ECE 590/COMPSI 590 Special Topics: Edge Computing

Edge for Dispersed Training in Machine Learning

Wednesday October 17th, 2018

Lecture Outline

- Data processing applications in edge computing
- Traditional ML training and ML training involving edge
- Keeping (more) ML data local with edge
 - Federated learning
 - Ensemble learning
 - Challenges and open lines of work
- Personalized ML models with edge

Duke UNIVERSITY

Data Collection Applications

- Slower reaction time
 Speed of operation less of a concern
 No in-the-loop control
- Often look across multiple devices

Example Applications: Data Collection Across Multiple Mobile Users

- Images
- Clicks
- System performance
- Lecture reading materials: about these settings

Data Collection Applications: Current State

Data Collection Applications: Via Additional Edge Nodes

Data Collection Applications: With Capable Edge Devices

Data Collection Applications: With Edge Devices and Cloudlets

Lecture Outline

- Data processing applications in edge computing
- Traditional ML training and ML training involving edge
- Keeping (more) ML data local with edge
 - Federated learning
 - Ensemble learning
 - Challenges and open lines of work
- Personalized ML models with edge

9

Data Collection: Comprehensive View

- Change collection approaches and restructure processing algorithms
- Requires in-depth understanding of the algorithms

- Anomaly detection
- Machine learning algorithms

Duke UNIVERSITY

Machine Learning (ML): An Introduction

- Got its name in 1959
- Uses statistical techniques to give systems ability to learn from data
- ML examined in context of <u>this lecture</u>: massive amounts of *collected data* translated into models

ML Application: Classification

Duke

Traditional Approach to Model Training

- Collect data from multiple devices
- Train *the* model
- Send the model to multiple devices

Traditional Distributed Learning

- Collect data from multiple devices
- Train the model
 - Distributing processing between multiple cores and multiple servers
- Send the model to multiple devices

Changes Possible With Edge

- Instead of collecting data from multiple devices
 Keep some or all data local
- Instead of training the model
 - Train different local models: incremental models, private models, …

Emerging lines of work

16

Duke UNIVERSITY

Lecture Outline

- Data processing applications in edge computing
- Traditional ML training and ML training involving edge
- Keeping (more) ML data local with edge
 - Federated learning
 - Ensemble learning
 - Challenges and open lines of work
- Personalized ML models with edge

17

Keeping (more) Data Local with Edge

 Some of the training happens on the edge device

Duke

Machine Learning as an Optimization Problem

- Fitting a model to data requires minimization of a cost function over all data points
 - Basis of learning is an optimization operation

Stochastic Gradient Descent

- Multiple optimization approaches are possible, but "recent multitude of deep learning have almost exclusively relied on variants of stochastic gradient descent"*
- Stochastic Gradient Descent (SGD): we take batches of data at a time, uniformly at random, and use the results to move closer to the global minimum

*Communication-Efficient Learning of Deep Networks from Decentralized Data, McMahan et al, arXiv, Feb. 2017.

20

Duke UNIVERSITY

Duke UNIVERSITY

Federated Learning

- Take batches of clients at a time
 - Have each client in the batch compute the gradient on its local data, and iterate on it
 - Average the results on the cloud
- Keep going

"Federated learning can be made practical"

Communication-Efficient Learning of Deep Networks from Decentralized Data, McMahan et al, arXiv, Feb. 2017.

Duke UNIVERSITY

Phones Participating Overnight

 "When the device is idle, plugged in, and on a free wireless connection"

22

Lecture Outline

- Data processing applications in edge computing
- Traditional ML training and ML training involving edge
- Keeping (more) ML data local with edge
 Federated learning
 - Ensemble learning
 - Challenges and open lines of work
- Personalized ML models with edge

Duke UNIVERSITY

Ensemble Learning

- Motivation: ML models are often made up of ensembles of weaker "base" models
 - KDD-Cup, Netflix Prize are usually won by ensemble-based models

Many Ensemble Learning Techniques Exist

- E.g., bagging: weaker models *voting* in classification tasks, *averaging* in regression tasks
- Heterogeneous and homogeneous base learners
- Base learners generated sequentially or in parallel

Duke UNIVERSITY

In edge systems, can we use locally trained models to form a cloud-based ensemble model?

Ensemble Learning at Edge

27

Departure from the State of the Art in ML, but Starting Points Exist

- Communication advantage of the approach: model parameters << raw data
- Internet-scale ensembles identified as a bluesky vision before in ensemble learning

Ensemble Methods: Foundations and Algorithms, Zhi-Hua Zhou, Chapman&Hall, 2012

Duke

Our Early-Stage Work: Ensemble Learning on the Edge

- Adaptive Regression by Mixing (ARM) to combine locally computed models
 - Train local models
 - Send some raw data to the cloud as well
 - Combine models with the help of raw data
- Achieves substantial bandwidth reduction
- Y. Ruan, L. Zheng, M. Gorlatova, M. Chiang, C. Joe-Wong, The Economics of Fog Computing: Pricing Tradeoffs for Distributed Data Analytics, *Fognet and Fogonomics, Wiley*, in print, 2019.
- T. Chang, L. Zheng, M. Gorlatova, C. Gitau, C. Huang, M. Chiang, Demo: Decomposing Data Analytics in Fog Networks, ACM SenSys'17, Delft, Netherlands, Nov. 2017.

