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Abstract—Augmented reality (AR) technologies are rapidly
gaining momentum in society and are expected to play a critical
role in the future of cities and transportation. In such dynamic
settings with a heterogeneous population of AR users, it is impor-
tant for holograms to be placed in the surrounding environment
with regard to the user’s preferences. However, the development
of general mechanisms for making AR experiences more person-
alized to the user is currently largely unexplored. This paper
proposes to use behavioral cloning, an autonomous imitation
learning technique, as a means of automatically generating
policies that capture user preferences of hologram positioning.
We use a reduced feature-based state vector, as opposed to the
complete camera feed, to make behavioral cloning practical for
this application. Through empirical results obtained with a Unity-
based AR simulator we designed and developed, we demonstrate
that user-specific policies can be learned both quickly and
accurately, even in the presence of noisy training examples. We
demonstrate that our approach adheres to the strict latency and
frame rate constraints of AR systems. By minimizing the volume
of data sent to the cloud, we help to preserve user privacy and
increase communication and learning efficiency.

Index Terms—Augmented reality, edge computing, behavioral
cloning, privacy.

I. INTRODUCTION

In augmented reality (AR), a layer of virtual content such as
text, video, and holograms is superimposed onto a user’s view
of the real world [1]. AR is seeing increasingly widespread
adoption across numerous domains and is projected to generate
billions of dollars in revenue within the next decade [2]. It is
expected by many to become the next big computing platform,
potentially as revolutionary as the personal computer and as
ubiquitous as the smartphone. Not only is AR permeating the
space of mobile devices [3], but fully immersive AR systems
– whether in the form of head-mounted displays (HMDs) [4],
[5], or AR-enhanced windshields for vehicles [6] – are also
becoming commercially viable. A grand vision for AR is a
smart city in which users can perceive real-time annotations
of roads, buildings, transportation systems, and even people
[7], [8]; see Figs. 1 and 2.

Challenges in AR. Current and future AR deployments face
a number of key challenges, which we summarize here as three
interconnected areas:

S. Ahn is with the Department of Electrical Engineering, Stanford Univer-
sity, Stanford, CA 94305, USA (e-mail: surinahn@stanford.edu). M. Gorlatova
is with the Department of Electrical and Computer Engineering, Duke
University, Durham, NC 27708, USA (e-mail: maria.gorlatova@duke.edu). P.
Naghizadeh and M. Chiang are with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907, USA (e-mails:
parinaz@purdue.edu, chiang@purdue.edu).

Fig. 1: Geographically dispersed local servers (such as fog
nodes) can help enable ubiquitous AR experiences in a smart
city setting, offering low-latency data processing capabilities
to a heterogeneous set of devices and applications.

1) Power and delay constraints. The graphical demands of
AR applications require significant power consumption. AR
experiences are also very sensitive to delay, and the presence
of lag in the processing of user interactions or virtual content
could have negative real-world implications [9], [10]. For
example, users could experience motion sickness in more
immersive scenarios, and in AR-enhanced driving situations,
delays in visual markers could result in navigation errors or
even accidents. Thus, enabling seamless and pervasive AR
experiences will require a networking infrastructure, such as
fog and edge computing architectures, that supports ultra low-
latency and resource-efficient data processing [11].

2) Security and privacy. A relatively new but growing area
of interest is the security and privacy of AR systems. As
these devices collect and analyze continuous streams of fine-
grained sensor data, including video, audio, accelerometer
readings, and user interactions with the environment, there is a
pressing need to regulate what can be seen and manipulated by
third parties such as cloud computing platforms [12]. From a
security standpoint, we also need to ensure that holograms
are presented to the user in a safe, non-distracting, and
unobstructive way [13], [14], [15]. These safety mechanisms
will become essential as AR-equipped vehicles and glasses
scale to wide-spread common-place commercial deployments.

3) Personalization. By virtue of their complex arrays of
sensors, actuators, and information processing capabilities, AR
systems are in many ways more intimately connected to users
than any devices before. To the best of our knowledge, there
is no existing literature on personalizing hologram placements
based on user preferences; the aforementioned works on
security and privacy do not consider ways to incorporate
user feedback into the resulting policies. We expect this
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Fig. 2: Concept image illustrating the potential of AR to merge
digital information with the real world.

kind of personalization to be necessary to accommodate a
heterogeneous population of AR users, especially those using
HMDs. Such users may differ in attributes such as height,
eyesight, or hand dominance, all of which may influence their
preferences for where holograms should be placed.

