lab has several laptops phys-
ically located in the same room. In order to enable multihop communications,
the nodes are programmed to believe they are far from each other. Node sepa-
ration is simulated by generating artifical GPS coordinates for each node using
the Mobile Network Emulator (MNE). The MNE includes a GPS generator and
an MNE information exchange channel, as well as a location computing sys-
tem. The MNE allows each node to propagate location information to other
nodes through the MNE channel. At any given time, each node knows who is
‘located’ within its transmission range, and will only accept the packets coming
from these nodes. This testbed setup allows testbed users to study multi-hop

MANET networks without having to move the network nodes.

Ot'—cllel link

Figure 2.4: A testbed wormhole attack: experimental setup. Altogether, there
were 9 valid nodes on the network and 2 intruders (A and B) connecting dis-
tant network parts. One of the intruders was programmed to randomly drop a
portion of the traffic it was retransmitting.
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The CRC MANET lab has also developed wormhole attackers. These worm-
hole attackers were introduced to the network, one at one end of the network
and another at the opposite end, as shown in Figure 2.4. The attackers were
fully functional: their actions and effectiveness in no way relied on them being in
a testbed and they would have been just as efficient in a real-world deployment.
Each one of them encapsulates the packets it receives wirelessly, transmits them
over a wired link, and sends, wirelessly, the packets it receives on the wired side.
One of the intruders (intruder A in Figure 2.4) simply forwards every packet
it receives. The other attacker (intruder B in Figure 2.4), instead of forward-
ing everything it hears, drops packets at random. This wormhole behaviour is
stealthy: by losing some — but not all — packets, a wormhole link acts like a
link with poor connectivity, leading users to suspect connectivity issues rather
than intrusions. The CRC MANET lab has set up a live video demo to demon-
strate this effect. In their demo, a video from a node on one end of the network
was streamed to a node on the other end of the network. When a wormhole
gained control of a link that was used to transmit the video, the video started
to break up as frames were lost. The effect produced by the wormhole was per-
ceptibly the same as would have been produced by poor connectivity or server
overload. If this had happened when a user was watching a live video off the
internet, the user would not assume intrusion — the user would think there is an

issue with their internet provider, or with the server sending the video.

Above, an experimental testbed and the implemented wormhole attackers are
described. Here, the actual network setup that was enabled when the network
traffic was collected is described. For the purpose of traflic collection, two
experiments under the same conditions were conducted, one with a wormhole
and one without. When the wormhole was introduced on the network, the

routing tables of network nodes were affected in the predicted way: nodes,
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located at the opposite ends of the wormhole, believed themselves to be direct

single-hop neighbours. The network setup was as follows:

e Network Topology: the network consisted of 9 laptop nodes, arranged
(with artificial GPS coordinates) into the formation shown in Figure 2.4.
As shown, the maximum number of hops on the network was 4. Two
wormhole attackers, connected by a wired link, were introduced on the

network, at the positions shown in Figure 2.4

e Routing: As a routing protocol, OLSR [12] was used. Default OLSR pa-
rameters were not used. HELLO message interval was ~0.315 seconds. A
simplified version of HELLO messages jitter was used: a HELLO message
was sent out either after 0.3 seconds, or after 0.33 seconds. The Topology

Control (TC) message interval was set to 1 second.

e Network load: network traffic consisted of OLSR management traffic and
several nodes pinging each other. However, since all nodes were in the
same room (used the same wireless channel) and the intervals between

OLSR messages were low, the wireless channel was relatively busy.

e MAC address spoofing Not enabled. Intruders did not try to hide by
spoofing their MAC addresses. &

The traffic, generated by this experiment, was captured with a wireless sniffer
AiroPeek [10]. Since all nodes were physically located close to each other in this
experiment, it was possible to sniff and record all network traffic at the same

time.

8Subsequent analysis of this data, however, does not rely on having ‘visible’ intruders MAC
addresses, and is viable even if the wormhole attackers do spoof theirs.
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Chapter 3

Tool development: a traffic
analyzer and an NS-2

wormbhole attack simulation

In order to do research quickly and efficiently, it is important to have the right
tools. This chapter describes the research ‘tools’, a traffic analyzer suite and a
simulation, that were developed in this thesis.

Section 3.1 describes the network traffic analyzer suite that will allow re-
searchers to work with ad hoc network traffic without having to implement
low-level analyzer capabilities. This section also demonstrates the capabilities
of the developed suite by presenting a small case study on trivial wormhole at-
tack detection techniques completed using the Network Traffic Analyzer (NTA).

This chapter also describes another tool developed in this thesis, an NS-
2 wormhole attack simulation. Although a number of researchers work with

wormhole attacks, no literature on realistic wormhole attack simulations exists.
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Section 3.2 describes the schematics of the created wormhole attack implemen-

tation and comments on whether this wormhole attack model is realistic.

3.1 Wireless traffic analysis: NTA

This section presents an NTA-MANET traffic analyzer suite created for work-
ing with wireless ad hoc network traffic. First, this section introduces the
MATLAB-based NTA tool developed at Defence Research and Development
Canada (DRDC) [36]. The NTA-MANET suite that was contributed to the
NTA as part of this thesis is then described. Finally, a small case study on a
trivial wormhole attack detection technique is discussed to demonstrate what

the NTA-MANET suite is capable of.

Network Traffic Analyser (NTA) is a MATLAB-based tool developed in-
house by the Network Information Operations (NIO) section of DRDC for sta-
tistical analysis of network traffic. Unfortunately, commercially available traffic
analyzers are not easily customizeable. While it is easy to use the functions
these analyzers have built into them, writing custom add-ons for exploratory
data analysis with these tools is complicated. NTA, on the other hand, was cre-
ated specifically to be flexible. NTA was originally created for wired networks.
Within this work, additional functionality was implemented in the NTA, allow-

ing NTA to work with wireless (IEEE 802.11) ad hoc network traffic.

3.1.1 NTA: overview

NTA works with the data captures obtained by a sniffer. The captured data
then needs to be stored in libpcap format [37] — a special binary file format

commonly used for packet manipulations and analysis.! The capturing, storing,

IThe same binary format is used by the well-known packet-capturing tools tcpdump and
Ethereal, just to name a few.
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Wireless sniffer

Figure 3.1: Pre-processing of data for NTA. First, wireless data is captured
with a wireless sniffer. Next, the captured data is converted to a binary libpcap
format. The data in libpcap format can be loaded directly to NTA, where it is
parsed and dissected. Some wireless sniffers are able to store the captured data
directly in libpcap format; for other sniffers conversion tools are available.

and uploading of data to NTA is demonstrated schematically in Figure 3.1.
Although not all wireless sniffers store the data in libpcap format directly (some
of them use their own proprietary formats), a number of conversion tools are
freely available. When the data is uploaded to NTA, each packet in the capture
file is identified, its different headers are ‘peeled off’, and each of the headers
(MAC, IP, etc) is dissected into their components (addresses, flags, etc). NTA
fully decodes Medium Access Control (MAC), Logical Link Control (LLC), and
Internet Protocol (IP) headers. It also recognizes and dissects UDP, TCP, and
ICMP headers. Within the NTA, network packets are represented as simple
MATLAB arrays, where each packet occupies a separate row, and each identified
packet field has a dedicated column. As a result, once the data is in NTA,
working with it becomes very easy.

Once protocol parsing is implemented in NTA, working with that protocol’s
data is simple. However, implementing parsing of a new networking protocol in

NTA requires a great deal of development time. Figure 3.2 shows schematically
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P header ]’ payload

Figure 3.2: A schematic view of 802.11 packets’ headers, a non-OLSR packet
(top) and an OLSR packet (bottom). Within the NTA-MANET suite, parsing
of 802.11 headers and parsing of OLSR data were implemented.

the structure of wireless packets, a non-OLSR. packet (top) and an OLSR, packet
(bottom). Prior to this work, NTA could parse IP headers, but could not deal
with 802.11 headers and treated OLSR data as payload. Within the scope of
this work, IEEE 802.11 parsing and processing within NTA were implemented.
Also, much like other traffic analyzers, the basic version of NTA did not have any
MANET functionality, so several MANET-related functions were implemented
within NTA as well. Finally, OLSR parsing within NTA was also implemented.
Together, this added NTA functionality is named the ‘NTA-MANET’ suite. The

capabilities of NTA-MANET are described in the next section.

3.1.2 NTA MANET suite

NTA-MANET’s basic functionality that was developed includes the following:

o Uploading wireless traffic to NTA. Previously, NTA depended on the cap-
ture being done by a wired sniffer. This dependency was eliminated, al-
lowing users to work with wireless data the same way they work with

wired data.

o Complete parsing of 802.11-related parts of packets, including 802.11 head-
ers of different packets, and full parsing of 802.11 management and control

packets
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e Parsing of OLSR packets: this MANET-specific functionality gives NTA

users easy access to the data contained in OLSR routing packets.

o Working with MAC-addresses of stations: filtering, selection, following,
etc In the analysis of wired traces, MAC addresses of individual nodes
sometimes tend to be ignored. In the wired world, the IP address of a
packet is often all that is necessary. In the wireless world, where network

nodes act as routers, this is frequently not the case.

Given the above functionality, the tool can now be used to easily write
custom functions. With it, a researcher wanting to, for example, study the
behaviour of a particular network access point, does not have to spend time
on writing a parser for 802.11 beacon packets. This researcher would simply
upload their experimental data to NTA and with that will have an easy access
to all data that 802.11 beacons contain, they would be able to obtain statistics
on any field, filter on any field parameter or a combination of parameters, etc.

The main value of NTA is the ease with which NTA can be extended for
a particular need of a particular user. However, within the scope of this work
several more specific functions that could be of interest to other NTA users
were developed as well. Within NTA, novel functions were developed which

allow users to:

o List stations and networks present in the trace; list stations belonging to
a particular network. When turning on a wireless card in a city, one often
sees a number of different networks. The nodes belonging to another,
non-related network, may be of no interest to a researcher. Thus a simple
way to identify which nodes belong to which network is a good addition.
Note that NTA is designed in such a way that creating functions like this

is trivial.
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o Trace particular packets on a network as they travel from node to node
With this function, it is possible to see the paths that data travels on a
network. There are many applications of this functionality. For example,
it can be determined which nodes are the most important for the network,
or whether a blackhole attack is happening, etc. It is interesting to note
that the same information could have been obtained if each node was to
keep track of the packets it was processing. With this function, however,
the information from the nodes is not needed and node cooperation is not
required - the information can be obtained directly from traffic. One can
imagine a passive intruder listening in on the network — this intruder would
be working with precisely the same information, with just the wireless
network traffic. This function could help, for example, to study what an
attacker can find out about a network by simply listening in on network’s

trafic.

o Print the summary of each wireless station’s behaviour, i.e. show if it s
an access point, what nodes it communicated with, etc.; print the total
summary of the wireless trace (how many packets were captured, what
networks were observed, etc). These summary functions present an easy
way for a person to get started when working with a particular trace, and

provide a good brief description of a trace.

o Identifying packets that are repeated. This function could be used for de-
tection of replay attacks. It had been developed for detection of wormhole
attacks through detection packet repetitions, within the case study that

is discussed in the next section.
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3.1.3 ‘Trivial’ detection of wormhole attack with INTA:

packet repetitions

Having explained the NTA functionality that was developed, it is now possible
to demonstrate how NTA can be used for discovery of wormhole attacks in net-
work traffic. Here, a trivial way of attack discovery is shown — using packet
repetitions — which would not be easily implemented in a real distributed net-
work. In this section, the traffic obtained in the experiment described in section

2.3 is processed, and wormhole attackers in this experiment are detected.

A wormhole is hard to discover because wireless nodes cannot directly listen
to the off-channel communications between the two intruders. Each network
node only has access to wireless traffic, and only to a small local subset of
it. With a single global wireless sniffer that was present in the experiment
used in this work (see section 2.3), access to all wireless traffic on the network
is provided. With a global sniffer (or a carefully selected set of distributed
sniffers), a wormhole can be detected by looking at packet repetitions in the
wireless trace.

To see how packet repetitions would be useful for wormhole discovery, con-
sider the network under a wormhole attack shown in Figure 2.4. Imagine that
station 1 is trying to communicate with station 9. Since a wormhole is present
in this network, station 1 believes that it has a direct link to station 9. Let
us say that station 1 is sending traffic to station 9. Intruder A listens to the
traffic, and forwards the packet sent by station 1 to intruder B. Intruder B re-
transmits the packet that station 1 has sent. Therefore, before reaching station
9, the packet from station 1 is actually sent three times: twice wirelessly, and
once on the wired link between intruders. While it is not possible to see what
the intruders send to each other, it is easy to see, having access to all network

traffic, that the exact same packet is resent twice on the wireless medium. By

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



detecting packet repetitions, a wormhole attack can thus be detected.

It should be mentioned that there are cases when packets are validly re-
peated on a network. For example, packets that are legitimately forwarded
by neighbour nodes are ‘repetitions’ as well, only the packets are not identical
as their hop counts are different. A legitimate repetition also happens when
a packet is retransmitted on the 802.11 MAC layer. In this case, a packet is
marked as a ‘retry’ in accordance with the 802.11 rules. Therefore, by assessing
packet repetitions in a network trace, a wormhole attack can be detected. If the
intruder’s MAC address is not spoofed, a large number of packets being re-sent
with a different source MAC address would appear in the trace. If the intruder’s
MAC address is spoofed, it will appear as if a station repeats its own packets
(even those that were acknowledged or those that are broadcasted).

To detect these packet repetitions in the experimental data capture, an NTA
function that compares captured packets with each other was created. Since the
MAC address of the intruder could be spoofed, this function not only looks for
different stations repeating each other’s packets, but also for stations that seem
to be repeating their own packets.

In general, packet P; is considered to be the repetition of packet P if all of

the following criteria are met:

e Packet P> was recorded by a sniffer within a certain relatively short time
after packet P;. Wormbhole attackers should be capable of a fast transmis-

sion of data, so the time between repetitions should be relatively small.

e P, and Py are both 802.11 data packets. Only data packets are transmitted
through the wormhole. 802.11 management and control packets are not

repeated by a wormhole.

e The 802.11 payloads of Py and Py are equal — that is, the actual message

of the packet is the same. Within 802.11 payloads, there are IP headers,
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hop counts, etc. Note that this equality does not depend on the presence
of encryption: it is not necessary to identify what is within a packet to
be able to compare it to another packet. If no encryption is in place, the
comparison can be simplified and accelerated. For example, one can start
with comparing IP attributes (for example, addresses and hop counts),

and compare the complete payload only if IP attributes of packets match.

