Adaptive Fog-Based Output Security for Augmented Reality

Surin Ahn

Princeton University
Princeton, NJ
slahn@princeton.edu

Mung Chiang
Department of Electrical and
Computer Engineering
Purdue University
West Lafayette, IN
chiang@purdue.edu

ABSTRACT

Augmented reality (AR) technologies are rapidly being adopted
across multiple sectors, but little work has been done to ensure the
security of such systems against potentially harmful or distracting
visual output produced by malicious or bug-ridden applications.
Past research has proposed to incorporate manually specified poli-
cies into AR devices to constrain their visual output. However, these
policies can be cumbersome to specify and implement, and may
not generalize well to complex and unpredictable environmental
conditions. We propose a method for generating adaptive policies to
secure visual output in AR systems using deep reinforcement learn-
ing. This approach utilizes a local fog computing node, which runs
training simulations to automatically learn an appropriate policy
for filtering potentially malicious or distracting content produced
by an application. Through empirical evaluations, we show that
these policies are able to intelligently displace AR content to reduce
obstruction of real-world objects, while maintaining a favorable
user experience.

CCS CONCEPTS

« Security and privacy — Systems security; - Human-centered
computing — Mixed / augmented reality; - Networks — Mid-
dle boxes / network appliances; « Computing methodologies —
Reinforcement learning;

KEYWORDS

Augmented reality, visual output security, reinforcement learning,
policy optimization, fog computing, edge computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VR/AR Network’18, August 24, 2018, Budapest, Hungary

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5913-9/18/08...$15.00
https://doi.org/10.1145/3229625.3229626

Maria Gorlatova
Department of Electrical Engineering Department of Electrical Engineering
Princeton University
Princeton, NJ
mariaag@princeton.edu

Parinaz Naghizadeh
Department of Electrical and
Computer Engineering
Purdue University
West Lafayette, IN
parinaz@purdue.edu

Prateek Mittal

Department of Electrical Engineering

Princeton University
Princeton, NJ
pmittal@princeton.edu

State |
Reward

AR System

Fog-Based Training

Figure 1: Pipeline for generating and deploying an output
security policy for AR systems using deep reinforcement
learning. Through simulations, an agent learns an optimal
policy, represented as a neural network that maps observed
states of the environment to actions, which can then be de-
ployed in the display module of an AR device. At runtime,
only the feedforward function of the neural network is used.

ACM Reference Format:

Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh, Mung Chiang, and Prateek
Mittal. 2018. Adaptive Fog-Based Output Security for Augmented Reality.
In VR/AR Network’18: ACM SIGCOMM 2018 Morning Workshop on Virtual
Reality and Augmented Reality Network , August 24, 2018, Budapest, Hungary.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3229625.3229626

1 INTRODUCTION

Augmented reality (AR) has the potential to disrupt sectors as di-
verse as health-care, retail, education, industrial design, and the
military [13]. Fully immersive AR devices are becoming more com-
mercially available, with the recent introduction of AR-enhanced
automotive windshields [8] and powerful head-mounted displays
(HMDs) such as Microsoft’s HoloLens [9] and Apple’s recently
revealed AR system [3]. Even smartphones can now be easily trans-
formed into HMDs using low-cost peripherals like HoloKit [4].
Although AR has the potential to be vastly beneficial to society,
the increased immersion and the blurring of lines between the vir-
tual world and reality give rise to a number of security concerns.
Malicious or bug-ridden applications could produce harmful output,

https://doi.org/10.1145/3229625.3229626
https://doi.org/10.1145/3229625.3229626

VR/AR Network’18, August 24, 2018, Budapest, Hungary

such as virtual objects that obstruct crucial real-world information
from the user. For example, an adversary could intentionally block
important road signs from a driver’s view, or produce output to
distract the driver [6]. Sensory overload, caused by flashing visuals,
shrill audio, or intense haptic feedback signals, could cause physio-
logical damage to the user. The space of possible threats becomes
amplified when networked AR devices can share mixed-reality ex-
periences with each other or retrieve content from the cloud [7, 14].
Currently, commercial AR systems lack defenses to combat such
adversarial output.