Our contributions. This paper advances the personaliza-
tion dimension of AR systems by developing a method to
automatically learn user preferences of hologram placements
using behavioral cloning, an autonomous imitation learning
technique, which has been employed successfully in several
different scenarios where a human expert’s demonstrations
can serve as valuable training data (e.g., autonomous ve-
hicles [16]). Moreover, we simultaneously address the first
two challenges by employing a light-weight architecture that
leverages the availability of local computational resources. Our
architecture is in particular consistent with fog computing [17],
a paradigm in which traditionally cloud-based data storage,
computation, communication and control can exist anywhere
along the continuum from the cloud to the end devices that
produce the data. By keeping the data processing closer to the
devices, we improve network latency, increase control over
who gets to see the information, and reduce the chance of
successful eavesdropping by an adversary [18].

The overall system, illustrated in Fig. 3, works as follows: in
the policy learning phase, a local server (such as a fog server)
sends simulated states of the environment to AR devices in the
vicinity. The users then respond with the actions they would
take in the given states. Using these traces of state-action pairs,
the local server generates a set of personalized policies via the
behavioral cloning algorithm. In the policy distribution and
execution phase, devices that are capable of running neural
networks can download policies from the local server. More
resource-poor devices can have the local server run policies
for them, by sending their real-world state and receiving the
recommended action from the server at each time step.

We make the following contributions in this paper:

• We propose a formalization of AR personalization as
a supervised learning problem, in which a set of holo-
gram placement policies are learned directly from user
demonstrations. We then present an algorithm to learn,
distribute, and execute these personalized policies across
a heterogeneous population of AR users and devices.
• We present an implementation of the AR personal-

Fig. 3: System diagram illustrating how a local server first
trains several policies using state-action pairs from nearby
devices, then either distributes these policies to powerful
devices or executes them on behalf of resource-poor devices.

ization algorithm in a Unity-based simulator we designed
and developed. Our results demonstrate the ability of our
algorithm to quickly and successfully learn users’ hologram
placement preferences, for both content-dependent and -
independent hologram placements, as well as its robustness
to noise and unreliability in user demonstrations.
• We examine system architecture considerations for the

proposed approach, and contrast it with some alternatives.
We estimate that even resource-poor AR devices that rely
on local servers to perform the feedforward function of the
policies at runtime are likely to achieve at least 60 frames
per second when using our method. We also elaborate on
the privacy benefits of our proposed architecture.
In Sect. III, we describe our method for learning user

preferences in AR. Sect. IV presents our experimental results.
Sect. V provides a discussion of system architecture consid-
erations. Sect. VI concludes the paper.

II. RELATED WORK

Personalizing content – e.g., news articles, ads – is the
norm in web applications, and has been studied in mobile
systems contexts as well [19], [20]. These approaches per-
sonalize the content of the digital experiences. In contrast,
in this work we personalize where holographic content is
placed. On cell phones and other small mobile devices, the
location of digital experiences is of limited importance. The
immersiveness of AR displays, on the other hand, brings about
multiple paradigm shifts in user experiences [15]. We argue
that in immersive experiences, personalizations are important
for user-friendliness, quality of experience, and safety of
diverse users.

Traditionally, hologram placements in AR are pre-
programmed and are not customized for the different users.
Broadly, our work can be seen as an example of using ad-
vanced machine learning algorithms to automatically generate
policies for decisions traditionally done via heuristics [21],
[22], [23]. For such techniques, it is important to find state
space representation that keep the problem tractable [22]. Our
approach to state space reduction is inspired by AR-specific
system abstractions developed in [14]. That work, however,
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focused on a different problem – securing AR outputs – and
on the development of fixed rules, rather than personalized
techniques.

The specific machine learning technique, behavioral
cloning, which we employ in this work, has seen great success
in several recent applications involving autonomous agents,
including quadrotors [24] and self-driving cars [16]. We are
unaware of previous work on using behavioral cloning for
enhancing AR experiences.

III. PERSONALIZED HOLOGRAM PLACEMENT

Toward the goal of making AR experiences more person-
alized, we propose using behavioral cloning to directly learn
a hologram placement policy based on user guidance. This
personalization can occur during the setup phase (or in the
device settings), when a user is first configuring or updating
his/her AR device. We begin with a brief overview of imitation
learning. We then formalize the AR personalization problem,
and present our solution based on behavioral cloning.

A. Imitation Learning Overview

In the standard reinforcement learning (RL) problem, an
agent is tasked with learning a desired behavior through
trial and error with the aid of a given reward function for
evaluating performance. However, what if we instead want
the agent to learn by observing an expert perform that task?
This is the main idea of imitation learning (also known as
apprenticeship learning or learning from demonstration [25]),
which is particularly useful if the reward function itself is
difficult to specify. More formally: given execution traces from
an expert, can we imitate the expert’s policy?