If an intruder is spoofing a MAC address of a valid station, it could be
troublesome to distinguish the packets that are validly repeated because of poor
connectivity and those maliciously repeated. Let us say that a packet P is of
the type that requires 802.11 acknowledgement (it is not a broadcast packet).
When the connectivity is poor, the packet P, may end up being resent, and that
could be confused with an actual malicious packet repetitions. There are two
basic rules that intruders may break in this case. First, when a valid packet is
repeated because of poor connectivity, the ‘retry’ bit on the first packet should
be ‘0°, and on the second and all consecutive packets — ‘1’. When P, following
a P, with a retry bit set to 0, is sent the retry flag set to '0’, P, is improper
and suspicious. However, packets on the MAC-level are often repeated more
than once (up to the limit specified by the wireless card), and in the 802.11
standard the packets sent for the second, third, and so on times are identical,
with their retry bits set to one. From this follows the second rule: if P;’s retry
bit is 1, and P»’s is zero, P, is improper. But when if, for example, P, and
P, both have the retry bit of 1, it cannot be determined whether its a valid
repetition due to poor network connectivity, or a malicious intruder spoofing
another node’s MAC address. This property has the potential to be the source
of false positives in attack detection. In this case, secondary checks are needed
to find out whether an intrusion is in place. A valid node would, for example,

have a smaller number of packet repetitions. Note that this point is a concern
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only for the packets that need to be acknowledged. If OLSR is used as a routing
protocol, in order for wormhole attackers to create a link, they would have to

repeat broadcasted packets, which should not be repeated.

The rules for packet replays, specified above, were implemented within the
NTA-MANET suite. Since the NTA-MANET suite described above allows to

have direct access to all fields of 802.11 packets, implementing these rules was

straightforward.
Sending node (S) | Replaying node (R) | # of replays by R
MAC address MAC address
06:25:A7:03:40 06:25:A7:03:40 785
06:25:17:D6:1F 06:25:17:D5:BF 391
06:25:17:D6:1F 06:25:17:D6:1F 4

Table 3.1: Packet repetitions detected by NTA. The first column shows the MAC
addresses of nodes that had their packets repeated. The next column shows the
MAC addresses of the nodes that repeated packets. The last column shows how
many packets were repeated. From this table, both wormhole attackers in this
network and the nodes affected by the wormhole are identified.

The experimentally obtained data was then processed to determine how
many packets are detected as ‘repetitions’ by this method. The replay statistics,
obtained with NTA from the MANET experiment with a wormhole are shown in
Table 3.1. This table was generated by detecting packet replays (i.e. packets P,
and P, in the discussion above), and obtaining statistics on the characteristics
of these packets: what stations were doing the repetitions, whose data they were
repeating, etc. The first column of Table 3.1 shows the stations S whose packets
were replayed. The second column shows the stations R that were doing the
replaying. The third column shows how many packets were identified as replays
for each S, R pair. From this result, both intruders in the experiment can be
identified: the first intruder is a station with a MAC address 06:25:29:C6:CD,
and the second intruder is a station with a MAC address 06:25:17:D5:BF. Here,

the nodes had their packets replayed by these intruders are also identified.
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The third line in Table 3.1 demonstrates a false-positive result that appears
for the reasons discussed previously. This line shows that station with a MAC
address 06:25:17:D6:1F ‘replayed’ four of its own packets. This is clearly a
false-positive result since it is questionable whether wormhole attackers would
get any benefit by replaying only four packets. Note that the intruder, shown
on line 2 of Table 3.1, replayed almost 400 of this station’s packets, two orders
of magnitude more than the self-repetition case shown on the third line. No

other false-positive results were obtained in this experiment.

3.1.4 Discussion

In this section, a Network Traffic Analyzer (NTA) MANET suite that was cre-
ated in this thesis work has been described. This traffic analyzer suite allows
researchers to easily work with MANET data, without having to ‘re-invent the
wheel’ by writing low-level 802.11-related and ad-hoc-network-related traffic an-
alyzer functionality. This section also presented a case study on the detection
of a wormhole attack using packet repetitions. It was shown that if a global
wireless sniffer is present on a network, a wormhole can be detected easily by

accessing packet repetitions.

Applicability of ‘packet-repetitions’ method to real-world networks

While this case study was performed to demonstrate NTA’s capabilities, it is
possible to comment on the applicability of packet repetitions to wormhole at-
tack detection in general.

When a global sniffer is present on a network (for example, a powerful net-
work controller is overseeing a sensor network), detection of a wormhole attack
with this technique is very simple, if not to say trivial. For a case where a global

sniffer or a network controller is present, this technique can be implemented on
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the fly. Unfortunately, an implementation of such technique on a traditional
fully distributed network without a global network monitor would be challeng-
ing. In order to do so, it will be necessary, for example, to use specialized
agents that would carry hashes of network messages and compare them node-
to-node. This approach would also require tight time synchronization among
network nodes and would lead to an increase in network overhead. So, while
the packet-repetition technique does not appear practical for networks without
a global wireless sniffer, it is a solid technique that can be easily implemented
if a global sniffer is available. Note that in the majority of ad hoc networks it
is not feasible to have a global sniffer, so this technique is applicable only in a

limited number of deployment scenarios.

3.2 Wormbhole implementation with NS-2

In the previous section, the tools that were created in order to analyze the traffic
generated by physical experiments are described. In this section, another ‘tool’
~— an implementation of a wormhole attack in a network simulator NS-2 — is
described.

While the importance of experimental work cannot be stressed strongly
enough, a reliable wormhole attack simulation is also needed in order to have
an extendable, easily customizable model that would be able to generate traffic
of different networks in different conditions under wormhole attacks. With a
simulator, it is easy to alter various wormbhole parameters and network settings
— something that may not be easily done in an experimental testbed. While
a number of researchers have studied wormhole attacks, many of them did not
develop wormhole attack implementations [5, 22, 26], and the researchers that
did develop wormhole attack implementations do not provide any details (nei-

ther schematics nor the code) on how they have simulated wormhole attacks.
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Khalil [33] mentions that their wormhole attack implementation works by mak-
ing packets ‘heard’ on one end of the network immediately available on the other
end of the network. This model grossly oversimplifies real wormhole attackers’
activities, and, in fact, could not be used at all for working with intrusion de-

tection techniques such as those developed later on in this thesis (chapter 5).

In this thesis, a realistic wormhole attack in the NS-2 was developed and
tested. Section 3.2.1 introduces NS-2 and discusses the challenges that one is
faced with when trying to create a wormhole attack in this simulator. Section
3.2.2 describes the model of a wormhole attack that was created in NS-2. Ap-
pendix A shows, through the demonstration of routing changes and by tracing
packets going through the wormhole that this wormhole attack schematics is

effective.

3.2.1 An overview of NS-2

The overall architecture of NS-2 is similar to the OSI protocol stack network
model [18]. NS-2 has a wide variety of different protocols built into it on all
levels of the OSI protocol stack, starting from the physical layer (where it has
built-in models of wired, wireless, and satellite media), and going up to the
application layer (where it can simulate, for example, FTP, telnet, or constant
bit-rate traffic) [38]. NS-2 has two distinct levels — an OTcl level and a C++
level. On the C++ level, NS-2 components — links, agents, address classifiers
— are defined and on the scripting level (OTcl level) these components are put

together (as to avoid recompiling every time a structural change is made [20]).

In NS-2, a simulated topology consists of nodes, connected by links (if a wired
network is being simulated). In order to simulate traffic, NS-2 uses ‘agents’ and
‘applications’. For example, to get UDP traffic going between two nodes, the

node generating messages must have a UDP agent attached to it, while the node
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receiving traffic should have a NULL agent. On top of these agents, an applica-
tion — for example, a generator of constant bit rate traffic — is attached. The
nodes have to be connected by links to each other, either directly as immedi-
ate neighbours, or through intermediate nodes that route traffic accordingly. If
wireless networking is used, instead of relying on wired links, nodes use shared
media to send packets to each other. In order for a wireless node to route packets
for its neighbours, it has to have a routing agent running on it. The difference

between wired and wireless nodes in NS-2 is highlighted below.

Node structure in NS-2

Port

deimux ¢ ;

L
Addr ~

Classifier

@D o) D

Figure 3.3: An NS-2 wired node. Packets, received by a node, are handled by
the node’s entry point — the address classifier. The address classifier determines
whether a packet is destined to the node itself (in which case it is routed to the
port demultiplexer), or to other nodes (it is then sent on to the corresponding
wired link). The port demultiplexer, in turn, determines which agent should
be receiving this packet. When node’s agents themselves generate a packet, the
packet, too, is sent to the node’s entry point, where it is routed accordingly.

Wireless and wired nodes have different structures in NS-2. The structure
of a wired node is shown in Figure 3.3, and the structure of a wireless node is

shown in Figure 3.4.2

2Figures 3.3 and 3.4 are taken directly from the NS-2 Manual [21].
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Wireless node

Channel.

Figure 3.4: An NS-2 wireless node. In the NS-2 wired domain, the connectivity
is determined by wired links. In wireless NS-2 world, there is a concept of a
shared wireless channel, which the nodes use to communicate. When a packet
is delivered to a node on the channel, it is handled by the MAC and LL layers,
and is then sent up to the node entry point — the IP address demultiplexer.
If a packet is destined to the node itself, it is sent to the port demultiplexer.
Otherwise, it is handed down to the routing agent, which determines where to
send it next. All packets that are placed on the wireless channel go through
routing agent, link layer, and MAC components.

A wired NS-2 node, shown in Figure 3.3, is relatively simple. A packet
enters a node through the ‘entry point’; to which an IP-level packet address
classifier is attached. Based on the packet’s IP address, the packet is either sent
to one of the wired links or, if a packet is destined to the node itself, to the port
demultiplexer which will determine what application agent a packet is supposed
to go to. It is important to note that packets a node itself generates also go to
the node’s entry point and are sorted from there.

An NS-2 wireless node, shown in Figure 3.4, has a more complex struc-
ture. While wired nodes rely on links to communicate, wireless nodes use media
sensing, and thus have a number of additional components providing for media
access control. For a wireless node, when a packet ‘arrives’ to the node’s location
(functionality handled by the NS-2 ‘channel’ component), it is treated by the

node’s MAC layer (whose functionality is, for 802.11 networks, almost identical
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to the actual functionality of 802.11 MAC — looking at packet’s integrity, de-
termining whether the packet should travel up the stack, checking its flags, etc.)
and Link Layer (LL), and then passed on to the node’s entry point. Similar to
the wired node, the wireless node’s entry point is the IP address demultiplexer.
Depending on the packet’s IP address, the address classifier sends the packets
to the port, demultiplexer (if the packets are addressed to the node itself) or to
the routing agent, which determines what to do with other packets.

Note that for a wired node the address classifier is used to determine where
to send the packet next — a functionality performed by the NS-2 routing agent
in the wireless domain. However, while the NS-2 routing agents do the packet
classification (among other things), they are much more than simple packet
classifiers. In essence, the routing agents perform the full functionality of real-
world ad hoc routing daemons. For example, an OLSR routing agent creates and
sends out routing messages, processes the routing messages received from other
nodes, and maintains an IP table based on this information — i.e, it performs
the full functionality described in the OLSR RFCs [12]. In NS-2, this routing
agent is also involved in routing data packets while in an actual network the
routing table generated by the OLSR routing daemon would be used for this,

but the daemon would not be involved in the actual routing.

Issues: need for multiple interfaces and wired/wireless domain com-

bination

A particular weakness of NS-2 pertaining to wormhole attack modeling is its
inability to work with multiple interfaces [21]. Note, for one thing, that there
is no ‘interface’ classifier in NS-2 — an IP-level address classifier handles every-
thing a node receives. The very design of the wired and wireless nodes makes
it impossible to have several interfaces: an NS-2 node is designed to have one

single entry point; the presence of such a singular entry point is fundamental
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and would be a challenge to change. Unfortunately, a proper wormhole attacker
needs to have 3 interfaces (two wireless and one wired) — not something NS-2

allows.

Another issue that makes modeling of wormhole attacks non-trivial is the
need to mix wired and wireless domains in a single simulation. In NS-2, the
wireless block is an add-on, and it is not fully compatible with the wired com-
ponents. When combining wired and wireless nodes in a single simulation, all
kinds of issues are encountered, including problems with tracing (trace formats
are different) and visualization (on the wired side, the nodes are placed in a
visualization according to certain connectivity rules, while in the wireless world
the location is predetermined — the mixture of both leads to node misplacement
in visualization). Note that there is a significant difference in routing between
the wired and wireless domains. In the wired world, the routing is done with
links (indeed, an address classifier actually directs packets to the right links),
while in the wireless domain the packets are routed with the help of routing
agents and no links are present. This makes a straightforward combination of
wired links and wireless media access impossible. Overall, using wired links on

a wireless network, as a wormbhole is supposed to do, is challenging in-NS-2.

3.2.2 An NS-2 model of a wormhole attack

In this work, a wormhole attack is simulated with NS-2. A wormhole should
capture packets on one end of a network and forward them on the other. Ideally,
each of the wormhole attackers should have two wireless interfaces (one for
sending packets and one for recording) and a wired one (for transferring packets
to each other). Unfortunately, due to NS’s inability to work with multiple
interfaces (as described in the previous section), creation of such attackers in NS-

2 is not feasible. In this section, a work-around to this problem is described, and
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the schematics of a wormhole attack implementation with NS-2 are presented.

Figure 3.5: Schematics of the wormhole attack implementation in NS-2. Each
end of a wormhole has two components: a sink that records all it hears (A and
C on the diagram) and a source that replays everything it receives on the wired
side (B and D) wirelessly. Sinks and sources are connected by unidirectional
links. For example, sink A records everything it hears wirelessly and transfers it
over a unidirectional wired link to source B. Source B, in turn, replays wirelessly
all packets it receives from sink A. Along with a sink and a source, each end
of the wormhole includes a firewall to prevent infinite loops arising from sinks
replaying packets coming from sources.

The overall scheme of the wormhole attack implementation in NS-2 is shown
in Figure 3.5. Since it was not possible to create a single intruder node, two
specialized types of nodes were instead created, such that, when combined to-
gether, they form a single wormhole intruder. These two node types are a sink
node which captures wireless traffic and sends it on the wired link (nodes A and
C in Figure 3.5) and a source node (nodes B and D in Figure 3.3) that puts
everything it receives on a wired channel on the wireless media.

By separating an intruder like this — into a sink and a source — two in-
truder components, both unidirectional, are created. This makes it possible to
avoid the most significant issue arising from the mixture of wired and wireless
domains — the inability to classify packets by interfaces. The structure of the

created sink and source nodes is simple enough to avoid the need for complex
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Address
demultiplexer

Channe|

Figure 3.6: A wormhole sink node. A sink node is a simplified version of a
general NS-2 wireless node. Striped parts are those that were changed to create
a sink: the medium access component, the link layer, and the address demul-
tiplexer. On the MAC layer, the SINK is programmed to accept and reject
particular packets. On the LL layer, the changes are introduced to make sure
all packets, even those that are supposed to be handled by the ARP layer, go
up the protocol stack. The address demultiplexer is programmed to forward
everything it receives up to the single wired link, regardless of IP addresses.

packet classification: since sinks and sources are unidirectional, the classifica-
tion is simply ‘what comes in one way goes out the other way’. Corresponding
source and sink nodes should not be able to hear each other (as to not infinitely
replay the information back and forth) — the capability shown as a firewall in
Figure 3.5. Finally, unidirectional wired links are used to connect corresponding
sink and source pairs together.> Both sink and source nodes, whose roles in a
wormhole are explained above, are modified NS-2 wireless nodes. A schematic
representation of a sink node is shown in Figure 3.6 while the scheme of a source

node is given in Figure 3.7. Essentially, both sink and source nodes are gen-

3The implications of using this attack model and its limitations in modeling an actual
attack are discussed in section 3.2.3.
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eral wireless nodes with a number of components not activated and a number
of components substantially modified. Those that were modified are shown in

stripes in Figures 3.6 and 3.7.