The field of AR security and privacy is still in its infancy, and
current research has largely focused on input privacy (restricting
the amount of sensor data accessible to third parties, e.g., [5, 12]),
but less on output security. Lebeck et al. recently introduced an
OS-level framework called Arya that constrains the visual output
of AR applications based on context-specific policies that must be
explicitly specified in a conditional fashion (“if AR objects violate
condition x, then perform action y on the objects”) using a set
of policy primitives [6]. For example, in the case of AR-enhanced
automotive windshields, virtual objects that obstruct pedestrians
should be made transparent. Beyond Arya, there is a notable dearth
of solutions for securing AR visual output.

Arya has laid the foundation for the field of AR visual output
security and is a promising first step toward secure AR systems.
We argue, however, that it is an intractable task to specify a set of
rule-based policies for every conceivable AR scenario; the space of
possible AR content, application behavior, and target environments
is simply too large and diverse to tackle in a completely manual
fashion. For example, consider an object displacement task in which
we seek to move virtual objects to less obstructive positions in the
environment. This is a nontrivial objective, as it is unclear how
one might move the objects such that they simultaneously don’t
interfere with each other and don’t obstruct real-world objects,
which themselves may be moving (e.g., pedestrians or other vehi-
cles). There is clearly a pressing need for intelligent solutions that
enable immersive yet safe AR experiences.

In this paper, we build upon Arya by introducing a novel method
that jointly leverages reinforcement learning (RL) and fog computing
to automatically synthesize security policies for AR. Recent ad-
vances in deep RL [10, 15, 16] have enabled systems to learn how to
perform complex tasks in a highly automated fashion. Furthermore,
the most recent version of the HoloLens’s custom multiprocessor,
the Holographic Processing Unit, contains a dedicated artificial
intelligence co-processor for flexibly implementing deep neural
networks [11]. We design a “smart middlebox” system that employs
state-of-the-art RL algorithms to filter potentially malicious or dis-
tracting elements from AR content before they reach the user’s
display. The filtering actions on virtual objects are learned offline
through rigorous simulation-based training, whereby the RL agent
interacts with an environment consisting of simulated, randomized
real-world objects and holograms. The resulting neural network
model can then be deployed on a physical AR system (see Figure
1). In practice, the “important real-world objects” can be extracted
from spatial mappings of the environment using object detectors
and recognizers, which are already standard components of AR sys-
tems. Our approach augments the security capabilities of existing
Arya-like frameworks by producing complex policies that adapt

S. Ahn et al.

to dynamic environments and that would otherwise be practically
infeasible to implement by hand.

Simultaneously, we tackle the security, privacy, and latency is-
sues that typically accompany cloud-based training of deep neural
networks by instead performing training on a nearby fog comput-
ing node [1]. By virtue of its proximity to the end devices, the fog
node can more easily incorporate contextual information about
the environment [2] to produce more realistic training simulations.
This work forms the basis for our broader vision of pushing intelli-
gence toward the network edge to benefit Internet of Things (IoT)
devices in a multitude of ways.

Our contributions. In this paper, we make the following spe-
cific contributions:

e We present an approach for automatically generating policies to
secure AR visual output using deep RL, with simulation-based
training performed on a local fog computing node. To the best of
our knowledge, we are the first to explore this intersection of RL
and fog computing in the context of AR visual output security.

e We define a novel obstruction metric that quantifies how well
a given policy reduces the amount of malicious or distracting
content displayed to the user.

e We implement a system prototype that demonstrates the ability
of an RL-trained agent to learn complex object-displacement
policies through trial-and-error in randomized simulations.

e We perform both a qualitative evaluation of the resulting RL-
generated policies, as well as a quantitative analysis of policy
convergence, frame rate, and obstruction. Finally, we present
the results of a user study.