Behavioral cloning [26] is an approach to imitation learning
in which policies are estimated directly from a trace (i.e., a
set of demonstrations) of the expert’s policy π∗ : S → A
that maps states to actions, where S is the state space
and A is the action space. This trace is viewed as the
“training set,” and is represented as a sequence of state-
action pairs {(s0, a0), (s1, a1), (s2, a2), . . .}. Any supervised
learning method of choice can be applied to fit a model to the
data, e.g., neural networks, SVMs, decision trees, etc.1

B. Problem Formalization

We consider a scenario in which N users in close proximity
to one another are employing AR devices, which may be
mobile phones, HMDs, heads-up displays, or others. At each
time step t, suppose a nearby server (such as a fog server)
presents user i with a random, simulated environmental state
denoted by sit ∈ S, which may consist of the locations and
rotations of real-world and virtual objects, the sizes of their
bounding boxes, and features of the application content (e.g.,
category). Additionally, the local server may ask the user for
some specific attributes, such as height or eyesight, which can

1Another approach to imitation learning is inverse reinforcement learning
(IRL) [27], where the reward function R is learned based on samples of the
expert’s policy, and then used to generate an estimated policy. We focus on
behavioral cloning in this paper, and leave IRL to be explored in future work.

be incorporated into the state. In general, the server can gen-
erate these simulated states based on environmental context,
by incorporating statistics about the real-world environment
(e.g., locations, sizes, and frequencies of real-world objects
based on sensors or video feeds). These statistics can help the
local server create more realistic, context-specific simulations,
which can then improve the efficiency of training and accuracy
of the resulting policy.

User i then sends back its chosen action ait ∈ A, which
encodes how the user displaced the holograms from their
original positions. Thus, at each time step, the local server
collects N state-action pairs (sit, a

i
t), i = 1, . . . , N . Over some

period of time T , the local server collects T samples per user,
which forms a training set with N × T total examples:
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Here, each column of the training set gives the state-action
pairs of all users at a particular time step, and each row
gives the state-action pairs of a specific user during the entire
duration of training. In practice, the size of N depends on the
number of users typically in the vicinity of the local server
(ranging from one to hundreds). The number of demonstrations
per user on the other hand would depend on the complexity
of the environments/state spaces; for our experiments, we find
that T = 10− 20 suffices for good performance.

From this training data, the local server wishes to generate
a set of policies that closely mimic the users’ demonstrations.

C. Learning Policies with Behavioral Cloning

At this stage, the local server can do one of two things:
1) Assume that each user has sufficiently different place-

ment preferences, such that each row of the training set
can be viewed as a distinct trace di, i = 1, . . . , N . Then,
for each user, the local server can estimate a placement
policy πi based solely on di. This would generate a total
of N different policies.

2) Identify similar users, and merge their training data to
produce a joint policy. This approach has the benefit of
more efficient training due to distributed data collection
and aggregation. After this merging process, the local
server has K different training sets d1, d2, . . . , dK , K <
N , which lead to K different policies π1, π2, . . . , πK .

Regardless of which approach is used, each policy itself is
learned using supervised learning. In our work, we employ a
multi-layer neural network for function approximation, where
the input and output layers correspond to states and actions,
respectively. If approach (2) is used, we must identify a notion
of “similarity” and how it can be estimated by the local server.
A potential approach is for the local server to present the
users with identical states sti = st,∀i, for a subset of the
samples, and measure similarity based on the distance between
the users’ displaced holograms in these states.
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Algorithm 1 Learning Personalized Hologram Placements

1: procedure LEARNHOLOGRAMS
2: Input: Number of users N , horizon T
3: Output: Policies π1, π2, . . . , πK , where K ≤ N
4: Initialize: t← 0
5: While t < T :
6: Send out simulated states sit to users i = 1, . . . , N
7: Collect actions ait from users
8: t← t+ 1
9: End while

10: Generate K different policies from user demonstrations
(sit, a

i
t) using behavioral cloning

11: Return π1, π2, . . . , πK

Suppose the local server adopts the first approach. Then
each user i generates an individual training trace di by
providing a set of actions in response to the simulated states
sent from the server. A multi-layer neural network is used to
approximate a policy πi based on di. The learning method
is summarized in Algorithm 1. Note that the local server can
re-run this algorithm whenever new users enter the vicinity.

D. Distributing and Executing Policies

After the policies are learned, they are cached in the local
server and either distributed to users with more powerful AR
devices or run on behalf of resource-poor devices.