SOURCE node

Node Source

. classifier .« T .
entry . i /R outing \\:

§
h
s
i
1

Channel

Figure 3.7: A wormbhole source node. A source node takes everything it receives
on the wire and sends it on the wired medium. To create a source node, the
‘wireless’ node is simplified, and the following components are altered: the ad-
dress classifier(so that it forwards everything to the routing agent), the routing
agent, and the lower wireless media-related stack layers. At the MAC layer, a
source node should ignore everything it hears.

As shown in Figure 3.6, the following wireless node modules were repro-
grammed to create a sink node: the MAC module, the LL module, and the
address demultiplexer.

At the MAC layer, a wormhole sink should be similar to a real-world wire-
less card operating in promiscuous mode — listening and recording all packets
it hears, but not transmitting anything. However, unlike a wireless card in
promiscuous mode, the sink node should perform some filtering on the packets
it captures as well since some packets should not be resent on the other end of

the network. For instance, packets coming from the corresponding source node

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



have to be rejected to avoid infinite packet resending loops — the functionality
shown as a firewall in Figure 3.5 and implemented as a MAC-address filter in
the MAC layer of NS-2 sink node.

On the link layer (LL) level, a standard non-wormhole wireless node deter-
mines whether the ARP module is to be accessed so that MAC-to-IP mapping
can be done. However, the intruders should not use ARP. Instead, ARP packets
should be transmitted on the wormhole link. Thus, the LL module for the sink
node is modified to make sure that ARP-related packets are not transferred
to the ARP layer. For the sink node, the LL layer is programmed to send
everything, even ARP packets, up the protocol stack.

Finally, to create a sink node, the address demultiplexer of a wireless node is
modified. On the level of address demultiplexing, the sink node is very simple:
the sink address classifier takes everything that a node receives and forwards it

on the node’s only link.

A source node, which is supposed to forward wirelessly all packets it receives
on the wired link without any changes, is shown in Figure 3.7. Just like the sink
node, the source node is a simplified version of the general wireless node. For
the source node, the following components are modified: the address classifier,
the routing agent, the LL and the MAC layers (shown in stripes in Figure 3.7).

In the source node, an IP address classifier is modified to send everything
it receives to the routing agent instead of performing address demultiplexing.
The operation of the routing agent is significantly altered: for a source node,
the routing agent does nothing more than simply push the packets down the
protocol stack without any changes. The modifications for the source node LL
module are similar to the modifications done for the sink node: the LL module
is modified to make sure the ARP module is never addressed. Finally, the MAC

layer is significantly altered: at the MAC layer a source node is programmed to
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reject all 802.11 data packets, even those directed to the broadcast or to itself.

To create one complete wormhole attacker, a sink and a source must be
placed together as shown in Figure 3.5. Then, a sink from one end of the
network is connected to a source on another end of the network (shown by

arrows in Figure 3.5).

Overall, each packet relayed by the wormbhole is handled by several wormhole
components. First, it is captured by the intruder’s MAC layer where an intruder
determines whether this packet should be forwarded or not. Then, the packet
goes up to to the LL (where its simply pushed up) and to the sink classifier
which places the packet on the wired link between the intruders. After traveling
through the source classifier, which forwards that packet to the routing agent,
the routing agent forwards the packet down to the LL and finally to the MAC

layer where the packet is resent wirelessly.

Finally, it should be noted that the link structure in NS-2 is very simple: a
user specifies the delay on the link that they would like to simulate and each
packet is held on the link by that delay. In order to be able to better control
links between wormhole attackers (for example, induce some randomness on the
delay between links), specialized ‘wormhole links’ — slightly modified versions of

NS-2 wired links — were also created.*

3.2.3 Discussion

In this work, a fully functional wormhole attack simulation was developed. This
is, of course, a base model which can now be programmed for specific wormhole
behaviour or for specific network types. With this attack framework ready, the
attack behaviour can now be easily modified in a number of ways. Appendix

A demonstrates how this wormhole affects the routing tables of a particular

4The importance of controlling wormhole links will become apparent in chapter 5.
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network; with very little coding, it is possible to study a wormhole’s effect on
different network topologies and to study the effect of node mobility. With ease,
traffic on a network can be added to see how traffic affects wormhole behaviour
and its effect. It is also very easy to program this wormhole to transfer only
particular kinds of packets or drop a certain percentage of packets going through
it. Overall, an extendable basic model of a wormhole in NS-2 was created ‘from
scratch’ (as no literature on the implementation of wormhole attacks in NS-2

was available).

The goal of this work was to obtain a realistic simulator representation of
a wormhole in an ad hoc network. In this simulation, the steps of wormhole
processing of packets — capturing of a packet by one intruder, packets going
through the off-channel link to the other end of the network, packet retransmis-
sion by another intruder — are implemented without simplifications. However,
there are limitations to how close to reality this model comes. These limitations

are discussed below.

Limitations

It should be noted that the intruders can create a wormbhole in a multitude of
ways. The intruders could be connected with a dedicated wired link or perhaps
a congested satellite link. They could be using standard TCP/IP to send the
packets they capture to each other, or could come up with their own transport
protocol. The intruders themselves could have highly specialized, dedicated
machines that spend all their CPU time on the creation of a wormhole, or they
could be engaged in a myriad of other tasks. Since it is not known exactly
what the intruders would do, there are intrinsic limitations to the modelling of
wormbhole attacks. In this work, a specific wormhole attack setup was modelled:

the intruders, connected by a wired link, use IP tunneling to transfer data to
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each other. Here, the implications of the differences between a real-life wormhole
implementation and the NS-2 simulation that was created here are discussed.

In this model, the corresponding co-located sink and source intruders are
independent of each other, while in reality each would most likely be just a
single node with two different wireless cards and an interface to an off-channel
link. This implies that in a real wormhole the sink and the source would share
information (as well as resources), while in this NS-2 simulation they don’t.
Also, because sink and source are independent, two separate uni-directional
wired links had to be used, rather than a shared bi-directional link that real
attackers are more likely to use.

As was explained in the previous sections, in NS-2 all packets a node forwards
go through the routing agent. For a real network, that is often not the case,
particularly where proactive or table-driven routing agents are used. This may
throw off timing in a network. The delays of packets on wired links can also
affect the experiments that have to do with timing, especially with statistical
uncertainties in the timing. In NS-2, the delay of a particular wired link is
actually selected by the user and is specified in the Tcl script. In reality, of
course, this is not the case. As a result, strict attention must be paid to applying
certain types of timing analysis when using the simulator in order to ensure that
artifacts of this particular implementation do not lead to spurious conclusions

about the generality of the techniques.
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Chapter 4

Protocol breaking for

wormbhole attack detection

In this chapter, protocol-breaking techniques for wormhole attack detection are
introduced. In general, approaches based on discovering out-of-protocol be-
haviour are often used in intrusion detection [8]; this chapter demonstrates
wormbhole-specific out-of-protocol behaviour that may be exhibited by attack-
ers. The techniques described in this chapter are based on the periodic nature
of proactive routing protocols and can be used to detect a wormhole attack that

maliciously drops packets when trying to inflict damage on a network.

Previously, it was mentioned that a wormhole attack cannot be prevented
with encryption. A wormhole can still create a spoofed link even if all network
traffic is encrypted and can still disrupt that link as it pleases. However, en-
cryption does complicate the life of wormhole intruders. A cunning strategy
for a wormhole that is trying to disrupt network traffic would be to forward
all routing traffic, while maliciously interfering with transmitted data (working

like a blackhole attack). Without encryption, a wormhole knows what packet it
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receives and can determine whether this particular packet is to be sent forward.
With encryption, a wormhole would not know whether a packet is a control
packet or a data packet without complicated derivations.! If a wormhole can-
not determine which packets are related to routing, when trying to disrupt
network traffic it will end up dropping some of the routing messages — some-
thing that can easily be detected with protocol-breaking techniques described

in this section.

Section 4.1 introduces the protocol-breaking techniques that were developed.
Section 4.2 shows how these techniques detect a wormhole attacker in experi-
mental data. Finally, section 4.3 addresses possible shortcomings of protocol-

breaking approach to wormhole attack discovery.

4.1 Protocol-breaking techniques: an introduc-
tion

Proactive MANET routing protocols, such as OLSR, rely on periodic transmis-
sion of particular messages. In OLSR, these messages are HELLO messages and
Topology Control (TC) messages. HELLO messages are generated by each node
and are not to be retransmitted by other nodes. By default, OLSR HELLO mes-
sages are sent out every 2 seconds. TC messages are generated by nodes chosen
as MultiPoint Relays (MPRs). TC messages are replayed by all neighbours,
and are, by default, sent out every 5 seconds [12]. As described above, when a
wormhole does not know what the routing messages are while dropping traffic,
it will inevitably end up dropping some of the routing messages. Due to the ex-
pected periodicity of HELLO messages, a node that drops HELLO messages can

be detected easily with local techniques. In this section two protocol-breaking

1t should be noted that a motivated resourceful attacker could still figure out what routing
messages look like. This is addressed in section 4.3
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techniques are presented, HELLO Message Time Interval (HMTI) profiling and
its extension, maximum packet intervals technique, which are both based on the

idea that HELLO message loss can be detected locally.

To characterize the loss of HELLO messages, the times between successive
HELLOs can be accessed. Let us say that the HELLO message interval in
a network is K. The time between successive HELLO messages should be
approximately K (to be precise, it should be in the range specified by both
HELLO message interval and the jitter on the HELLO messages). If a single
HELLO message is lost, the time between successive HELLO messages becomes
~2K. If two successive messages in a row are lost, the time between successive
ones is then ~3K, etc. Traffic loss can be detected by looking at the intervals
between successive HELLO messages. If a node does not drop any packets, the
majority of intervals between its HELLO messages are expected to lie within ~K
‘valid’ range. If traffic is being dropped, the number of HELLO message intervals
in the ‘valid range’ will decrease — something that can be easily detected. This
developed approach was named Hello Message Time Interval (HMTI) profiling.
A valid node — one that does not drop any messages — should have almost all
of its HMTIs in the valid range. For the intruder, the percentage of HMTIs in
the 1K range should be much lower, and should depend on the percentage of
traflic the intruder drops.

HMTI profiling — calculating the percentage of HMTIs in the valid range
— is a local technique that network nodes can very easily implement. Knowing
the network’s HELLO message interval K and the OLSR HELLO message jitter
value, the node can identify a ‘valid’ range, ‘second’ range (around 2K) range,
and any higher ones. When this setup is completed, a node may simply have a
counter running, calculating the number of HMTIs for its particular neighbours

that fall within particular ranges. When the percentage of HMTIs in the valid
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range falls below a certain threshold, the node can trigger an intrusion alarm.
Note that since it is the difference between the HELLO message times that is
being accessed and not the actual times themselves, no timing synchronization
is necessary for the implementation of HMTI profiling.

In the beginning of this discussion, it was mentioned that both HELLO
and TC messages are periodic in OLSR. Since TC messages are also sent out
regularly, the same approach could be applied to them as well (TC' Message
Time Interval (TMTI) profiling). However, TC messages are only sent out by
the MPR nodes. In addition, TC messages can be validly retransmitted on the
network. These properties make TC message profiling more complex with no

added benefit.

An extension to the previous idea about looking at the spaces between
HELLO messages is the idea to look at the spaces between all messages coming
from a node. Let us say, once again, that the HELLO message interval on a
network is K, and that the TC message interval is higher than the HELLO
message interval (which is usually the case in OLSR). With this, the intervals
between successive packets coming from a node should be upper-bounded by
the HELLO message interval K. If an interval between successive messages is
higher than K, it indicates that traffic is lost, and may signal an intrusion. This

protocol-breaking technique is named mazrimum packet interval profiling.

4.2 Experimental results

In this section, the experimental results that show how the developed techniques
apply to experimental data are discussed. The experimental data, presented in

this section, were obtained in the experiment described in section 2.3.

Figure 4.1 shows intervals between HELLO messages of an intruder that
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Figure 4.1: HMTIs obtained from the experimental work with the wormhole
attack, where solid line shows an HMTI profile of a valid station, and a dashed
line gives the HMTIs of an intruder. It can be observed that the HMTI values
for the intruder are often higher than the HMTI values of a valid node.

drops packets (dashed line) and a valid node (solid line).? In the experiment,
the HELLO interval K was set around 0.3 seconds. In Figure 4.1, it can be seen
that for a valid node the vast majority of HMTIs lies around 0.3 second — in
the 1K ‘valid’ range. For the intruder (dashes line), this is not the case: lots
of HMTTs at the 2K (~ 0.6 seconds) and 3K (~ 0.9 seconds) ranges, and even
higher, can be observed.

With NTA (see chapter 3), statistics on the percentage of HMTIs in the
valid range can be easily obtained. It was determined, with NTA, that for valid
nodes 98% of their HMTIs lie in the 1K range ( the range of 0.28 to 0.34 second
was used). For the intruder that drops packets, only 48% of its HMTIs lie in
the 1K range. An additional 24% of the intruder’s HMTIs lie in the 2K range
while the other 28% fall to the 3K range and above.

Figure 4.2 presents the experimental results showing the maximum packet
interval technique. The top part of Figure 4.2 shows a valid node. Almost all

of its traffic (over 99% of it) falls below the maximum packet interval range.

2While a particular node is shown here, the HMTTI profiles of all valid nodes were very
consistent, similar to the profile of this individual node.
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Figure 4.2: Normalized histogram of the packet intervals. A valid node is shown
on top, while the intruder is presented on the bottom. It can be observed that
for a valid node the packet interval is upper-bounded by the HELLO message
interval, as it should be. For the intruder, that is not the case: a great deal of
packet intervals are much higher than the HELLO message interval.

The bottom part of Figure 4.2 shows an intruder that drops traffic. It can be
observed from Figure 4.2 that the maximum-packet-interval rule is repeatedly

broken in the intruder’s case.

4.3 Discussion

In this chapter, protocol-breaking techniques for wormhole attack discovery were
introduced. These techniques allow to easily detect the presence of wormhole
attackers that drop messages. In this section, the advantages of the proposed
approach are discussed. Then, the issue of poor connectivity in relation to HMTI
profiling is addressed and a question of detection evasion is examined. Although
the discussion below focuses on the HMTI profiling, the same comments apply
to maximum-packet-interval technique, as both techniques are related to the
loss of HELLO messages in a wormhole attack.

The protocol-breaking approach introduced here is simple, and can be imple-

mented locally. All that a node needs to get an HMTTI profile of its neighbours
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is to keep track of when the HELLO messages from the neighbours were re-
ceived. A node does not need to cooperate with other nodes, and does not need
any additional information. There is no need to modify the routing protocol
in any way in order to implement HMTTI profiling. Also, HMTI profiling is not

computationally expensive.

Protocol breaking with a wormhole attack occurs when the attackers can-
not figure out which packets are to be dropped and end up dropping routing
messages along with data traffic. If the network traffic is not encrypted, deter-
mining whether a packet is related to routing traffic or not is trivial for intruders.
Thus, if the network traffic is not encrypted, protocol-breaking techniques on
their own will not work. However, this should not be seen as a severe limitation
of protocol-breaking techniques as encryption is essential for network security.
If no encryption is in place, the network administrator is exposing the network
to vulnerabilities that are much easier to implement than wormhole attacks.

