# ECE 590/COMPSI 590 Special Topics: Edge Computing

# How Does Edge Help The Cloud?

Monday September 10th, 2018

# Last Lecture: Recap

- Higher-end mobile devices
- Cloudlets
  - Current presence
  - Challenges
- · Mobile offloading
- Future directions in mobile offloading

3

# **Class Outline**

- Edge helping cloud
  - Why edge makes sense for the cloud
  - Background: latency and jitter
  - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- Telecom and the edge
  - > An infrastructure view of edge computing
  - ➢ 5G and ETSI MEC



### Why do Amazon and Microsoft Want to Create Edge Services?





# Class Outline Edge helping cloud Why edge makes sense for the cloud Background: latency and jitter Challenges in supporting low-latency low-jitter solutions with modern cloud architectures Telecom and the edge An infrastructure view of edge computing 5G and ETSI MEC

# Why do Amazon and Microsoft Want to Create Edge Services?



- Gateways are already already a pervasive reality for IoT deployments
  - Most likely, you will have an IoT gateway, and you will run something on it

8

7







# Latency Components

- Latency, in a distributed system:
  - Getting data to and from the execution point
  - + service invocation time
  - + service execution time

# Latency with Edge and Cloud

• Cloud:

 $\succ$  Globally **pooled** users  $\rightarrow$  central server farm

• Edge:

Duke UNIVERSITY

➤ Local users → local gateway/cloudlet

Latency with Edge and Cloud: Comparison (1/2)

- Cloud communication latency strictly greater than edge latency
  - Speed of light

From:http://ipnetwork.bgtmo.ip.att.n et/pws/network\_delay.html

| U.S. Netwo    | rk I | .ater             | ncy   |      |     |       |      |      |          |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
|---------------|------|-------------------|-------|------|-----|-------|------|------|----------|------|------------|----|-----|-----|----|----|-----|----|-----|----|----|----|-----|-----|-----|
| Figures are i | n m  | s. Th             | resho | olds | are | dista | ince | sens | itive    |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| CITY<br>PAIRS | Atl  |                   |       |      |     |       |      |      |          |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Austin        | 27   | Aus               |       |      |     |       |      |      | <u> </u> | Irro | nt         |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Cambridge     | 28   | 28 52 Cam Overall |       |      |     |       |      |      |          |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Chicago       | 24   | 30                | - 24  | Chi  |     |       |      |      | Ave      | ara  | 10'<br>10' |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Cleveland     | 18   | 35                | 19    | - 7  | Cle |       |      |      | 3        | 1 m  | 90.<br>IS  |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Dallas        | 17   | 6                 | 50    | 26   | 27  | Dal   |      |      | Ŭ        |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Denver        | 37   | 25                | 42    | 19   | 26  | 19    | Den  |      |          |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Detroit       | 21   | 39                | 21    | 7    | 4   | 34    | 26   | Det  |          |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Houston       | 18   | 7                 | 44    | 30   | 34  | 5     | 24   | 39   | Hou      |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Indianapolis  |      |                   |       | 5    | 8   |       |      |      |          | Ind  |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Kansas City   | 22   | 15                | 31    | 12   | 18  | 10    | 15   | 18   | 15       |      | Kan        |    |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Los Angeles   | 46   |                   | 67    | 44   | 50  | 28    | 25   | 51   | 33       |      | 39         | LA |     |     |    |    |     |    |     |    |    |    |     |     |     |
| Madison       |      |                   |       | 5    |     |       |      |      |          |      | 18         |    | Mad |     |    |    |     |    |     |    |    |    |     |     |     |
| Nashville     | - 7  | 22                | 28    | 17   | 11  | 19    | 33   | 14   | 25       |      | 17         | 44 |     | Nas |    |    |     |    |     |    |    |    |     |     |     |
| New Orleans   | 12   | 13                | 37    | 33   | 31  | 12    | 32   | 29   | - 7      |      | 21         | 40 |     | 20  | NO |    |     |    |     |    |    |    |     |     |     |
| New York      | 24   | 49                | 6     | 18   | 13  | 45    | 37   | 17   | 40       |      | 26         | 61 |     | 23  | 34 | NY |     |    |     |    |    |    |     |     |     |
| Orlando       | 11   | 27                | 37    | 33   | 28  | 24    | 43   | 30   | 19       |      | 33         | 53 |     | 15  | 14 | 32 | Orl |    |     |    |    |    |     |     |     |
| Philadelphia  | 22   | 43                | 9     | 17   | 10  | 40    | 36   | 15   | - 39     |      | 25         | 59 |     | 21  | 32 | 3  | 32  | Pa |     |    |    |    |     |     |     |
| Phoenix       | 40   | 20                | 64    | 42   | 45  | 20    | 34   | 49   | 23       |      | 29         | 10 |     | 35  | 29 | 59 | 43  | 56 | Phx |    |    |    |     |     |     |
| San Antonio   | 26   | 3                 | 51    | 32   | 33  | 8     | 25   | 40   | 5        |      | 17         | 28 |     | 26  | 11 | 48 | 25  | 43 | 18  | SA |    |    |     |     |     |
| San Diego     | 43   | 27                | 68    |      | 54  | 26    | 28   | 53   | 29       |      | 35         | 4  |     | 47  | 35 |    | 49  | 63 | - 7 | 25 | SD |    |     |     |     |
| San Francisco | 51   | 41                | 67    | 45   | 51  | 37    | 28   | 52   | 40       |      | 43         | 8  |     | 60  | 48 | 62 | 60  | 61 | 19  | 37 | 13 | SF |     |     |     |
| St. Louis     | 18   | 22                | 26    | - 7  | 13  | 17    | 21   | 15   | 23       | 13   | 6          | 45 | 11  | 11  | 29 | 21 | 27  | 19 | 37  | 24 | 44 | 50 | StL |     |     |
| Seattle       | 64   | 54                | 69    | 41   | 50  | 48    | 30   | 48   | 53       |      | 44         |    |     | 57  | 60 | 65 |     | 62 | 37  | 55 | 31 | 16 | 53  | Sea |     |
| Washington    | 18   | 38                | 10    | 20   | 13  | 33    | 38   | 17   | 37       |      | 22         | 61 |     | 23  | 29 | 5  | 27  | 4  | 53  | 40 | 59 | 63 | 16  | 60  | Was |
| 1             |      |                   |       |      |     |       |      |      |          |      |            |    |     |     |    |    |     |    |     |    |    |    |     |     |     |