We begin by describing the threat model in Section 2, and provide
an overview of policy optimization methods of RL in Section 3. In
Section 4, we paint a detailed picture of our system design principles,
which includes a justification for our use of RL, the agent’s state
space, action space, and reward function, and the definition of our
obstruction metric. Next, we describe our experimental setup and
empirical results in Section 5. Finally, we offer concluding remarks
and plans for future work in Section 6.

2 THREAT MODEL

We consider the space of possible threats to output security associ-
ated with fully immersive AR systems such as HMDs and automo-
tive windshields, which are potentially connected to the Internet or
to each other. In particular, similar to [6], we seek to defend against
AR applications that use virtual content to attempt a subset of the
following:

o Obscuring real-world context.

e “Attacking” another AR application by obscuring or preventing
the user from interacting with its content.

o Distracting or disrupting the user.

Note that the above threats can be posed by a general set of
potential attackers, including an adversarial or bug-ridden applica-
tion, another AR user that is connected to the current user over a
network, or a cloud-based entity that controls the AR content sent
to the device. In this work, we do not consider ways to prevent the
fog node itself from being compromised,; it is assumed that standard
network security practices are employed for this purpose.

Adaptive Fog-Based Output Security for Augmented Reality

3 POLICY OPTIMIZATION

Reinforcement learning is the problem of learning to make opti-
mal decisions through repeated interactions with an unknown, dy-
namic environment [17]. Formally, the environment is modeled as a
Markov Decision Process (MDP) (S, A, 7, R). An agent interacting
with the environment observes its current state s € S and takes an
action a € A. The agent then receives areward R(s, a) : SXA — R,
and the state of the environment evolves to state s’ according to
the transition probability 7(s’|s,a) : S X A xS — [0, 1].

The agent’s decision making can be characterized by a policy 7y,
determining the action to take at any state. Here, 0 is a vector that
parameterizes the policy (e.g. the weights of a neural network for
mapping states to actions). Such a policy can either be a determin-
istic function of the state s, so that y(s) : S — A, or a stochastic
function 7g(a|s) : S x A — [0, 1], which gives the probability of
taking an action g, given that the current state is s.

The goal of the agent is to find an optimal policy 7y that maxi-
mizes its utility, given by the expected cumulative reward under
that policy. In policy optimization methods, the agent learns an
optimal policy from the parameterized family of policies 7y, by
optimizing over all possible parameter vectors 6. This yields the
optimization problem

H
0" = arg méix U(0) = arg rneax E[; R(st,ar) | mo (1)

where H denotes the time horizon, or the number of steps into the
future that the agent is considering®. To solve (1), one can compute
an estimator of the policy gradient V4U(6), which can then be used
to perform stochastic gradient ascent to update the policy parame-
ters and maximize the expected accumulated reward. This approach
leads to a class of reinforcement learning algorithms known as pol-
icy gradient methods [10, 15]. A recently developed suite of gradient
methods known as Proximal Policy Optimization (PPO) algorithms
[16] has been shown to be easier to implement, more general, and
more data-efficient than previous policy gradient approaches. We
use PPO as the learning algorithm in our experiments.

4 SYSTEM DESIGN
4.1 Why Reinforcement Learning?

Here, we outline the benefits of using reinforcement learning for
AR visual output security, as opposed to other potential techniques.
First, while rule-based heuristics are often easy to interpret and im-
plement, they can be ill-suited to complex, dynamic environments.
For this reason, RL techniques have been attracting attention across
different research communities, including the field of networking
[20]. A particular benefit of RL over heuristics is the ability to adjust
policies simply by changing the reward function. A second poten-
tial technique is to use dynamic programming. However, while
dynamic programming requires a complete probability distribution
of possible state transitions — which may be infeasible to obtain —
sample transitions suffice for training RL policies.

In contrast to supervised learning, RL does not require a large
amount of labeled training data to learn the desired behavior. Rather,

!Note that infinite horizons are also possible, in which case the agent seeks to maximize
its discounted cumulative reward Y52, §' R(s¢, a;).