If network traffic is encrypted, motivated intruders can, in theory, still de-
termine what messages are related to routing. Routing messages have several
defining characteristics that may make them trackable even if encryption is
in place. Such messages are broadcast, and broadcast messages can be easily
identified based on the 802.11 MAC layer destination addresses. Also, routing
messages are sent out with a fixed periodicity. In addition, routing messages
are supposed to be sent out even if there is no other traffic. They are supposed
to be among the first things that a node sends out when joining a network. In
essence, while these wormhole detection techniques use predictable nature of
routing messages in order to identify attackers, attackers can also take advan-
tage of the exact same thing to defy being detected. Although identification
of encrypted routing messages in network traffic is an interesting subject, fur-

ther discussion of it is beyond the scope of this work. Overall, it is fair to
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assume that a motivated and resourceful attacker could find a way to identify
encrypted routing messages, and can thus defeat protocol-breaking techniques

that are discussed in this chapter.

Another concern with this type of protocol breaking is that a number of
HELLO messages can be lost due to network problems: poor connectivity and
congestion, for example, can all results in HELLO messages being lost or cor-
rupted. A certain amount of packet loss is, indeed, expected on a wireless
network. In the experiment that was analyzed in the previous section, network
load was relatively low, and yet about 2 percent of HMTTs still fell outside the
valid range. It could be a challenge to determine whether there are indeed at-
tackers in a network that maliciously drop traffic or if the high number of node’s
HMTIs is due to connectivity issues.

It is important to note that connectivity problems have other detectable
‘symptoms’ in addition to the number of lost packets. A node can see that the
signal strength of its neighbour is low and expect a higher number of packets
coming from that neighbour to be lost. Also, a node with connectivity problems
may have a high rate of ‘retry’ packets coming to and from it. A node that is
overloaded with traffic will be, for example, sending or receiving a large number
of packets. For the purpose of intrusion detection, these ‘symptoms’ can be used
as secondary checks if a node identifies that the percentage of its neighbour’s
HMTTIs in the valid range is low. Also, note that wormhole attackers cannot
create their own packets, and thus a wormhole that drops packets will always
have fewer packets than the node whose packets a wormhole is resending. So,
while connectivity issues are an important consideration for HMTI profiling,
connectivity problems do not invalidate the protocol-breaking approach.

Finally, it should be mentioned that protocol-breaking techniques only work

when a wormhole attacker is trying to disrupt network operations. While a
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number of researchers work on identifying a wormhole when a wormhole drops
packets [27, 28], a wormbhole is actually dangerous even if it doesn’t disrupt
network operations, particularly in sensitive or tactical networks. In the next
chapter, a novel technique is presented that allows to detect wormhole attackers

that do not drop any traffic.
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Chapter 5

Wormbhole attack detection

with frequency analysis

In the previous chapter, a wormhole attack detection mechanism was described
that allows detection of wormhole attacks when wormhole attackers disrupt
network operations by dropping network traffic. In this chapter, a more so-
phisticated wormhole attack detection technique is presented. This technique is
based on frequency analysis of packet arrival times and is capable of detecting
wormbhole attacks even when the wormhole attackers do not drop any network

traffic (dormant wormholes).

When a HELLO message is transmitted directly from one neighbour to the
other, it is only transmitted once: one neighbour sends it, another receives it and
does not retransmit it any further. When a message is transmitted through a
wormhole, this is not the case. Several message retransmissions and substantial
message processing is involved when packets travel through a wormhole: first,
a message is captured by one intruder and is encapsulated, then it is sent over

an off-channel link, decapsulated by the other intruder, and is finally re-sent
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on the wireless media. All this processing adds a delay to the HELLO message
times. It will be shown in this chapter that this delay can be modelled by a
random variable drawn from a statistical distribution. For ease of representa-
tion, this delay and other statistical delays will be called random delays. It
will be shown in this chapter that the presence of this random delay can be de-
tected with frequency analysis of a time series generated from HELLO message
reception times. This wormhole attack detection technique relies on having a
number of HELLO messages, not just one message, but does not require time

synchronization or any specialized hardware.

Section 5.1 shows, mathematically, how the addition of a random wormbhole
delay is visible in the frequency domain. For the frequency domain analysis,
power spectral densities are proposed and studied. Section 5.2 comments on
non-wormhole delays occurring in a network and describes how power spectral
density-based detection performs with the presence of these delays. Section
5.3 shows the experimental results that were obtained in a testbed wormhole
attack experiment and in an NS-2 wormhole attack simulation. In section 5.4,
techniques that wormhole attackers may try to use to counteract this detection
method are described and their futility is demonstrated. Finally, the summary

of this chapter is provided in section 5.5

5.1 A mathematical description

This section demonstrates how power spectral densities can be used to detect
wormhole attackers. In section 5.1.1, a brief mathematical review of the power
spectral densities (PSDs) and of certain Fourier Transform (F.T.) properties
is provided. Then, in section 5.1.2 analytical expressions for signals with and
without random delays are derived and it is explained why adding random delays

to samples of a perfectly periodic signal leads to a decline in the signal’s PSD.
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Finally, section 5.1.3 discusses the effects of finite number of packets and finite

sampling frequency on the PSDs.

5.1.1 Mathematical background and introduction to Power

Spectral Densities (PSDs)

The power spectral density (PSD), as its name suggests, describes how a sig-
nal’s power is distributed with frequency. PSD is used for frequency-domain
analysis of random signals and noise [40]. There are two equivalent ways to
calculate a PSD of a signal: a direct way where the PSD is calculated from
the Fourier Transform of the signal, and an indirect way where signal’s auto-
correlation function is first obtained and this autocorrelation function is then
Fourier-Transformed. The second, indirect, way is important since in analytical
calculations the direct way is often difficult to use ([40] p. 63). In this sec-
tion, both ways to calculate PSDs are described. Also, this sections summarizes

several important properties of Fourier Transforms.

The direct way of calculating a PSD of a signal involves calculation of the
Fourier Transform of the signal itself. To get PSD P, (f) of signal w(¢), the

signal’s Fourier Transform Wy (f) is first calculated: !

Wr(f) = /;7 w(t) e 92 it (5.1)

T
2
Then the PSD P, (f) of signal w(t) can be calculated as :

Pu(f) = Jim (2O, (52)

where Wr(f) is ensemble average of Wr(f). 2 Since this formula involves en-

1[40], p. 43
2[40] p. 406
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semble average, it is often impractical. In practice, the PSD of a random signal

is often approximated with the following approximation of formula 5.2: 2

_ Wr(HP

= (5.3)

Pw(f)

The indirect way of PSD calculations involves obtaining a signal’s autocor-
relation function (AF) and then taking the Fourier Transform of this autocor-
relation function. For a deterministic signal W (), the formula for AF Ry, (1)
is:

T=4+00
Rmxﬂ==/ W (W (¢ - 7) (5.4)

=—x
For a random signal W (t), its AF Ry, {(7) can be expressed in terms of expec-

tations:

Ryw(r) = EIW (@)W (t + 7)] (5.5)

PSD Py (f) is the Fourier transform of the autocorrelation function Ry (7): °
o .
P (f) = FlRuu(0)] = [ Buu() 79" 77dr (5.6

Also, there are two important Fourier-Transform properties that are applica-
ble to this work:

Property A. It is an essential property of the Fourier Transform: the
more ‘concentrated’ a signal is in time-domain, the more ‘distributed’ it is in
frequency-domain, and vice versa [40]. For example, F.T. of a dirac delta func-
tion ¢ (a signal, ‘concentrated’ to the maximum in time-domain) is 1 for any

frequency - that is, the F.T. of an extremely ‘concentrated’ time-domain ¢ is

3[40], p. 417. Note that there also exist other, more advanced techniques for approximating
PSDs

4In this notation (Ryw), ww indicates that a signal W is correlated with itself. If signals
Y and X were to be crosscorrelated, their crosscorrelation function would be written as Ry

5The PSD can be obtained this way by Wiener-Khintchine theorem([40] p. 63, 406), which
applies to wide-sense stationary processes.
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maximally distributed (over all spectrum) in frequency. On the other hand, a
constant in time domain (i.e. z(t) = 1) has a F.T. of § — that is, it is maximally

‘distributed’ in time-domain and maximally ‘concentrated’ in frequency-domain.

Property B applies to F.T.s of periodic signals. Let us say that a signal z(t)
is periodic with period T (that is, the fundamental frequency of the signal is %),
and ;;(_5 is z(t) on one period. Then F[z(t)] consists of spectral lines that are
located at the multiples of signal’s fundamental frequency % The magnitude
of the spectral lines — the envelope of F[z(t)]- is defined by the magnitude of

P N

the Fourier transform of z(t): ¢

envelope of F[z(t)] ~ [F[m” (5.7)

Finally, in order to calculate the PSDs of a signal formed by the packet arrival
times, a mathematical representation of packet arrival times is necessary. In this
work, a signal z(t) is created by putting d functions at the packet arrival times,

and zeroes elsewhere. Mathematically, it can be constructed as

z(t) =) 6(t—Tp) (5.8)

where T}, are packet arrival times. 7

5.1.2 PSD declines when a delay is introduced

This section shows how PSDs can be used to detect small offsets in packet
periodicity -— that is, how they can be used to detect the presence of random
packet delays introduced by wormhole attackers.

A valid station sends out its HELLO packets with perfect periodicity, as

6(40], p. 73
7This signal model is ideal: in reality, there are no infinite summations and no precise ¢
functions. These issues are addressed in section 5.1.3.
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shown in Figure 5.1(a).® Let us call this signal U(t). When a wormhole processes
packets sent out by a valid station, a small random delay is added to each of
HELLO packets. This addition of a random delay to regular packets is shown
schematically in Figure 5.1(b). Let us call a signal formed this way V (t). Below,
the PSD of a perfectly periodic signal U(t) is derived and it is shown that the
derived PSD has constant envelope over all frequencies. Then, the PSD of a
signal V (t) that has an embedded delay is derived and it is shown that the PSD

of V() declines with frequency.

(a) A valid station sends its HELLO packets every K seconds

ity
T il
K

(b) A packet is sent, by a valid station, every K second, and
wormhole processing adds a small random delay ¢4 to each of
the packet times

Mf
%.
v

Figure 5.1: Signals that are formed by periodic HELLO messages for the valid
node and for a wormhole attacker. Figure 5.1(a) shows a signal U(¢) that is
formed when a valid station sends its HELLO messages every K seconds. Figure
5.1(b) shows a signal V'(¢) that is formed when a random delay ¢4 is added to each
regularly transmitted packet. Since each tg4 is random, delays added to different
packets also differ (but their ensemble obeys a certain statistical distribution).

First, an analytical PSD for the perfectly periodic signal U (t) is derived. The
indirect way is used to calculate the PSD of U(t): the autocorrelation function,
R, of U(t) is calculated, then the obtained R is Fourier-Transformed. Since
this signal is deterministic, R can be obtained by straightforward application

of Formula 5.4. The process of obtaining R can be easily visualized: when

8In this section, ideal, theoretical conditions are assumed, ignoring, for now, jitters, effect
of finite sampling frequency, travel time of the messages, etc. These practical issues are
addressed in sections 5.1.3 and 5.2.1.
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Figure 5.2: Autocorrelation of valid station’s packet timings. Bottom shows
time-shifted signal that is multiplied with the non-time-shifted version. It is
obvious that the autocorrelation function will be periodic with period K, and
non-zero only when the lag L is a multiple of K.

obtaining AF, one copy of a signal ‘slides’ with respect to another (fixed) copy,
and these two copies are multiplied. This process is shown schematically in
Figure 5.2. From the visualization shown in Figure 5.2, it is clear that R of
U(t) is 0 everywhere except in the points where two ‘copies’ match — i.e. where
the shift of one copy with respect to the other is an integer multiple of K, the
period of U(t). At these points, R is represented by é functions. Thus R of U(t)

is equal to U(t) — the autocorrelation is the same as the original signal itself.

Spectrum of a non—-delayed signal

o I o
ES > © -

Scaled amplitude

e
¥

5 10
Frequency, Hz

Figure 5.3: PSD of a perfectly regular signal U(t) with K = 2. The ¢ functions
are located at integer multiples of %, and the envelope of the PSD is constant.
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The PSD of U(t) can be obtained by Fourier-Transforming R. The F.T. pair

for a periodic pulse train (with period K) is: ?

Y 6t —iK) < fo > 6(f —nfo), fo=1/K (5.9)

i=—00 n=—00

By directly applying formula 5.9 to the obtained R, the PSD of U(t) is
determined to be a train of § functions located at integer multiples of 715 A
sample PSD of U(t) (for the case of K = 2) is shown graphically in Figure
5.3. Note that once R is obtained, it is also possible to use F.T. property B
(see section 5.1.1) to derive the PSD of U(t). The autocorrelation function R
derived above is periodic with period K, and on one period R is just a single &

function. The F.T. pair for a é function at an offset ¢y is:!°

§(t — ty) <= eIl (5.10)

and

=92t =1 (5.11)

By property B (see section 5.1.1), the F.T. of R (i.e. the PSD of U(?)) is a
sampled version of the expression given by Formula 5.11 — a sampled version
of a straight line — with samples located at integer multiples of % Note that
this result agrees with property A (see section 5.1.1): on each period, the time-
domain signal U (t) is ‘concentrated’ to the maximum (it is just a ¢ function),

and the frequency-domain view of this signal is ‘distributed’ to the maximum.

Next, a signal V'(¢) that is generated when a wormhole adds random delays
to each HELLO message sent out by a valid station is examined. Using F.T.

Property A (section 5.1.1), it can be intuitively seen that the PSD of V (¢) will

9{40], p. 62
10740}, p. 62
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be more ‘concentrated’ than the PSD of U(t), as V() is more ‘distributed’ in

the time-domain.

>

(a) To obtain an autocorrelation, a signal is multiplied with a time-
shifted version of itself. The bottom signal ‘slides’ with respect to the
top signal. In this case — the case of two uniform distributions — two
squares are shifted and multiplied.

(b) As a result of convolving two square signals, a triangular signal is
obtained on one period, with the same periodicity as the original signal.

Figure 5.4: Autocorrelation of a signal with a random uniform delay. Figure
shows how a ‘signal’ is shifted with respect to itself to obtain the autocorrela-
tion. Figure shows the resulting autocorrelation function. It can be seen from
these figures that for a signal with a random uniform delay the autocorrela-
tion function is periodic with the same period as the original signal, and has a
triangular shape

First let us examine a signal V' (¢) that is formed when a wormhole adds a
random delay from wuniform distribution to packets transmitted with interval
K. Again, it is possible to use the indirect way to calculate the PSD of V().
Since this signal is not deterministic, Formula 5.5 can be used to calculate its
autocorrelation R. Although this formula involves expectations, the process of
obtaining R is still easy to visualize: to obtain R, two ‘signals’ are shifted with
respect to one another, and then multiplied (similar to a convolution), where the
‘signals’ that are shifted with respect to each other incorporate statistical delay

distributions, as shown schematically in Figure 5.4. The derived autocorrelation
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R is periodic with period K, and on one period it is represented by a triangular
‘signal’ (a triangle-shaped distribution), as shown in Figure 5.4.

To get the PSD of V(¢), R needs to be Fourier-transformed. Again, property
B can be used to calculate the F.T. of R. In this case on one interval R is
triangular. Thus, by Property B, the Fourier Transform of R is expected to
have an envelope consistent with the Fourier Transform of a triangular signal.