Latency Requirements: Often Not Strictly "As Little As Possible"

- Example of going for "as little as possible": highfrequency trading systems
- Not strictly "as little as possible":
  - Human attention
  - Systems bottlenecked by other components
    - ePrivateEye example: 30 FPS camera rate -> no improvement from processing frames faster than 33 ms





- Jitter: deviations from the mean
- Jitter is problematic for voice, gaming, video conferencing, control, augmented reality, ...

# Class Outline

- Edge helping cloud
  - > Why edge makes sense for the cloud
  - Background: latency and jitter
  - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- Telecom and the edge
  - > An infrastructure view of edge computing
  - ➢ 5G and ETSI MEC

# Cloud Latency: Background

- Recognize latency magnitude as an issue
   > E.g., Content Delivery Networks as one solution
- Recognize jitter as an issue
  - > E.g., for multi-player games, VoIP
    - Edge should be able to support applications with tighter latency requirements

### Distributed Data Analytics: Stragglers (1/2)

Big data platforms:

- Divide data into small pieces
- Perform calculations on the pieces in parallel
- MapReduce, Dryad, Spark, …
- Task completion latency is set by the time of the slowest task





# Latency Variability Sources (1/3)

- Shared Resources
  - CPU cores
  - Processor caches
  - Memory bandwidth
  - Network bandwidth
- In our measurements with AWS t2.micro, we have seen up to 11x increase in latency

From: The Tail at Scale, J. Dean et al, Communications of the ACM, 2013









### Specific Measurements of Latency and Latency Variability (3/3)

Game server latency statistics

| Interference        | Avg. Time | $\sigma$ | Timeouts |
|---------------------|-----------|----------|----------|
| Idle (none)         | 8.1       | 10.2     | 0%       |
| CPU + Disk          | 6.2       | 7.9      | 1.7%     |
| Net (no tc)         | N/A       | N/A      | 100%     |
| Net (tc, dedicated) | 23.6      | 29.6     | 6.7%     |
| Net (tc, sharing)   | 33.9      | 16.9     | 1.7%     |