VR/AR Network’18, August 24, 2018, Budapest, Hungary

the agent uses trial-and-error to automatically learn a policy that
strives for high-reward state-action pairs and avoids high-penalty
ones. This is particularly useful in environments that change fre-
quently: instead of having to generate an entirely new training set
for each possible scenario, we need only provide the agent with
environmental details (which can be automated with sensors) and
an appropriate reward function. Another distinguishing feature of
RL is its closed-loop nature: an RL model captures the potential
consequences of an agent’s actions over extended time horizons.
This is useful for AR visual security since the placement of a holo-
gram could potentially interfere with other holograms or moving
real objects in the future.

4.2 The Role of Fog Computing

A world of ubiquitous AR will require a network infrastructure that
supports low-latency, personalized computing. Our vision is that
fog servers would provide local computing resources to different
geographical regions. A fog node, which would already possess
relevant spatial information about its surrounding environment,
could run training simulations offline to generate context-specific
security policies, potentially with the aid of cloud servers. An AR
device that enters a new region could then connect to the local fog
node and download a policy, and also help to improve the policy
through online learning. Security agreements would likely need to
be established between AR system developers, application devel-
opers, and fog server administrators. The potential complexities of
such relations are beyond the scope of this paper.

4.3 State Space

In this paper, we assume a fully observable MDP in which the
agent has complete knowledge of the state s; € S to make an
informed decision about its next action. We define s; to consist of
the locations of all holograms and real-world objects, and the size
of their bounding boxes, at time ¢. Each location is given by a three-
dimensional real vector, and each bounding box is represented
by its width and height when projected onto the user’s screen.
Thus, if there are N virtual objects and M real-world objects in the
environment, then the state space is a subset of RIM+N),

In reality, the sensors used to acquire the state of the environment
are likely to suffer from noise, in which case the more appropriate
RL model is a partially observable MDP (POMDP). Our AR simulator,
described in Section 5, is equipped to simulate noisy observations.
We leave POMDPs to be explored in future work.

4.4 Action Space

Each of the agent’s actions can be encoded as either an integer
(for discrete actions) or a real number (for continuous actions). We
endow the agent with the ability to change the location (within the
physical bounds of the simulated environment) and transparency
of each virtual object. Therefore, if there are N virtual objects in
the environment, the agent’s action space has size 4N. We choose
to manually implement the transparency action as a simple thresh-
olding rule (if an object is within x distance units of the user, or
within y distance units of a real-world object, make it transpar-
ent). Thus, the agent’s action space has size 3N, and the additional

VR/AR Network’18, August 24, 2018, Budapest, Hungary

transparency action is implicit. In this sense, our approach yields a
hybrid between adaptive and manually specified policies.

4.5 Reward Function

The reward quantifies how well the agent is accomplishing its task
of reducing the distraction or obstruction levels of AR content
presented to the user, and is computed as a function of the state of
the environment and the agent’s actions taken in the previous time
step. Arguably, the reward function is the most important factor
in determining the policy. The choice is context-specific and is
guided by the user’s or system designer’s goals. In our experiments,
we consider one possible reward function, which we define below.
However, many different potential reward functions exist, each
likely to result in different agent behaviors.

Let f : C — C’ be the bijective function that maps original
holograms to their policy-modified counterparts, where C is the
set of original holograms, and C’ is the set of policy-modified
holograms. Also, let R denote the set of real-world objects. We
define the reward at time ¢ to be

Ry = Z (a - Distxy(R,0") = f - DiffZ(R,O’)) -y Z Dist(0,0")

O’eC’: OeC,0’eC”:
ReR F(0)=0’
2
where
Distxy(R,0") = |[Rx = O%| + |Ry — Oy | ®)
Diff,(R,0") =R, - O] (4)
Dist(0,0") = ||Pos(O) — Pos(0')||2 (5)

By rewarding for increased XY-plane distance Distxy (R, O’),
the above choice of reward function ensures that the new policy-
modified objects O’ will not obstruct real-world objects. Addition-
ally, by penalizing large Z-plane differences Dif f (R, O’), we dis-
courage the agent from placing the O’ directly in front of real-world
objects. Finally, by penalizing large Dist(O, O’), the reward func-
tion encourages the O’ to be close to the original holograms they
represent. The weights a, §, y represent the importance of each of
the above requirements. We set ¢ = 2.0, = 1.0, andy = 1.5in
our experiments.