The Fourier Transform pair for a triangular pulse A (with width T') is: !

A(t[T) <= T[Sa(x fT))? (5.12)

where

Sa(z) = smx(x) = sinc(f—r) (5.13)

Therefore the PSD of a V(t) consists of spectral lines located at integer
multiples of %, and has an envelope proportional to sinc?.

The PSD of a particular V(t) (where V(t) is such that K = 2, and incor-
porated delay is uniform with mean £) is shown in Figure 5.5(a). As is to
be expected from Property A, the PSD of this signal is more ‘concentrated’ in
frequency domain than the PSD of a perfectly regular signal U(t). The PSD of
V(t) has strong components in low frequencies, but quickly reduces to zero as
frequency increases.

For completeness, the PSD of a signal V() that is formed when small ex-
ponential delays are added to samples of a regular signal U(t) is also derived.
The PSD of V(¢) can be approximated using an approximation to the direct way
of calculating PSDs (Formula 5.3). Once again, because of the periodic nature
of the signal (Property B), the PSD has a line spectrum with spectral lines
located at % The envelope of the PSD is proportional to the square of the sig-

nal’s Fourier transform. An exponential distribution can be approximated by a

11140], p. 54, 62
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Spectrum of a delayed signal PSD, exponential delay added
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Figure 5.5: PSDs of signals with uniform and exponential delays

one-sided exponential signal. The Fourier Transform of a one-sided exponential

is:12

o T
1+ j2nfT

_t
e 7T

(5.14)

Using Formulas 5.14 and 5.3, it can be determined that the envelope of the PSD

is proportional to:

3 Yi2nfT 1+ (2nfT)2 (5.15)

A sample PSD of a signal V(t) with an embedded exponential delay (for
K =2, delay mean = %) is shown in Figure 5.5(b).

So far it has been demonstrated that addition of uniform and exponential
random delays to a signal generated by regular HELLO packets leads to the
decline in the PSD of a signal. Property A of Fourier Transform allows the claim
that introduction of any random delay will lead to the decline in the PSD. This
claim follows directly from Property A: when a delay is introduced, a signal
becomes more ‘spread out’ in time domain, thus, by property A, it becomes
more ‘concentrated’ in the frequency domain. From a wormhole analysis point
of view, it has been argued that wormhole processing adds a random delay to

each of the packet samples, and thus wormhole processing of packets should

12[40), p. 62
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result in a decline of PSD calculated from HELLO message times.

5.1.3 Issues with finiteness

In the previous section, the following model for a signal z(t) created by HELLO

message arrival times T, was used:

o(t) =Y 8(t—Tp) (5.16)

This signal model describes a continuous infinite-length signal. In real life, of
course, the signals are sampled: discrete signals and finite in length. Thus the
issues of having a finite sampling frequency Fj, and a finite number of sample

points (packet arrival times) have to be addressed.

The sampling frequency Fy indicates how many samples per second are ob-
tained. The higher the sampling frequency, the more computational steps are
needed to analyze signals. However, the maximum sampling frequency is lim-
ited not only by the computational power that can be devoted to this technique,
but also by the timestamp resolution, as the packet arrival times themselves are
finite, with resolution A. Thus the maximum possible Fj is %.

The sampling frequency determines the highest component that can be seen
in a PSD. For a sampling frequency F;, the maximum frequency that can be

identified in a PSD F,., is, by Nyquist theorem: 13

F
Froz = 78 (5.17)
Theoretical derivations in sections 5.1 and 5.1.2 rely on having an infinite

number of HELLO packets; in reality, the number of HELLO packets is always

finite as the experiments are inherently finite. In addition, if the HELLO mes-

13(40], p. 87
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sage interval K is large, then accumulating a large number of packets could take
a long time and could be problematic.

How does having a finite number of packets affect PSDs? Intuitively, the
fewer packets there are, the more individual signals that have same statistical
parameters vary, and hence the more PSDs vary. To access the effect of the

finite number of packets, a MATLAB simulation is created. In this MATLAB

simulation, the following parameters are used:
e HELLO message interval K = 1s
e Sampling frequency Fy = 500 Hz

e The introduced delay %4 is uniformly distributed between 0 and —2‘% = (0.05s

(i.e. delay mean = £)

e The PSDs are evaluated for four different values for the number of packets

P: P =200, P =600, P =1200, and P = 1600.

o For each of the four values of P, 30 independent experiments are com-
pleted. In each of these experiments a signal is generated that has the

specified number of packets P and the specified delay ;.

Figure 5.6 shows the PSDs that are obtain in this simulation. In Figure
5.6, the error bars demonstrate the range of the PSD values that are obtained
when PSDs are calculated independently in 30 separate trials. As can be seen
in Figure 5.6, if the number of packets used to calculate a PSD is relatively
small, the PSD values obtained in individual experiments are varied, and can
differ significantly, particular in the higher frequency ranges. As the number of
packets increases, the range of PSD values obtained in independent experiments

decreases. For example, when only 200 packets are used (Figure 5.6(a)), the
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PSD of a signal with 200 pkts PSD of a signal with 600 pkts
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Figure 5.6: PSDs of signals obtained by keeping the experimental parameters the
same and varying the number of packets used to obtain a PSD. In the figures
above, the error bars show the range of measurements obtained by running
30 independent experiments with the same settings. Note that the error bars
become smaller (which implies that the PSDs converge) as the number of packets

increases.
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error bars are large, particularly at high frequencies. When the number of
packets used is increased, the error bars become smaller as the PSDs obtained
in separate experiments converge. From a theoretical point of view, this is to
be expected: the more samples from a distribution there are, the better these
samples characterize a distribution, and the closer an empirical PSD is to the

theoretical calculations.

5.2 Jitter and other causes of HELLO message
delays

In the previous section, a mathematical model for a signal where HELLO mes-
sages are transmitted periodically was described. It was shown that an addition
of small random delays leads to a decline in the PSD of a signal. In a net-
work, however, there could be other delays added to HELLO messages (other
than wormhole delays) — jitters, contention-based delays, etc. In section 5.2.1,
HELLO message jitter is discussed. Section 5.2.2 demonstrates a jitter waveform
that eases the detection of wormhole attacks. In section 5.2.3, other delays —

the delays that are causes by contention and nodes’ activities — are discussed.

5.2.1 HELLO message jitter

As explained in section 2.1.2, in OLSR a random delay (jitter) can be added
to HELLO message send-out times. Addition of jitter helps to prevent message
collisions, ensuring that the probability of two nodes wanting to transmit a
HELLQO message at the same time is low. For a HELLO message interval set
at K seconds, the jitter values can go up to % seconds [12]. This jitter delay

distribution is shown in Figure 5.7(a). From section 5.1, it is known that an

addition of a random delay causes a PSD decline. HELLO message jitter is itself

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a delay, and potentially a large one. It may thus seems counterintuitive that
even with a large delay — jitter — it is possible to observe the effect of a smaller
delay ~ wormhole delay. First, this section explains that a wormhole attack
should be detectable in the presence of a large jitter, although a large number
of packets would be required for reliable wormhole detection. Next, changes to
the jitter waveform that would make wormhole detection easier are introduced

and explained.

What happens when a wormhole delay is added on top of the jitter? When
two delays are added one after another, the resulting overall delay distribution
is a convolution of the distributions of two delays that are involved [40]. When
a wormhole delay is added on top of the HELLO jitter, the wormhole delay
smooths out the ‘edge’ of the jitter delay and extends the overall delay range,
as shown schematically in Figure 5.7(b). Since addition of a wormhole delay
increases the delay randomness even with large jitter, a wormhole delay would
still lead to the decline in the PSD, and should still be detectable. Unfortunately,
as was shown in section 5.1.2, the higher the delay’s randomness, the fewer high-
frequency components the PSD has. When a jitter delay is large, the attenuation
caused by a wormhole would have to be judged in low-frequency ranges of the
PSDs, where the PSD decline introduced by a wormhole is not as large as it is in
high-frequency ranges. To determine small, low-frequency declines in the PSD,
a very precise characterization of the PSD would be needed, and that would
require a large number of packets. So, while it would be possible to detect
a wormhole delay in situations where the HELLO message jitter is large, this

detection would require a large number of packets for reliable results. 14

147t should be noted that the need to have a large number of packets is limiting in some
cases, but not in others. Together with HELLO message interval K, the number of packets
Preg that are required defines how fast a wormhole attack can be discovered. The formula for
the wormhole discovery latency is very simple:

Ly = K % Preg (5.18)
If K = 2 seconds, and Preq = 600, then L, is 20 minutes, which could be a sufficiently low
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(a) Basic jitter shape (b) Jitter and wormhole delay

(c) Low jitter (d) Keyed jitter

(e) Sinusoidal jitter

Figure 5.7: Figure 5.7(a) shows the basic jitter shape recommended by OLSR
RFCs, where K is the HELLO message interval. Figure 5.7(b) shows that the
addition of a wormhole delay on top of the jitter results in ‘smoothing’ of a
distribution edge and in increasing the jitter range past %. The rest of the
figures show the different jitter shapes proposed. Figure 5.7(c) demonstrates
how the jitter’s maximum value can be decreased. Figure 5.7(d) demonstrates
the idea of keyed pseudo-random jitter: each of the intervals, shown in this
figure, corresponds to a particular value of keyed function. Finally, Figure 5.7(e)
shows a ‘quantized’ jitter distribution: instead of occupying complete range of
0 to %, jitter values within this range are distributed such that a sinusoid can
be fitted to them.

Since collecting a high number of packets may not possible or desirable
in all networks, other ways of dealing with jitter are necessary. First of all,
jitter could be set to be low, just like it was set to a very low value in the
testbed experiment described in 2.3. A possible jitter delay distribution for the
low-jitter case is shown in Figure 5.7(c). Also, in some cases jitter use could

be avoided altogether — jitter is recommended, but not required by OLSR

latency for some networks but not for others. If, for connectivity reasons, a network has a
short K, then over the same timespan a higher number of packets can be obtained. Overall,
the need to have a large number of packets is not limiting in the following cases:

¢ Low wormhole detection latency L., is not required.

e Packet interval K is short.
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specifications {12].15 Also, since random uniform jitter is recommended but not
required by OLSR RFCs, rather than changing the jitter maximum, the jitter
distribution could instead be altered. One of the choices could be ‘quantized’
jitter which is shown graphically in Figure 5.7(e). The jitter of this form has a
strong sinusoidal component which acts like a carrier frequency and introduces
large PSD values at high frequencies. It is explained in more detail in section
5.2.2. As another approach, pseudo-random keyed jitter can be used: a jitter
which appears random, but is actually generated by some function using a key
known to all network nodes. This form of jitter is shown schematically in Figure
5.7(d). When this jitter is used, each node, knowing the keys that are used to
generate jitter values, knows the jitter value that their neighbours are using to
send HELLO messages and can simply subtract this known jitter value from the

HELLO message time to get a clean undisturbed PSD. !¢

Finally, it should be mentioned that although this work mostly focuses on
OLSR HELLO messages, instead of relying on OLSR HELLO messages, one
may elect to create a separate ‘wormhole discovery’ protocol instead based on
the same principles that are described in this chapter. Such protocol would,
for example, test newly created links by sending small periodic precisely timed
packets on a link. In this setting it would be possible to keep the message
frequency high and to keep jitter to a minimum. The downside of using such
a protocol is that it, unlike wormhole discovery based on HELLO messages, it

would result in additional overhead.

15In this case, however, avoiding synchronization between nodes becomes a problem. To
avoid synchronization, the nodes could start up at different times. For example, when the
packet interval is K, prior to deployment each node could pick a random time delay r from
R = [0, K), wait r seconds after deployment, and send all its packets with perfect periodicity
K after that. In addition, to avoid synchronization, each node could use a slightly different
value for its HELLO message interval instead of a single global fixed K. For example, one
network node could use the value K + A, another — K + 24, where A is sufficiently small.

16This form of jitter is currently being investigated in a Masters project conducted at DRDC
by Dan Lynch from Royal Canadian Military College (RMC)
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5.2.2 Sinusoidal/quantized jitter

In section 5.2.1, it was noted that HELLO message jitter is problematic for the
proposed wormhole attack detection technique as, when large jitter is imple-
mented, the number of packets that need to be accumulated in order to reliably
distinguish a ‘valid’ node from a malicious node is high. In this section an
ingenuous scheme is described that makes large jitter values possible, and yet

allows wormhole attack detection with few packets.

Figure 5.8: ‘Sinusoidal’ jitter waveform. Quantizing a jitter is this fashion
introduces a high-frequency ‘carrier’ sinusoid to the jitter waveform.

A suggested jitter waveform was shown schematically in section 5.2.1 in Fig-
ure 5.7(¢). When this jitter is used, the maximum jitter value is not changed
(it is left at £), but the jitter distribution is altered. The idea behind quan-
tized /sinusoidal jitter is the following: from signal processing and communica-
tions, it is known that a high-frequency sinusoid can act as a ‘carrier component’,
‘carrying’ low-frequency shape of the signal’s description to higher, ‘carrier’, fre-
quencies [40]. The sinusoidal jitter distribution is created in such a way that
it incorporates a high-frequency sinusoid {(shown schematically in Figure 5.8),
which introduces high-frequency components to a PSD, easing wormbhole attack

detection (as will be shown).

Consider the following MATLAB experiment:

e HELLO message interval K = 1s.

e Sampling frequency F; = 500 Hz.
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¢ Maximum jitter on HELLO messages is & (0.25 seconds).
e 200 samples (packets) are used to characterize a PSD.

The PSD that is obtained in this MATLAB experiment is shown in Figure
5.9.17 Since jitter is large, the PSD of such signal is reduced to noise for the
frequencies as low as ~ 10 Hz. In this setting, the high-frequency attenua-
tion a wormhole delay introduces would not be evident, as there is not enough
high-frequency components in the signal’s PSD, and the low-frequency char-
acterization varies a lot over individual experiments due to a small number of
packets.

PSD of a signal with maximum jitter
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Figure 5.9: PSD of a signal with uniform jitter where maximum jitter value
is !‘f— and P = 200 packets are used to determine a PSD. The PSD of such
signal does not have high-frequency components, and varies at lot in individual
experiments (shown by long error bars) due to a small number of packets used
to characterize a PSD. These two factors together — a small number of packets
and the lack of high-frequency components — make wormhole attack detection

in this setting difficult.

Consider what happens in this experiment if, instead of simply using random-
uniform jitter, the jitter values are quantized to 20 uniformly distributed disjoint
levels. Let us say that to create a uniform jitter, a random value is drawn from

the range of R; = [0, maxJ] = [0, 0.25]s. Without quantization, the number

171n this section, all PSDs are shown with error bars. These bars are used to show the range
of PSD values that were obtained by running each of the experiments independently 30 times
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drawn from R; becomes the jitter value (i.e. the jitter distribution is random
uniform with maximum of 0.25s). In order to perform jitter quantization, the
range R; is separated into 20 sub-ranges of width 0.0125. When a number
drawn from R; is under 0.0125, the jitter value is set to precisely 0.0125. If the
number drawn from R; is between 0.0125 and 0.0250, the jitter value is set to
precisely 0.0250, etc. After the quantization, there are 20 possible jitter values,
with the highest jitter value at %th of the HELLO message interval. The PSD
that was obtained with the above experimental setting with this quantized jitter
(instead of a continuous uniform jitter) is shown in Figure 5.10(a). It can be
seen in Figure 5.10(a) that when the jitter is quantized this way, a set of strong
PSD components located at a high frequency values is obtained.