Lecture Outline

- Data processing applications in edge computing
- Traditional ML training and ML training involving edge
- Keeping (more) ML data local with edge
 Federated learning
 - > Ensemble learning
 - Challenges and open lines of work
- Personalized ML models with edge

Duke

Statistical Challenges (1/2)

- Traditional learning algorithms assume that data is I.I.D.
 - Reasonable assumption for large datasets
 - SGD, some ensemble learning methods pick data points at random to ensure I.I.D. properties
- Assumption fundamental to convergence analysis and other "nice" properties

Statistical Challenges (2/2)

- Local data: non-I.I.D.
- And also:

Duke

- Of uneven size
- With unbalanced class representations

Security Challenges

 Local models could be easier to poison

Image from: Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning, arXiv, Apr. 2018

Duke UNIVERSITY

System Challenges

 Storage, computation, communication, energy restrictions

Not considered by designers of machine learning algorithms

Many opportunities for research

Not as Clear of a Use Case as Inference on the Edge (1/3)

- Inference on the edge delivers important performance improvements
- Performance-wise, ML *training* on the edge is no better than on the cloud
 - Local devices are not as capable as cloud-scale systems
 - Latency is not a factor
 - Quality can be slightly worse
 - No new applications are enabled by it

Duke UNIVERSITY

Not as Clear of a Use Case as Inference on the Edge (2/3)

- From the development perspective, having data in one place is useful
- · Can process it as you'd like, whenever you'd like
 - Parameter tuning
 - ➢ Retraining
 - > Understanding when more data could be needed
- Use case assumptions seem to clash with down-to-earth software/ML development practices

Not as Clear of a Use Case as Inference on the Edge (3/3)

- · Bandwidth is saved
 - Philosophical question: are we inventing a very complex *lossy compression* mechanism?
- Privacy-preservation is an advantage
 > But is this true privacy?

Several Lines of Current Work

- Federated Multi-Task Learning NIPS'17
 Fitting separate but related models simultaneously, in federated settings
- Adaptive Federated Learning IEEE INFOCOM'18

Deciding on an appropriate degree of federation

Lecture Outline

- Data processing applications in edge computing
- Traditional ML training and ML training involving edge
- Keeping (more) ML data local with edge
 - Federated learning
 - Ensemble learning
 - Challenges and open lines of work
- Personalized ML models with edge

38

Personalized Training

- Why have the one model for each and every set of conditions?
 - Opportunities for: person-specific and location-specific performance

Why look for a cat in a video feed from a location without a cat?

Why look for a generic dog, rather than this specific one?

Model Specialization in MCDNN

- Look for inputs that are (n,p)-dominated
 - n most frequent classes account for at least p fractions of the weights
- Add specialized models to model catalog
- A somewhat brute-forced online approach
 - "Typically many of the specialized variants are strictly worse than others"

From: MCDNN: An Approximation-Based Execution Framework for Deep Stream Processing Under Resource Constraints, Han et al, ACM MobiSys'16.

Personalized Training: New Paradigm for Machine Learning

- Supervised learning long focused on creating the one best model from data
- In edge computing: privacy as an additional motivating factor

Fully Private Training: On Local Data Alone

- Not particularly powerful
 Not enough pictures of cats in restricted local conditions
- A step backwards from the current state of ML

43

Cloud + Edge Training (1/4)

 Local incremental training of a globally generated shared model

From: Privacy-preserving Personal Model Training, Servia-Rodriguez et al, IEEE/ACM IoTDI'18.

Duke UNIVERSITY

Cloud + Edge Training (2/4)

- Device obtains a global model and starts making inferences
- Local data is collected in the meantime

From: Privacy-preserving Personal Model Training, Servia-Rodriguez et al, IEEE/ACM IoTDI'18.

Duke

45

Cloud + Edge Training (3/4)

- Personalized model is generated once there is enough data
 - Multi-layer Perceptron (MLP) weights, biases updated based on local data

From: Privacy-preserving Personal Model Training, Servia-Rodriguez et al, IEEE/ACM IoTDI'18.

Duke

Cloud + Edge Training (4/4)

 High-quality personalized model can be generated more readily than a high-quality local model

From: Privacy-preserving Personal Model Training, Servia-Rodriguez et al, IEEE/ACM IoTDI'18.

DukeUNIVERSITY

Edge + Edge Training

- Settings: massive amounts of data distributed across multiple locations
 - ≻ Video data
 - Medical data
- Allowing local classifiers to be different from each other reduces communication overhead

From: Collaborative Probably Approximately Correct (PAC) Learning, Blum et al, NIPS 2017.

Duke UNIVERSITY

Lecture Recap

- · Data processing applications in edge computing
- Traditional ML training and ML training involving edge
- Keeping (more) ML data local with edge
 - Federated learning
 - Ensemble learning
 - Challenges and open lines of work
- Personalized ML models with edge

48