Alternatively, we can define a more goal-oriented reward func-
tion that penalizes the agent whenever a hologram intersects either
another holograms or a real object, from the user’s perspective.
To encourage utility preservation, the agent can also be rewarded
for keeping the holograms visible to the user. We plan to compare
different reward functions in future work.

4.6 Obstruction Metric

In previous work, the “goodness” of proposed policies was eval-
uated on solely a qualitative basis. This motivates the need for
quantitative metrics that capture the degree to which new policies
present improvements to visual output security. To this end, we
introduce the obstruction metric, which is the percentage of the
user’s display obstructed by holograms in a single video frame. For
a given set of holograms C in the environment, where each object

S. Ahn et al.

Table 1: Policy optimization hyperparameters in this work.

Parameter Value
Discount factor 0.99
GAE parameter 0.95
Policy ratio threshold 0.2
Entropy regularization | 0.001
Time horizon 2048
Hidden layer size 64
Batch size 64
Number of epochs 5

O € C is a set of pixels, the obstruction induced by C is defined as

Area of Display Obstructed by (Uoec O)

Ob = - (6
s(C) Total Area of Display ©)

This metric benefits from a clear operational interpretation: a
value of, e.g., 0.4, indicates that 40% of the user’s display is ob-
structed by holograms under the given policy. Note that the con-
tribution of each object to Obs(C) should be weighted by its trans-
parency, since transparent objects do not obstruct the display. More-
over, when objects intersect spatially, the maximally opaque object
should dominate over the others. Finally, objects that are them-
selves obstructed by virtual or real-world objects (and are therefore
not visible) should not contribute to Obs(C).

5 EXPERIMENTS
5.1 AR Simulator

Drawing inspiration from the experimental design of [6], we built
an AR simulator in the Unity game engine [18] that allows us to
create and customize virtual scenes representing real-world envi-
ronments. In this work, we developed a simulated world of dimen-
sions 20x10x20 meters with a large object representing a real-world
sign. Within this simulator, we also built an AR content generator
that allows us to simulate an arbitrary number of holograms. In
the current version, a set of holograms of varying shapes, sizes and
colors are first spawned in random locations within the simulated
world, and then launched on randomized spatial trajectories until
the simulation is stopped.

Reinforcement learning functionality was incorporated into our
simulations using the Unity Machine Learning Agents SDK 2 and
TensorFlow [19]. Communication between Unity and Python oc-
currs over an open socket. The simulations were run on a worksta-
tion (fog node) with an Intel Core i7-7700K CPU @ 4.20 GHz, 16
GB RAM, and an NVIDIA GeForce GTX 1070 graphics card with
1920 CUDA cores.

The experimental pipeline can be summarized as follows: (1) A
simulated environment is created in Unity, and the number of holo-
grams to simulate is specified in the content generator. (2) An agent
is trained within this environment using PPO implemented with
TensorFlow. Hyperparameters that were used in our experiments
are provided in Table 1. (3) The resulting TensorFlow graph model
is embedded into Unity using TensorFlowSharp? to allow the newly
trained agent to make decisions in the simulated environment.