Quantization of jitter can be seen as an introduction of a high-frequency
sinusoid. The frequency of such sinusoid is defined by the following. If the jitter
range Ry = [0, mazJ] is divided into k values, the period Ty;, of an introduced

sinusoid is:

(5.19)

The frequency Fy;, of a sinusoid is then

1 k
F,==—= 5.20
Tsin  mazd ( )

In the example above, the maximum jitter value is mazJ = 0.25 seconds, and it
is quantized to k = 20 levels. The frequency of the introduced sinusoid is thus
Foin = % = 80 Hz. With the introduction of such sinusoid, a high-frequency
‘carrier component’ is obtained, at which the baseband PSD is repeated (as can

be seen, for the above example, in Figure 5.10(a)).
When such high-frequency components are present in the signal’s PSD, de-

tection of the wormhole delay becomes very simple. Consider Figure 5.10. Fig-
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Figure 5.10: PSDs of signals with embeded quantized jitter

ure 5.10(a) shows PSDs of signals with the quantized jitter. Figure 5.10(b) show
PSDs of signals with quantized jitter and a wormhole delay, where the wormhole
delay is exponential with mean 0.004s. It is clearly seen in Figure 5.10(b) that
the introduction of a wormhole delay causes a significant decline in the PSD
of such signal. If the jitter is quantized to more values, the ‘carrier frequency’
is increased, and the effect of a wormhole delay’s effect can be seen with even
greater clarity. Consider Figures 5.10(c) and 5.10(d). These figures refer to the

same experiment as described in the beginning of this section, with jitter quan-
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tized to more levels. Above, an example with k = 20 jitter quantization levels
was examined; here, the jitter is quantized to k = 35 values, obtaining the sinu-
soidal frequency Fg;n = % = 140Hz. The frequency components around this
frequency are clearly seen in Figure 5.10(c); they are reduced almost to noise

level with the introduction of a wormhole delay, as shown in Figure 5.10(d).

PSD of a signal with 30 pkts PSD of a signal with 30 pkts
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(a) PSD of a signal with quantized jitter, ob- (b) PSD of a signal with quantized jitter and

tained with only 30 packets. Because of the a small (exponential, mean=4ms) wormhole

jitter quantization, strong frequency compo- delay. Note that the PSD values in high-

nents around Fy;p, = % = 140 Hz are ob- frequency range are lower than the low ends

tained. Long error bars indicate high vari- of the error bars in figure 5.11(a), indicating

ability among individual experiments. that it would be possible to detect a worm-
hole attack with this setup even if only 30
packets are used for PSD creation.

Figure 5.11: PSDs of signals with quantized jitter that are obtained using only
30 packets. From these figures, it is clear that a wormhole introduces a delay to
a PSD that is apparent even if only 30 packets are used for PSD calculations.

Note that the above experiments refer to the case of 200 packets used to char-
acterize a PSD. However, even fewer packets are sufficient to detect a wormhole
in this scenario. Consider the previous experiment (k = 35) with only 30 pack-
ets instead of 200. If the OLSR HELLO message interval is set to its default
value of 2 seconds, this number of packets would amount to exactly 1 minute
of traffic. The PSDs that are obtained in this experiment, with and without
a wormhole delay, are shown in Figure 5.11. In Figure 5.11, it is clearly seen

that even with 30 packets a wormhole attack can be reliably discovered from
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the attenuation of the high-frequency signal components. Note that although
the error bars are long (which makes sense since there are only 30 packets used
to characterize a distribution), the ‘attenuated’ PSD (with a wormhole) is much
lower than the low points of the error bars of the non-declined PSD. Thus, even
with 30 packets, the wormhole attack detection technique works for the case of

quantized jitter.

Overall, the use of ‘quantized’ (‘sinusoid’) jitter allows to use a large, well-
distributed number of values for the HELLO message jitter while also intro-
ducing high-frequency components to the PSDs that can be used for wormhole
attack detection. With quantized jitter, the number of packets required to reli-
ably detect a wormhole attack becomes low and the wormhole discovery latency

is reduced.

5.2.3 Other causes of HELLO message delays

In addition to jitter, there could be other network events that cause delays
in HELLO message transmissions: contention, slow nodes, etc. Unfortunately,
unlike HELLO message jitter, these delays cannot be easily characterized math-
ematically.

First of all, it should be noted that due to unpredictable nature of such
delays, in order to account for them a node may choose to compare the PSDs of
its neighbours not to a theoretically derived ‘baseline’ PSD, but to a PSD derived
from node’s own HELLO messages. To derive this PSD, a node can use the
timestamps on its own outgoing HELLO messages.'® Also, it should be noted
that a wormbhole link only adds delays and cannot remove delays that are present
on a network. If there are natural delays on a network, packets that travel

through a wormhole would be delayed even further. The naturally occurring

18Note that in this case the node should not rely on the times when its packets are generated,
but should use message sent-out times provided by node’s wireless card.
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delays that are described in this section are important from the perspective of
minimizing false positives rather than from the perspective of characterizing a

wormbhole itself.

At the physical layer, contention may cause delays, as the IEEE 802.11
MAC standard uses contention-based media access. When a node wants to
send a packet, it listens to the media. If the media is free, the node sends a
packet. If the media is busy, the node waits until the media becomes free, and
then waits a random amount of time before transmitting [7]. Thus if the media
is busy, contention-based techniques add a delay to message times. Contention
delays are hard to characterize statistically as they depend on a large number of
parameters (number of nodes in an area, load of each node, contention window
size, protocol version, modulation scheme used, etc). It should be noted, first of
all, that, unless congestion is severe, the physical-layer delays should be small
compared to wormhole delays (which involve not only physical layer delays, but
also processing delays). In a severely congested scenario, the wormhole attack
detection technique described in this chapter may suffer, but in the case of
severe congestion secondary checks could be use to ‘diagnose’ congestion and
ease wormhole attack detection. Note, also, that if node’s own PSD is used as
a ‘baseline’, then certain aspects of congestion factor into the baseline. Finally,
it should be mentioned that minimization of congestion delays in 802.11-based
MAC protocol is currently a significant research area. While this current work
is done within the framework of a standard IEEE 802.11 protocol, the protocols

that minimize congestion delays would help this technique.

Another cause of delays could be a node being too slow in processing its own
packets. For example, a node could be overloaded with traffic, or overloaded
with computational tasks. These delays are also hard to characterize mathe-

matically, as they depend on many factors. The effect of these delays could be
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minimized if HELLO messages are treated as priority messages. Note that if a
node is overloaded with traffic, its neighbours can detect that a large number
of packets are coming in and out of a node, and can use this traffic amount as

a secondary check.

While it is hard to characterize these delays mathematically, their effect can
be studied, to a certain extent, in a network simulator. Section 5.3 describes
NS-2 results that were obtained when network nodes were handling a relatively
large amount of traffic, and demonstrates that with the amounts of traffic stud-
ied, the wormhole detection technique does not break down. Also, note that
these delays are inherently related to MANET QoS: the smaller the valid delays
are (the objective of QoS), the easier it is to spot the invalid wormhole delay.
Since MANET QoS is currently an active research area, it is quite likely that
these delays will become less of a factor as MANET QoS techniques are being

developed and integrated.

5.3 Experimental results

Previous sections describe how wormhole attackers can be discovered by assess-
ing the PSDs of signals created by the HELLO messages coming from network
nodes. This section explicitly demonstrates the application of this wormhole

attack discovery technique to the traffic generated by:

s A testbed wormhole attack experiment described in section 2.3. These

results are presented in section 5.3.1

e An NS-2 wormhole attack simulation described in chapter 3 (section 3.2).

These results are presented in section 5.3.2.
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Delays added by a wormhole
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Figure 5.12: Profile of the experimental time delay resulting from packet trav-
eling through a wormhole. The delay is measured by comparing the sniffer
timestamps of packets broadcast by the legitimate node and the same packet
after it is rebroadcast at the end of the wormhole.

5.3.1 Testbed wormhole attack implementation results

This section presents the application of frequency-based wormhole attack dis-
covery technique to the experimental traffic generated by a testbed wormhole
attack implementation.

In the testbed experiment described in section 2.3, a 9-node MANET was
implemented in a testbed, and two fully functional wormhole attackers were
introduced to the MANET. The MANET traffic was recorded with a wireless
sniffer and was then processed with the NTA-MANET traffic analyzer suite
created in this thesis and described in chapter 3. A salient feature of NTA-
MANET is the ease of creating processing functions for analysis like this: having
basic functionality (uploading of wireless packets, parsing of 802.11 headers,
handling of OLSR) in place, higher-level analytical processing can be done with
only a few lines of code.

Using the NTA-MANET tools, it is possible to easily parse the captured
testbed traffic and calculate wormhole delay times. This is done by identifying
packet repetitions (the signature of a wormhole) and subtracting the capture
timestamps. Figure 5.12 shows the histogram of the measured wormhole delay

that the testbed wormhole attackers introduced to the HELLO messages coming
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Figure 5.13: The PSDs calculated based on the data obtained in a testbed
experiment. The ‘diamonds’ show the PSD of a valid station; the ‘circles’ show
the PSD generated by the HELLO messages that were processed by wormhole
intruders. The PSD of a signal formed by wormhole-processed packets exhibits
a markedly more rapid fall-off than the PSD of a ‘valid’ signal.

from valid network nodes (where the delays were calculated by assesing the
timestamps of original and wormhole-processed packets). It is interesting to
note that this delay distribution is well approximated by a Rayleigh distribution,
with its mean around 2ms. Note that this delay is so low that it does not affect
network connectivity or network performance. In fact, as noted in section 2.3,
the jitter on HELLO mesages in this experiment was 0.315 seconds (on average),
so this wormhole delay is much smaller than jitter, and would not be detected
by timing analysis of individual messages.

Now that it has been shown that the wormhole does introduce statistical de-
lays to each packet, the analysis techniques developed and described previously
can be applied to the testbed traffic. Figure 5.13 shows the PSD profiles of the
valid node (‘diamonds’) and the wormhole attacker (‘circles’) that were obtained

from the experimental data.!® It is clear in Figure 5.13 that the PSD of an at-

19These results were obtained using sampling frequency Fs = 2000 Hz, and using 300
packets to generate a PSD
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tacker is attenuated with respect to the PSD of a valid station, and therefore
a wormhole attacker in this testbed experiment can be identified through the
frequency-based analysis of HELLO message times. This result agrees nicely
with the theoretical derivations presented in section 5.1.

Note that the experimental setup that was used in the testbed — two attackers
connected by a direct wire — is perhaps the best-case scenario for the wormhole
attackers (and the worst-case scenario for attack detection), requiring the least
amount of processing. It is encouraging that the PSD-based technique is able

to spot a wormhole attacker in this worst-case scenario.

5.3.2 NS-2 wormhole attack simulator results

In this section the PSDs obtained from the NS-2 wormhole attack simulation
are considered. As noted in section 5.2.3, it is very difficult to assess theo-
retically the impact of network-related delays, such as traffic loads and nodes’
computational loads, on the PSDs. These issues are also difficult to access
within a testbed scenario as they require flexibility and numerous experiments
with varying parameters. It is, however, relatively easy to run several different
experiments with different traffic loads within a simulator environment. This
section demonstrates the effect of increasing traffic load on PSD profiling with
the help of the NS-2 wormhole attack simulation described in section 3.2.
For this analysis, the network under consideration was a ‘star’ network, and
wormbhole attackers were connecting opposite star rays, as shown in Figure 5.14.
Five separate experiments were conducted, where the traffic load was increased
in each subsequent experiment. Figure 5.15 demonstrates the normalized his-
togram of wormhole delays obtained in an experiment with no traffic. The PSDs

obtained in these experiments are presented in Figure 5.16.20

201n this simulation, the following parameters were used:
e OLSR HELLO message interval K = 1 second
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Figure 5.14: The NS-2 MANET used in this experiment has a ‘star’ shape, as
shown here. The wormbhole attackers ‘connect’ opposite star rays (nodes 13 and
7)
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Figure 5.15: Normalized histogram of the wormhole delays obtained in an NS-2
experiment (without traffic)

e Maximum HELLO message jitter Rz = 1}0(_0 seconds

e Wired links that connect wormhole attackers have a bandwidth of 1Mb and a fixed
pre-set latency of 1ms.

e The delay introduced by a wormhole is exponentially distributed with mean 0.003
seconds. The total wormhole delay is the sum of link latency and the random wormhole
delay.

e 150 packets were used to create each individual PSD.

e Sampling frequency Fs = 1000 Hz was used for PSD profile creation.
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Figure 5.16: The PSDs obtained from the NS2 wormbhole attack simulation data.
The dashed line shows the PSDs of valid stations, while the thick line shows
the intruders PSD. Figure 5.16(a) shows the ‘baseline’ case. In this experiment,
no additional traffic (in addition to the routing traffic) was introduced on the
network. The other figures show the PSDs that were obtained when traffic was
introduced to the network. It can be seen that as traffic increases, the PSD
profiles of both valid nodes and intruders decrease. However, the PSD profile
of an intruder is always attenuated with respect to the PSD profile of a valid

station.
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Figure 5.16 shows the PSDs that were obtained in the NS2 experiments with
different traffic loads (increasing loads from one experiment to the next). Figure
5.16(a) shows the least amount of traffic (routing traffic only), while Figure
5.16(e) demonstrates the PSDs that were obtained when 5 UDP flows of 0.1 Mb
each were introduced to the network. It is clear in Figure 5.16 that the addition
of traffic does cause PSD profiles of valid nodes to decline. However, note that
with the highest traffic load considered (Figure 5.16(e)), the PSD profile of a
valid station is less attenuated than the PSD profile of an intruder with the
least amount of traffic (Figure 5.16(a)). However, since traffic does cause the
decline in the PSD profiles of valid nodes, secondary checks may be necessary
to distinguish the wormhole attackers from valid nodes that are burdened by

heavy traffic loads.

It is interesting to note, also, that the intruder’s PSD declines with the
increase in traffic load. This makes sense: the more data a wormhole has to
tunnel, the more delays it ends up introducing, and the more random these

delays become.?!

5.4 Detection avoidance

It is well known that security based on obscurity is bad security [8]. When
implementing a security technique, one cannot rely on attackers being ignorant
(i.e. not using the fact that a given security mechanism is in place). In this
section, it is assumed that wormhole attackers trying to attack a network know
that they are being monitored with the techniques described in this chapter.
In this section, strategies that attackers may try to avoid being detected are

described. Section 5.4.1 discusses what implementation choices would be most

211n [42], Chiu and Lui also noticed that wormhole delay increases as wormhole attracts
more traffic.
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suitable for attackers. Section 5.4.2 shows how attackers may try to avoid being

detected with ‘clever’ mathematical manipulations.??

5.4.1 Changing attack implementation strategy

Knowing that random offsets in packet periodicity are being watched, attackers
could change their attack implementation strategy in order to minimize the delay
and/or minimize the randomness on the delay. Within a wormhole, roughly
two packet-processing steps can be identified: packet transmission and packet
processing. Below, the strategy that would help attackers to minimize the delays

in these steps is provided.