From: Empirical Evaluation of Latency-sensitive Application Performance in the Cloud, Barker and Shenoy, MMSys'10, Feb. 2010 31

Duke UNIVERSITY

### There are Ways of Improving Cloud Latency Support

- E.g.,
  - For stragglers: speculative, coded, approximate execution
  - For latency caused by shared network or CPU: isolated resources
- But:
  - ➤ All require additional resources
  - New applications need even tighter latencies









| Country + | Market value (\$ Bn) 🗢                                                                               | Revenue +                                                                                                                                                                                                                                                                                                         | Profit +                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| China     | 213.8                                                                                                | 88.8                                                                                                                                                                                                                                                                                                              | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USA       | 200.1                                                                                                | 127.3                                                                                                                                                                                                                                                                                                             | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| USA       | 137.3                                                                                                | 115.7                                                                                                                                                                                                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UK        | 135.7                                                                                                | 74.4                                                                                                                                                                                                                                                                                                              | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mexico    | 70.7                                                                                                 | 60.2                                                                                                                                                                                                                                                                                                              | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Spain     | 67.1                                                                                                 | 82.3                                                                                                                                                                                                                                                                                                              | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Australia | 58.4                                                                                                 | 25.8                                                                                                                                                                                                                                                                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Japan     | 58.2                                                                                                 | 127                                                                                                                                                                                                                                                                                                               | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Germany   | 48.8                                                                                                 | 76.7                                                                                                                                                                                                                                                                                                              | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Japan     | 47.2                                                                                                 | 38.78                                                                                                                                                                                                                                                                                                             | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | Country +<br>China<br>USA<br>USA<br>USA<br>Mexico<br>Spain<br>Australia<br>Japan<br>Germany<br>Japan | Country +         Market value (\$ Bn) +           China         213.8           USA         200.1           USA         137.3           UK         135.7           Mexico         70.7           Spain         67.1           Australia         58.4           Japan         58.2           Germany         47.2 | Country +         Market value (\$ Bn) +         Revenue +           China         213.8         88.8           USA         200.1         127.3           USA         137.3         115.7           UK         135.7         74.4           Mexico         70.7         60.2           Spain         67.1         82.3           Japan         58.2         127           Germany         48.8         76.7           Japan         47.2         38.78 |



Dec. 2017

### Verizon peels back curtain on edge computing, deep learning for real-time video analytics

by Mike Dano | Mar 29, 2018 12:59pm

Duke UNIVERSITY

Era

# Mobile Offloading: Application View





- The view we have seen so far
- But, there is telecom piping underneath all of it



### Mobile Offloading: Infrastructure View

(2/2)

- Cortana Alexa
- Infrastructure:
  - ➢ Pervasive
  - ➤ Expensive
    - Including real estate, laying and maintaining wires, …
  - ➤ Mission-critical

# **Telecom as an Infrastructure Layer**

- Telecom as a utility
  - Commoditization of telecommunication services
  - > "Metered data" services, minutes of voice, number of texts
  - > Hard to differentiate offerings from different companies
- Connectivity services → connected experiences
  - Not exclusive to edge services
  - > ... but very important in edge context

42









# Edge Computing is a Part of 5G

- One of the building blocks
- Offers:

- ➤ Lower latency
- Reduced load on core network
- Idea: co-locate edge computing servers with cellular base stations





# ETSI MEC: Example Standards

- Study on MEC support for V2x use cases
- UE identity API
- System, host, and platform management
- Bandwidth management API
- UE application interface
- Application lifecycle, rules and requirements management
- Radio Network information API
- Location API
- ...

Duke





# Telecom Edge vs. Cloudlet Edge

- Existing pervasive infrastructure
- Minimal possible latency for cellular devices
- Know all about mobility

- Have a concept of location can geo-locate without a GPS
- Know how to handle handoff
  - Computing handoff ≠ cellular hand-off though