ZCurrently in its open beta version: https://github.com/Unity-Technologies/ml-agents
Shttps://github.com/migueldeicaza/TensorFlowSharp

https://github.com/Unity-Technologies/ml-agents
https://github.com/migueldeicaza/TensorFlowSharp

Adaptive Fog-Based Output Security for Augmented Reality

Original Output

(a) 30 objects

VR/AR Network’18, August 24, 2018, Budapest, Hungary

Original Output Policy-Generated Output

I[r)portant
o & I

Vo

(b) 40 objects

Figure 2: Examples of visual outputs before and after RL-generated policies are applied. (a) In the original output (left), most of the user’s
field of view is obstructed by holograms. In the policy-generated output (right), the holograms are intelligently displaced to make the sign
visible while still keeping most of the virtual objects within the user’s view. (b) Even when the holograms are accidentally placed too close to
the user or in front of real-world objects, the transparency policy ensures that important environmental details are not obstructed.

Original Output Policy-Generated Output

™ 4 "t 4

Figure 3: Left: The holograms interfere with the user’s view of the
pedestrians. Right: The policy reconfigures the holograms to not
obstruct the pedestrians while remaining visible to the user.

5.2 Qualitative Evaluation

Following the system design outlined in Section 4 and the previously
described pipeline, we trained an intelligent agent to regulate the
placement of randomly generated holograms to prevent obstruction
of the simulated real-world object. We offer two representative
images, given in Figure 2a and Figure 2b, comparing our policy-
generated visual output to the original, unfiltered output.

We also considered a more realistic scenario in which there are
two pedestrians walking in front of the user, and two applications
are simultaneously attempting to display holograms in the environ-
ment. As seen in Figure 3, when the applications attempt to interfere
with the user’s view of the pedestrians, the policy moves the holo-
grams such that they are sufficiently far from the pedestrians, yet
still fully visible to the user.

5.3 Policy Convergence

Figure 4a shows the agent’s cumulative reward as a function of
the number of training steps that have elapsed, in a simulation of
three holograms. Over a successful training session, the cumula-
tive reward should increase and converge to a final value, which
indicates that the agent has identified a (possibly locally) optimal
policy. We indeed observe this behavior in the displayed curve,
which quickly increases in the beginning before plateauing to a
stable value. Figure 4b shows the value estimate, i.e., the amount
of future reward that the agent anticipates. As expected, the value
estimate increases over the duration of training.

5.4 Frame Rate

Figure 5a compares the frame rate, expressed in frames per second
(FPS), of our AR simulation with and without an RL-generated

800 40
g 2
600 230
8 E
2400 $20
k5] 3
S 200 = 10
£ S
3
S o 0
0 2 4 6 8 0 2 4 6 8
Step %10° Step x10°

(a) Cumulative reward (b) Value estimate

Figure 4: Plots of different reinforcement learning metrics over the
duration of 10 training sessions for a simulation with 3 holograms.
Curves in a pale color represent individual training instances, while
curves in a dark color represent the median over all instances. (a)
The agent’s cumulative reward quickly converges to a maximum
value. (b) The value estimate increases over time, indicating that
the agent becomes increasingly optimistic of its future reward.

—~60 ;
90 g, X —No Policy
--No Policy < ~RL Policy
85 -=With Policy o Tran. Policy
5 40
80 2
k7]
o
75 Q
(o]
70 g) [
<

20 40 20 40 60
Number of Objects Time (s)

(a) Frame rate (b) Average obstruction

Figure 5: (a) Frames rate of our AR simulation in the no-
policy and with-policy cases, as a function of the number
of holograms rendered in the environment. (b) A moving
cumulative average of obstruction values for no-policy, RL
policy, and transparency policy.

policy as the number of virtual objects in the environment is varied.
The frame rate was obtained using the real-time statistics viewer
built into Unity. For a small number of objects, activating the policy
reduces the simulation frame rate by roughly 10-12 FPS compared to
the no-policy case. Interestingly, as the number of objects increases,
the no-policy and with-policy curves appear to converge. Even with
50 holograms in the scene, the resulting frame rate is well within
the range necessary for a seamless user experience.