To minimize randomness on packet transmission, attackers could take a great
care in selecting the kind of link they use to communicate between each other.
Previously, it was mentioned that if attackers are sending the packets, encrypted,
over a covert multi-hop tunnel within the network itself (a so-called ‘in-band’
wormhole), then the randomness of the wormhole delay is increased significantly
as in this case there are many more nodes processing wormhole packets. Thus
wormbhole attackers, trying to avoid being detected, may avoid an ‘in-band’
link, opting out for an off-channel link instead. In the experiments described
in section 5.3, the attackers used a direct wired link to communicate. In a
real network, however, a link between attackers is not likely to be a direct wire
running from one attacker to the other (that could, after all, require a very long
wire) except for some special cases of ‘short-distance’ wormholes or wormholes in
certain sensor network scenarios. As running a wire is not a practical solution
in many cases, attackers could choose other forms of links instead. It may

be possible for attackers to use the Internet (or some other wired network), a

22When a paper based on this thesis [39] was refereed, the questions about the possibility
of attackers avoiding being detected by ‘clever’ manipulation of their processing delays were
raised. This section addresses — and dismisses — these concerns.
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satellite connection, or a high-power off-band wireless connection. If a satellite
or an Internet link is used, there would be additional processing of packets at
cach of the intermediate nodes (on the satellite or on each Internet router), and
the randomness on the delay would be much higher than what can be achieved
with a direct link between two attackers. A high-power off-band wireless link
would be a better choice for attackers as no additional processing of packets

would be involved.

When choosing a link, attackers not only select the medium for their tunnel,
they also select link parameters. Obviously, it would be better for attackers
to have a dedicated, rather than shared and contested, link, and a full-duplex
link (where both connected nodes can transmit at the same time) would be
better than a half-duplex (where only one of the nodes transmits at any given
time). A high quality, high-bandwidth link would help attackers to minimize
the transmission delays in cases where the attackers end up forwarding large
amounts of traffic. When attackers cannot afford to have a dedicated high-
bandwidth link, they may use QoS techniques (if possible) to ensure that their

messages in general and HELLO messages in particular are treated as priority. 23

In terms of minimizing packet processing, first of all, a dedicated attacker
- one that only does wormhole-related activities, and nothing else — is better
than an attacker that has other tasks. Also, extremely resourceful attackers can
minimize packet processing by avoiding the use of TCP/IP when communicating
with each other. If they are connected by a dedicated link, they may perhaps
come up with a simplified protocol that would not require packet encapsulation
and decapsulation, or even with a protocol that will allow them to send each

packet bit-by-bit [4].

23Note that HELLO messages may be treated as priority only if HELLO messages can
be identified by attackers. Further discussion on identifying HELLO packets is provided in
chapter 4.
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With these techniques attackers can minimize, but not fully remove, delay
randomness. Also, a need to implement these attack improvement measures

further increases the cost of an already costly and complicated wormhole attack

[6].

5.4.2 Mathematical approaches to wormhole compensa-
tion

In addition to the network-related approaches described above, attackers could
also use mathematical techniques to try to defeat the proposed attack detection
scheme, that is, they could try to minimize the wormhole delay randomness by
mathematical rather than physical means. When attackers have processed a
packet, the time has passed, and cannot be turned back. By the time a second
intruder receives a packet and is ready to send it back to the network, the packet
is already delayed, the intruder cannot turn back the time.

Attackers can wait for an interval equivalent to a HELLO message period
(K) and release a packet only after that interval has passed. This kind of
processing would give the attackers some maneuvering space as they can ‘unde-
lay’ a packet by p if they send it K — u seconds after the packet reception. Note,
however, that holding a particular packet for that long would be immediately
obvious from packet sequence numbers, and would be apparent even with loose
synchronization of the nodes. Nonetheless, it is still interesting to see how the

attackers could try to defeat this wormhole attack detection technique. 24

24This is done for completeness. For example, if a different wireless protocol is in use that
does not rely on packet sequence numbers.
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Figure 5.17: Histograms of a sample ‘wormhole delay’, a compensating delay
(a delay with the same parameters as the original delay, but negative), and
the resulting combined delay. Since the attenuation of the PSD is caused by
the ‘randomness’ of the delay rather than the actual delay mean, the attackers
would not be able to avoid detection by ‘subtracting’ the delay distribution from
the packet times.
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Let us say that wormbhole attackers are aware that they are introducing a
delay, and know the statistical characteristics of this delay. If the delay mean
is «, the attackers may try to release a packet K — « seconds after they receive
it. This, however, would be pointless as the delay shape would stay exactly
the same, only the delay mean would get shifted around (and the mean does
not matter in PSD comparisons). For the next level of sophistication, attackers
may try to compensate for their delay by introducing a ‘negative’ delay with the
same distribution. Let us say that the attackers know that their distribution
is ~ D(p). The second attacker can then hold on to the packets it receives,
and release them at K — D(u) seconds after the reception time. In this way,
the attacker would ‘subtract’ the distribution. However, this does not remove
randomness. This processing changes the shape of the distribution and makes
the mean of the resulting distribution zero, but does not get rid of the statis-
tical distribution. In fact, the variance — which could be used as a measure of
‘randomness’ — of the combined delay is higher than the variance of the original
delay (as the variance of the sum of two independent random variables is equal
to the sum of their variances). An example of this is shown in Figure 5.17.
The original wormhole delay shown in Figure 5.17(a) is Rayleigh with mean
0.005 seconds. The ‘compensating’ distribution is a Rayleigh with the same
parameters, but it is negative (a packet is released K — R(0.005) seconds later).
The total delay of this processed packet (minus K') is shown in Figure 5.17(c).
This resulting delay is no longer Rayleigh (it is actually well-approximated by
a Gaussian), and its mean is zero. However, the resulting delay is more distrib-
uted. While the variance of the original Rayleigh is ~ 0.0106x10~3, the variance
of the combined delay is ~ 0.0212 % 103, 25 It is clear that the subtraction of

the statistically equal delay would not help attackers to avoid being detected.

25These results were obtained with a MATLAB simulation, which used n = 100,000 mea-
surements to calculate the variance of a sample
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So, this way of compensation does not help attackers: once the randomness
is introduced to the packets, it is difficult to remove it. Knowledge of the delay
distribution does not help attackers to remove the randomness. However, if the
attackers know the actual delay they are introducing to a particular packet
(which could be possible if attackers are precisely synchronized), then they
can remove the randomness. Suppose the first attacker receives a packet at
time to. When sending the packet on to the second attacker, the first attacker
would include the timestamp to with the packet. The second attacker, having
processed the packet, would then be able to send it to the network exactly K
seconds after #5. This requires precise synchronization between attackers, and,
as noted above, would still be evident if sequence number checking or some loose

time synchronization is enabled on the network.

5.5 Discussion

In this chapter, a novel wormbhole attack detection technique based on frequency
analysis of periodic HELLO messages is described. This technique is based
on the fact that wormhole attackers add small random delays to the HELLO
messages they are retransmitting and the presence of such small random delays
can be easily detected with frequency analysis of HELLO message periodicity.

With this technique, it is possible to detect wormhole attackers that do not
drop traffic and do not disrupt network operations — so-called ‘dormant’ worm-
holes. Moreover, note that this technique does not rely on distant physical
separation of wormhole attackers like the GPS-based techniques. The GPS-
based techniques detect that a packet has travelled a long distance; this tech-
nique detects that a packet has been additionally processed. Therefore, un-
like GPS-based techniques, this technique is capable of detecting ‘short-range’

wormholes [5]. It is believed that this is the first published technique that can
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detect both short-range and long-range wormholes (i.e. range-independent), and
also first that can detect dormant wormholes without introducing overhead or

changes to the existing protocols.

In section 5.4, it was suggested that the attackers that are tightly synchro-
nized may avoid being detected by this technique if they hold on to the HELLO
messages so that the periods between the HELLO messages they are releasing
are exactly what they should be. It should be stressed that having to be that
tightly synchronized is costly for attackers. However, it is possible. Fortunately,
these actions of attackers are easily detectable — and are, indeed, immediately
obvious — by either packet sequence number checking or by having network
nodes loosely synchronized and aware of possible wormhole-induced delays on
HELLO messages. Therefore, one of these techniques should be incorporated
in a network that relies on this wormhole attack detection technique. Sequence
number checking is trivial and is very easy to implement; if network nodes are

loosely synchronized, the implementation of delay detection is trivial as well.

In section 5.2.2, the sinusoidal jitter idea was discussed. This form of jitter
acts as a carrier frequency, introducing high-frequency components to the PSDs
of valid stations. With this jitter, the wormhole delay would be immediately
obvious from the PSDs, even if very few packets are used for PSD creation. The
sinusoidal jitter appears to be a promising research direction. Such jitter can
be easily implemented within an NS-2 simulation where its effect on network
performance can be studied, and its effectiveness in discovery of wormhole at-
tacks can be demonstrated. Further work, built on the foundation of the tools

and the analysis preseted in this thesis, is being pursued at DRDC.

Section 5.3.2 described the PSDs that were obtained in an NS-2 simulator
with some traffic load. These NS-2 experiments demonstrate that the PSD

profiles of valid stations do decline when the amount of traffic on a network is
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increased, but the PSD profiles of intruders decline even further as well. This
demonstrates that simple secondary checks may be required to distinguish a
node overloaded with traffic and a node affected by wormhole attackers.

An extension of the NS-2-based study of this wormhole attack detection
technique is an important future work direction. The NS-2 simulations with
more traffic, and more diverse traffic, can be considered. Within the simulator,
it would be possible to implement and study the secondary checks and their
effectiveness in distinguishing an overloaded node and a wormhole attacker.
Also, it can be examined whether assigning HELLO messages a ‘priority’ status

would help deal with the attenuation of PSD profiles caused by traffic loads.
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Chapter 6

Summary and future work

directions

This thesis deals with wormbhole attack discovery in mobile ad hoc networks. The
contributions of this thesis to the field of ad hoc network security research are the
tools that were created as part of this work and the wormhole attack discovery
techniques. The developed wormhole attack discovery techniques do not rely on
specialized hardware and do not require clock synchronization. Moreover, these
techniques are local, and do not introduce overhead; instead, they work with
routing messages that are already present on a network.

One of the tools that was developed in this thesis is a network traffic ana-
lyzer’s MANET suite, which allows the network traffic analyzer to easily work
with 802.11 data and OLSR routing messages, and also has some ad-hoc-
network-specific functionality. This tool will allow researchers wanting to create
their own attack detection or attack analysis modules to do so easily, with-
out having to implement low-level functionality related to ad hoc networks. In

chapter 3, the functionality of this tool is described, and a small case study
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demonstrating its effectiveness is discussed.

In this thesis, a realistic NS-2 wormhole attack simulation was also devel-
oped. Although a number of researchers have been working with wormhole
attacks, a wormhole attack simulation was neither presented nor described by
any of them. The developed NS-2 wormhole attack simulation is described in
chapter 3; its effectiveness is demonstrated in appendix A. This wormhole attack
simulation will allow researchers to easily modify wormhole attack parameters
and to test their own solutions to wormhole attacks.

A wormhole attack detection technique suitable for detecting wormholes that
drop network traffic is developed in this thesis, and is presented in chapter 4. It is
a simple, ready-to-implement technique that is based on detection of wormhole-
induced loss of periodic network messages. It introduces no overhead, does not
require changes to routing protocols, and has no specialized hardware require-
ments. This technique is similar in spirit to the attack detection approaches
based on counting the number of packets that go through a link. However,
unlike these techniques, the protocol-breaking technique presented in chapter
4 uses protocol-implied number of routing messages as side information, there-
fore eliminating the need for acknowledgements, cooperation between nodes,
overhearing other node’s forwarding, etc.

This thesis also presents an approach to wormhole attack detection in wire-
less ad hoc networks based on frequency analysis of periodic routing messages.
This approach is novel: this technique discovers that a packet has been ‘over-
processed’, while other wormhole attack discovery techniques work by discov-
ering that a packet has travelled too far/too fast. This approach, presented in
chapter 5, works because wormhole attackers inevitably add small random de-
lays to the messages they are processing. Like the protocol-breaking technique,

this technique relies on periodic routing messages that are readily available on
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the network, and does not generate any extra traffic. In chapter 5, this technique
was examined mathematically, and was shown to work on testbed experimental
data as well as on the data generated by the NS-2 wormhole attack implemen-
tation. Different ways for attackers to avoid being detected were discussed in
chapter 5, and it was shown that the described avoidance mechanisms would
not be able to defeat this attack detectiom technique. This is a powerful detec-
tion method because it can detect dormant wormholes and because it does not

couple intrusion detection to connectivity /network performance.

6.1 Future work directions

Certain work can be done in terms of extending the tools — the network traffic
analyzer and the wormhole attack simulation — that were developed in this
thesis. The network traffic analyzer tool was made capable of working with
IEEE 802.11 and with OLSR; it can be extended to work with other MAC-
layer and routing-layer protocols. The NS-2 implementation of the wormhole
attack can be extended to include different links, to work with different routing
protocols, etc.

Chapters 4 and 5 present a framework, the techniques that can be used for
wormhole attack detection. Real-life implementation of these techniques would
be a very interesting project. Such an implementation would allow one to set
specific thresholds and specify exact number of packets required for reliable
wormbhole attack detection, examine the false-positive and false-negative worm-
hole attack detection results, and study the effectiveness of secondary checks in
reducing false-positives and false-negatives.

In chapter 5, the idea of using sinusoidal jitter to ease wormhole attack
detection was presented. It seems promising because it allows one to discover

wormholes using very few HELLO packets — that is, achieves low wormhole
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attack discovery latency. Further mathematical analysis (as well as a real-world
implementation) of this technique would be an exciting research direction.
Finally, the work in the area of wormhole attack detection was done with
proactive routing protocols that rely on periodic HELLO messages. When such
protocols are used, there is no need to send any additional messages for worm-
hole attack discovery. However, the work described in chapters 4 and 5 equally
applies to any other periodic messages on a network. For the networks that
use reactive routing protocols, a separate wormhole attack discovery proto-
col may be created. Note, that such protocol can be based on simple ICMP
ECHO REQUESTs — pings, that are, by default, periodic with period 1 sec-
ond, and their periodicity can be set by a user [43]. Creation of a separate
wormhole attack discovery protocol independent of routing protocol would be
another interesting project; the framework for such protocol is presented in this

thesis and the implementation should be relatively simple.
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Appendix A

NS-2 wormhole in action

Chapter 3 describes the NS-2 wormhole attack simulation that was designed
and developed in this thesis. This appendix shows with trace files and network
nodes’ routing tables how the wormhole attack simulation works. Since the
wormbhole is ‘observed’ through simulation trace files, the NS-2 trace formats are
first briefly explained in section A.1. Section A.2 shows how the routing tables
of network nodes are affected when a wormhole is introduced to the network.
Finally, section A.3 demonstrates how a packet travels through a wormhole (as

observed in the NS-2 traces).