VR/AR Network’18, August 24, 2018, Budapest, Hungary

5.5 Obstruction Metric

We collected obstruction values (using the metric from Section
4.6) over a period of 60 seconds when running no policy, an RL-
generated policy, and a transparency policy (one of the main policies
proposed in [6]) that makes objects transparent when they exceed
a distance threshold from the user or real-world objects. Figure
5b plots the moving cumulative average of obstruction values for
these three cases. We see that in the original (no-policy) output,
there is both a high average obstruction (final average: 34%) and
high variability in obstruction. The transparency policy improves
upon this, with an average obstruction of 21%, by making holograms
transparent when they would otherwise completely block the user’s
view. Finally, the RL policy offers a significant reduction to 7%,
by both incorporating the transparency policy and intelligently
displacing objects to less obstructive configurations.

An obvious limitation of using this metric in isolation is that
a policy can achieve an obstruction value of 0% by either making
holograms transparent all the time, or deleting them. In future
work we will establish different utility metrics that quantify the
usefulness of AR content preserved by a given policy.

5.6 User Study

We conducted a user study in which 9 participants were asked
to compare 6 pairs of Arya-generated images and RL-generated
images, each with anywhere from 2 to 40 holograms overlaid on
a simulated real-world environment. Using a Likert scale from 1
(strongly disagree) to 5 (strongly agree), participants were first
asked to specify the degree to which they felt that applications
displayed in the RL-generated image were less obstructive than
those in the Arya-generated image. The average response was found
to be 4.52 (between “agree” and “strongly agree”). For the same
pairs of images, participants were also asked to rate how strongly
they felt that the applications in the RL-generated images were
more useful than the applications in the Arya-generated image.
The average response in this case was 4.44. Moreover, all 9 users
stated that they would prefer the RL-generated images in an AR
experience. These results suggest that RL-based object displacement
policies improve upon the existing Arya policies with respect to
both security and utility.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a set of new approaches that lay at the
intersection of augmented reality, security, and machine learning.
We presented a method for automatically generating policies to
secure visual output in AR systems, using reinforcement learning
and fog computing. A local fog node runs AR simulations to learn an
appropriate policy for filtering potentially malicious or distracting
content produced by an application, guided by a reward function
specified by the user or system designer. We also defined a new
obstruction metric to quantify the performance of a visual output
policy. We showed that our RL-generated policies demonstrate
great promise for intelligently displacing AR content to keep users’
displays distraction- and obstruction-free, while causing relatively
little degradation in frame rate.

This work opens up numerous exciting avenues for future re-
search. In particular, we are currently working towards:

S. Ahn et al.

o Designing a method for automatically encoding user visual pref-
erences into reward functions, and comparing the effect of dif-
ferent functions on the resulting policies.

e Deploying and testing our approach on physical AR devices.

e Formalizing a multi-agent reinforcement learning problem for
collaborative multi-user AR scenarios.

e Considering ways in which other forms of AR signals, such as
audio and haptic feedback, can potentially be regulated using
policy optimization.

ACKNOWLEDGMENTS

This work was supported in part by the Department of Electrical
Engineering and the School of Engineering and Applied Science
at Princeton University, the Comcast Innovation Fund Research
Grant, and Defense Advanced Research Projects Agency (DARPA),
under contract No. HR001117C0052 and No. HR001117C0048. The
opinions, findings and conclusions expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency. We thank Dr. Andrew
S. Lan for useful discussions, the participants of our user study for
their time, and the reviewers for helpful feedback.

REFERENCES

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
computing and its role in the Internet of Things. In ACM MCC’12.

[2] Mung Chiang and Tao Zhang. 2016. Fog and IoT: An overview of research
opportunities. IEEE Internet of Things J. 3, 6 (December 2016), 854-864.

[3] Mark Gurman. 2017. Apple is ramping up work on AR headset to suc-
ceed iPhone. (November 2017). https://www.bloomberg.com/news/articles/
2017-11-08/apple-is-said-to-ramp-up-work-on-augmented-reality-headset

[4] HoloKit. 2017. HoloKit. (2017). https://holokit.io

[5] Suman Jana, David Molnar, Alexander Moshchuk, Alan Dunn, Benjamin Livshits,
Helen J. Wang, and Eyal Ofek. 2013. Enabling fine-grained permissions for
augmented reality applications with recognizers. In USENIX Security.

[6] Kiron Lebeck, Franziska Roesner, and Tadayoshi Kohno. 2017. Securing aug-
mented reality output. In IEEE Symposium on Security and Privacy.

[7] Kiron Lebeck, Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner. 2018.
Towards Security and Privacy for Multi-User Augmented Reality: Foundations
with End Users. In IEEE Symposium on Security and Privacy.

[8] Melanie May. 2015. Augmented reality in the car industry. (August 2015). https:
//www.linkedin.com/pulse/augmented-reality- car-industry-melanie-may/

[9] Microsoft. 2016. HoloLens. (2016). https://www.microsoft.com/en-us/hololens

[10] Volodymyr Mnih, Adria Puigdoménech Badia, Alex Graves Mehdi Mirza, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In arXiv:1602.01783 [cs.LG].

[11] Marc Pollefeys. 2017. Second version of HoloLens HPU
will incorporate Al coprocessor for implementing DNNs.
(July 2017). https://www.microsoft.com/en-us/research/blog/

second-version-hololens-hpu-will-incorporate-ai- coprocessor-implementing-dnns/

=
i)

Franziska Roesner, Tadayoshi Kohno, and David Molnar. 2013. Security and

privacy for augmented reality systems. In Comm. of the ACM.

[13] Goldman Sachs. 2016. Virutal & Augmented Reality. (January 2016). http://www.

goldmansachs.com/our-thinking/pages/technology- driving-innovation-folder/

virtual-and-augmented-reality/report.pdf

Dieter Schmalstieg and Tobias Hoéllerer. 2016. Augmented Reality: Principles and

Practice. Addison-Wesley, Boston, MA.

[15] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2015. Trust region policy optimization. In arXiv:1502.05477 [cs.LG].

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. In arXiv:1707.06347 [cs.LG].

[17] Richard Sutton and Andrew Barto. 2017. Reinforcement Learning: An Introduction
(2 ed.). The MIT Press, Cambridge, MA.

[18] Unity Technologies. 2018. Unity. (2018). https://unity3d.com

[19] TensorFlow. 2018. TensorFlow. (2018). https://www.tensorflow.org/

[20] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang. 2017. Ma-

chine Learning for Networking: Workflow, Advances and Opportunities. In [EEE

Network.

=
et

https://www.bloomberg.com/news/articles/2017-11-08/apple-is-said-to-ramp-up-work-on-augmented-reality-headset
https://www.bloomberg.com/news/articles/2017-11-08/apple-is-said-to-ramp-up-work-on-augmented-reality-headset
https://holokit.io
https://www.linkedin.com/pulse/augmented-reality-car-industry-melanie-may/
https://www.linkedin.com/pulse/augmented-reality-car-industry-melanie-may/
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
http://www.goldmansachs.com/our-thinking/pages/technology-driving-innovation-folder/virtual-and-augmented-reality/report.pdf
http://www.goldmansachs.com/our-thinking/pages/technology-driving-innovation-folder/virtual-and-augmented-reality/report.pdf
http://www.goldmansachs.com/our-thinking/pages/technology-driving-innovation-folder/virtual-and-augmented-reality/report.pdf
https://unity3d.com
https://www.tensorflow.org/

	Abstract
	1 Introduction
	2 Threat Model
	3 Policy Optimization
	4 System Design
	4.1 Why Reinforcement Learning?
	4.2 The Role of Fog Computing
	4.3 State Space
	4.4 Action Space
	4.5 Reward Function
	4.6 Obstruction Metric

	5 Experiments
	5.1 AR Simulator
	5.2 Qualitative Evaluation
	5.3 Policy Convergence
	5.4 Frame Rate
	5.5 Obstruction Metric
	5.6 User Study

	6 Conclusions and Future Work
	Acknowledgments
	References