A.1 NS-2 trace format

There are several trace formats that NS-2 uses, often simultaneously. There
are ‘old’ and ‘new’ trace formats, as well as changes to formats from one NS-
2 release to the next. In addition, different trace formats are used in wired
and wireless simulations [44]. In this wormhole attack simulation, where both
wired and wireless packets are used, both wired and wireless trace formats are

encountered. In this section, the NS-2 traces that are relevant to the wormhole
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attack simulation are discussed; for more details, readers are encouraged to
consult [44].1

The following is an example of a ‘wireless’ NS-2 trace line:?

s 22.002612476 _5_ MAC --- 340 OLSR 240 [0 ffffffff 5 800]

------- [5:255 -1:255 32 0] [1 30 [HELLO 5 0 14]]

In order of appearance, the following information can be obtained from this

trace:

e s: The first entity in the trace shows the ‘event’ that happened. In the
line above, the event is ‘s’, which stands for ‘send’. Other possible events
b

are ‘r’, ‘f’, and ‘D’, which stand, respectively, for ‘receive’, ‘forward’, and

‘drop’ [44].

e 22.002612476: The second entry is the timestamp of when an event has
happened (where the time is in seconds). These are simulated, NS-2 event
timestamps, and they are not related to the time it took the simulator to

get to an event.

e _5_: The unique address of the NS-2 node that generated this event. In
NS-2, the unique ID of a node is the same as the node IP address. It may
be interesting to note that this NS-2 unique ID of a node is not assigned

by a user in a script — rather, NS-2 itself assigns these addresses.

e MAC: This entry indicates the level on which the event is recorded. In
NS-2, when a test script is created, the activated tracing level is selected,
for example, MAC (Medium Access Control) or RTR (routing layer). This
field is important and cannot be ignored. For example, a packet 'received’

on a MAC level is not the same as the packet being ‘received’ by a routing

! Further information on the OLSR trace format is provided in [45]
2This is an ‘old’ wireless trace format [44]
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agent, as a packet received on a MAC level won’t necessarily go up to the

router.

e 340: A unique packet ID, assigned to a packet by NS-2. This packet
ID stays the same no matter how much a packet is altered when it goes

through different layers of different nodes.
e OLSR: This is an OLSR packet.
e 240: Packet size, in bytes.

o [0 fIfIffY 5 800]: MAC-level packet information, in hexadecimal format:
the packet MAC-duration, the Ethernet address of the destination (broad-
cast in this case), the Ethernet address of the packet source, and finally

the packet type (where 800 in hexadecimal stands for IP).

e [5:255 -1:255 32 0]: IP-level packet information: IP address of the
source, source port address, IP destination address (where -1 stands for
broadcast), IP destination port, packet’s Time To Live, and next hop

destination (where applicable; here it is zero as it is not applicable).

e [1 30 [HELLO 5 0 14]]: OLSR-specific information: the number of
OLSR messages in this OLSR packet (1), the sequence number of the
OLSR packet (30), and the message information: this is an OLSR HELLO
message, sent out by node 5, with hop count zero and sequence number

14 [45).

In this work, the ‘wired’ trace format is also encountered. An example of an

NS-2 trace line in the wired format is presented below:
r 22.015102 2 3 OLSR 188 —--——-———— 0 5.255 -1.265 -1 340

In this line, the following information can be identified, in order of appear-

ance:
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e r: An event that had happened, where ‘v’ stands for ‘receive’, similar to
the wireless trace. In addition to the events indicated for wireless tracés,

?

the ‘event’ entry could also be ‘+’ and ‘-> — the signs indicating a packet

being enqueued/dequeued on a wired link.
e 22.015102: The timestamp of the event

e 2 3: Shows to whom and from whom the packet came. In this case, node
3 has received a packet that was sent by node 2. Node 2 is not necessarily

an originator of this packet — rather, its the packet’s previous-hop.
e OLSR: This is an OLSR packet.
e 188: Packet size, in bytes.
e 0: Packet flow ID.

e 5.255 -1.255: The IP-level packet information. This packet was sent
from port 255 of node 5 to the port 255 of a broadcast destination (IP
address -1).

e -1 : Packet sequence number.

e 340: This is the unique packet ID. In wireless traces, the packet ID is
mixed in the middle; in wired traces, the packet ID is at the very end of

the line.

A.2 Wormbhole’s effect on routing

The wormhole attack was tested on a number of network layouts and it was
observed that the wormhole was working correctly: with a wormhole present,
nodes that were far away considered themselves to be neighbours. In this section,

a wormhole’s effect on a particular network setup is demonstrated.
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Figure A.1: A ‘star’ network layout with a wormhole connecting opposite ends
of rays. A network, created with NS-2, has the ‘star’ shape with 4 rays. A
wormbhole ‘connects’ nodes 13 and 7.

Figure A.2: Graphical representation of node 7 routing table (no wormhole
present). The number of hops is shown in brackets; links in the two-hop region
of node 7 are shown by arrows
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Figure A.3: Graphical representation of node 7 routing table with a wormhole
‘connecting’ nodes 7 and 13. Nodes as distant as 13, 12, and 11, node 7 considers
to be direct neighbours. Note, that communication with nodes 14 and 8 also
goes through the wormhole, as node 7 considers them to be 2 hops away (going
through node 11).
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To study the effect of a wormhole attack, a wormhole is introduced to a ‘star’

layout network, which is shown in Figure A.1. In this layout, the nodes are far

enough from each other to necessitate multi-hop communication. For example,

when the wormhole is not activated, the routing table of node 7 (shown in Table

A.1 and graphically represented in Figure A.2) shows that node 7 is 3 hops away

from nodes 13, 10, and 16.

| Destination | Next | Distance |

4 6 2
]
6
8
9
10
11
12
13
14
15
16

YOO O DY T O U &t
LoD Lol LoD Lof Lo N = =

Table A.1: Routing table of node 7
(from Figure A.1), without a worm-
hole. Graphical representation is shown
in Figure A.2.

[ Destination | Next | Distance |

4 6 2
5 5 1
6 6 1
8 11 2
9 6 3
10 11 3
11 11 1
12 12 1
13 13 1
14 11 2
15 6 3
16 11 3

Table A.2: Routing table of node 7 with
a wormbhole present. Affected routes are
shown in bold. Graphical representa-
tion is shown in Figure A.3

As shown in Figure A.1, the created wormhole ‘connects’ nodes 13 and 7.

The routing state of node 7 with wormhole activated is shown in Table A.2 and

graphically in Figure A.3. With a wormhole present, node 7 now believes nodes

12 and 13, which are both 3 hops away in reality, to be its direct neighbours.

This demonstrates that the NS-2 wormhole attack does ‘work’ in a sense that

it results in predicted routing changes.
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A.3 A packet going through the wormhole: NS-
2 trace

Previously, the schematics of NS-2 wormhole attack model were explained (sec-
tion 3.2.2). This section shows in detail how a packet travels through a worm-

hole; a packet’s path is demonstrated in the NS-2 trace.

4o

Figure A.4: A star topology from figure A.1 with wormbhole attackers identified.
In routing tables coming out of the star topology (figures A.1, A.3, A.2) attack-
ing nodes are not present. They are, in essence, invisible. In the NS-2 trace,
however, the attackers can be observed. In this star topology, the attackers 0
and 3(a sink and a source) are placed next to node 13, while the other sink and
source (nodes 1 and 2) are placed next to node 7.

Below, a part of NS-2 trace is provided, which shows how a packet is trans-
ferred through the developed NS-2 wormhole. This trace was obtained from the
‘star topology’ network simulation described in section A.2, with the wormhole
attack activated. The star topology, including the intruders present on the net-
work, is shown in Figure A.4. Figure A.4 shows the intruders: nodes 0 and 2
are sinks, they collect the information from the network and send it on a wired
link. Nodes 1 and 3 are the sources that replay the information to the network.
The trace below shows how a HELLO message with unique ID 340, created by

node 5, is captured by wormhole attackers and replayed at the other end of the
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network:

[1] & 22.002612476 _S_ MAC ~--- 340 OLSR 240 [0 ffffffff 5 800] =-=---- [5:255 -1:266 32 0] [1 30 [HELLO 6 0 141}
[2] r 22.003572869 _4. MAC ~--- 340 OLSR 188 [0 ££ffffff § 800] ------- {5:255 -1:268 32 0} (1 30 [HELLO 5 0 14]]
3]  r 22.003572870 _6_ MAC --- 340 OLSR 188 [0 ffffffff 5 800] =~----- [5:265 -1:265 32 0] {1 30 [HELLO & 0 14]]
[4]1 r 22.003573032 _8_ MAC =--- 340 OLSR 188 [0 ffffffff § 800] ---=--- [6:255 -1:265 32 0] {1 30 [HELLO 5 0 14]]
(6] r 22.003573036 .14_ MAC ~--- 340 OLSR 188 [0 ffffffff 5 800] =------ [5:285 -1:256 32 0] [1 30 [HELLO 6 0 141]
[6] r 22.003573269 _7_ MAC ~--~ 340 OLSR 188 {0 ffffffff 5 BOO] =--==--- [5:266 -1:255 32 0] [1 30 [HELLO § 0 14]]
{71 r 22.003573272 _1i_ MAC --- 340 OLSR 188 [0 ffffffff 5 800] ------- [5:255 -1:255 32 0] [1 30 [HELLD 5 0 1411

[8] D 22.003573306 _i_ MAC =--- 340 OLSR 188 [0 ffffffff § 800] ------- (63265 ~1:265 32 0] [1 30 [HELLO § 0 1411

[9] r 22.003573307 _2_ MAC ~-~ 340 OLSR 188 [0 ffffffff § 800] ------- 15:255 -1:266 32 0] [t 30 [HELLO 6 0 1411

[10] r 22.003697869 _4_ RTR --- 340 OLSR 188 [0 ffffffff § 800] ------- {5:285 -1:255 32 0] [1 30 [HELLO 6 0 14]1]

{11] r 22.003597870 _6_ RTR ~--- 340 OLSR 188 [0 £Lffffff 5 8001 ------- [5:256 -1:2566 32 0] {1 30 [HELLO § o 14]]

[12] r 22.003698032 _8_ RTR ~--- 340 OLSR 188 [0 £fffffff § 800] ------- [5:265 -1:266 32 0] [1 30 [HELLO § 0 1411

[13] r 22.003598036 _14_ RTR ~--- 340 OLSR 188 [0 ffffffff 5 800] —~—-==- [5:266 -1:266 32 0] [t 30 [HELLO & 0 1411
[14] r 22.003598268 _7_ RTR =--- 340 DLSR 188 [0 ffffffff 5 800] =------ [5:285 -1:255 32 0] [1 30 [HELLO 6 0 14]]

[18] r 22.003598272 .11_ RTR =--- 340 OLSR 188 [0 TLffffff 5 800] ------- [5:266 -1:266 32 0] [1 30 [HELLO & 0 1411
[16] + 22.003598 2 3 OLSR 188 ------= 0 5.265 -1,266 -1 340

[17] - 22.003598 2 3 OLSR 188 -=~~==~ 0 5.286 -1,255 -1 340

(18] r 22.016102 2 3 OLSR 188 --—-=-~ 0 5.255 -1.265 -1 340

(18] r 22.016102307 _3_ RTR ~--- 340 OLSR 188 [0 Zfffffff § 800} ------- [6:265 -1:266 31 0] [1 30 [HELLO 5 0 14]]

{201 ¢ 22.016102307 _3_ RTR ~--- 340 OLSR 188 [0 ffffffff § 800] ~---=== [6:266 ~1:256 31 0] {1 30 [HELLO 5 0 14]]

[21] s 22.016177307 _3_ MAC ~--- 340 ODLSR 240 [0 ffffffff 3 §00] =------ [5:255 ~1:256 32 0] [1 30 [HELLD § 0 14]]

[22] D 22.016137308 _O_ MAC ---~ 340 OLSR 188 [0 frefffff 3 800] ------- [5:265 -1:255 32 0] {1 30 [HELLO 5 0 14]]

[23] «r 22.016137370 _13_ MAC --- 340 OLSR 188 [0 ffffffff 3 800] ---~---- [6:265 -1:266 32 0] [: 30 [HELLO 6 0 14]]
[24] r 22.016137767 _12_ MAC =--- 340 OLSR 188 [0 ffffffff 3 800] ------- [6:255 -1:265 32 0] [1 30 [HELLO 6 0 14]]
[25] r 22.016162370 _13_ RTR =--- 340 OLSR 188 [0 ffffffff 3 800] ------- [5:255 -1:265 32 0] [t 30 [HELLO 5 0 14]]
[26] r 22.016162767 _12_ RTR =--- 340 OLSR 183 [0 £fffffff 3 800] ------- [6:265 -1:256 32 0] [1 30 [HELLO 6 0 141}

Lines 1-26 above show a single packet traveling through a wormhole. The
first line shows node 5 sending a HELLO message with NS-2 unique ID 340.
Then, valid nodes 4,6,8,14,7,and 11 receive the message on the MAC level - i.e,
their wireless cards register that message. Line 8 indicates that node 1 (one of
the source intruders), also receives this message, but the message is dropped
(indicated by letter D at the beginning of line 8), as it should be, since node 1
is an intruder source node, and source nodes are supposed to drop all packets
they receive wirelessly. Line 9 shows that node 2 (a wormhole sink intruder)
has received the HELLO message sent by node 5. The following lines (10-15),
demonstrate that nodes that previously registered the message on the MAC
level, transfer it to the router (OLSR) level.

Lines 16 through 18 use wired trace formats. Line 16 is an enqueuing event:
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it indicates that a packet was added to a queue on the link between nodes 2
and 3. Line 17, respectively, shows that a packet was removed from that link.
Line 18 shows that the packet was received by node 3 (the source intruder on
the opposite network end) on the wired interface. Note, that in the process
of capturing and retransmitting this packet, its IP-level (and higher-level) in-
formation was not altered — as noted before, the wormhole has to resend the
packets unaltered.

Once the intruder source node 3 receives the message on the wired side, it
has to forward it wirelessly. Line 19 indicates that a packet was transferred to
the routing level of node 3, while line 20 shows node 3 forwarding this message
(indicated by letter f), as it should. Line 21 shows that node 3 sends this
message, and the following lines show that the message is received by nodes 0,
13, and 12. Note, that while nodes 13 and 12 forward the packet to the router

level (lines 25 and 26), an intruder sink node 0 drops it (line 22), as it should.
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Appendix B

List of acronyms

AES

AODV

ARP

CPU

CRC

DRDC

FTP

GPS

HMTI

ICMP

IDS

IEEE

Advanced Encryption Standard
Ad-hoc On-Demand Vector routing
Address Resolution Protocol
Central Processing Unit
Communications Research Centre
Defence Research and Development Canada
File Transfer Protocol

Global Positioning System

HELLO Message Time Interval
Internet Control Message Protocol
Intrusion Detection System

Institute of Electrical and Electronics Engineers
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LAGN

LL

LLC

MAC

MANET

MNE

MPR

NIO

NTA

OLSR

osl

OSPF

PSD

QoS

RTT

SIFS

TC

TCP

ubDP

Internet Protocol
Location-Aware Guard Node
Link Layer

Logical Link Control

Medium Access Control
Mobile Ad Hoc Network
Mobile Network Emulator
Multipoint Relay

Network Information Operations
Network Traffic Analyzer
Optimized Link-State Routing
Open Systems Interconnection
Open Shortest Path First
Power Spectral Density
Quality of Service

Round Trip Travel Time
Short Interframe Space
Topology Control
Transmission Control Protocol

User Datagram Protocol
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WEP Wired Equivalent Privacy

WPA Wi-Fi Protected Access
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