Powerful Devices. First, we consider the case where the
user’s AR device is powerful enough to run a policy (i.e.,
a multi-layer neural network) itself. For example, the next
iteration of Microsoft’s HoloLens will contain a dedicated
processor for implementing deep neural networks [28]. These
devices can simply download and run policies themselves,
thereby reducing reliance on (and communication costs from)
the local server. This approach is likely to improve frame rate,
as the device does not need to wait the round-trip time of
sending the environmental state and receiving an action from
a server in order to run a policy.

Recall that in the policy learning phase, the local server
sends the user a set of simulated states meant to capture the
dynamics of the local environment. In the execution phase,
however, the AR device must compute its own state based on
what it observes in real time. From the device’s raw video
stream, it must extract the relevant features of the state using
real-time image processing techniques such as the popular
YOLO object detection algorithm [29] or the HoloLens’s
spatial mapping functionality.

Resource-Constrained Devices. If resource constraints pre-
vent an AR device from running the policy itself (e.g.,
smartphones or low-power HMDs), then the local server can
compute the policy output based on the state sent from the
device. As a consequence, the device must communicate much
more frequently with the local server to send states and receive
corresponding actions over the network. As with powerful AR
devices, image processing techniques will likely be required
to compute the state. However, for especially resource-poor
devices, raw images will have to be offloaded to the local

TABLE I: Behavioral cloning hyperparameters in the experi-
ments.

Parameter Value
Batch size 16
Batches per epoch 5
β 5× 10−3

ε 0.2
Number of hidden layers 4
Hidden units 64
Learning rate 3× 10−4

Max steps 3× 104

Number of epochs 3
Time horizon 64

server or another edge node to be processed first. Edge-based
offloading of deep learning for video applications has been
explored in [11] and similar works.

IV. EVALUATION

Using an AR simulator that we implemented, we first
demonstrate that relatively few user demonstrations suffice
to generate a policy which accurately captures the user’s
preferences. We next show that, by incorporating additional
features about the application content into the policy state,
the local server can learn where users prefer to place certain
categories of holograms. Even in the presence of noise and
unreliability in the user demonstrations, the learning process
remains fairly robust. Finally, by reducing the dimensionality
of the state space from a full image to carefully chosen
features, we preserve user privacy, reduce training time, and
minimize communication costs.

A. Evaluation Setup

Our local server has an Intel Core i7-7700K CPU @ 4.20
GHz, 16 GB of RAM, and an NVIDIA GeForce GTX 1070
graphics card with 8 GB of RAM and 1920 CUDA cores.

Using the Unity game engine, a platform commonly used to
create AR experiences, we built an AR simulator with C# that
randomly generates holograms (represented as colored tiles
to resemble applications) in a virtual HMD-like experience.
A large sign reading “Important Real Object” is placed in the
center of the environment both to serve as part of the state and
to remind the viewer that anything other than the holograms
constitutes the “simulated real world.”

On top of the AR simulator, we implemented the behavioral
cloning algorithm with a multi-layer neural network using the
Unity Machine Learning Agents Toolkit [30]. There are two
key components to behavioral cloning in this implementation:

1) Teacher agent: The agent controlled by the user, who
provides a state-action pair at every video frame, which
is then broadcast to the student agent. The complete
trace of state-action pairs serves as the training set (full
demonstration).

2) Student agent: The completely autonomous agent that
observes and tries to learn from the teacher agent’s
(user’s) demonstrations. The student agent updates its
policy as new demonstrations are provided.

We modified our AR simulator to be split-screen, such that
during the learning phase, the user can provide demonstrations
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(a)

(b)

Fig. 4: Two examples of behavioral cloning. In each example,
the left screen shows the user-controlled hologram, while the
right screen shows the student agent-controlled hologram. The
bright pink trail is the hologram’s trajectory.

(a) (b)

Fig. 5: Birds-eye view of the examples given in Fig. 4. The
agent learns both the preferred final position of the holograms,
as well as the trajectory taken by the user.

on the left screen while simultaneously viewing the student
agent’s progress on the right.

At the beginning of each trial (i.e., user demonstration) in
the learning phase, a hologram of random size and color is
placed in a random initial location in the simulated environ-
ment and presented to the user as though he/she is looking
through an HMD. The user uses the keyboard to reposition
the hologram as desired. From these demonstrations, the agent
estimates a policy (represented as a neural network) that best
estimates the user’s behavior. After 500 frames have elapsed,
the environment is reset and a new trial begins.

We employed a standard neural network architecture for be-
havioral cloning, in which an input layer takes a feature vector
representing the state of the environment, feeds this through
four hidden layers, and produces at the output layer an action
vector indicating how the holograms should be displaced from
their current positions. Table I lists other hyperparameters that
were used in training. Since the “max steps” parameter was
set to 3× 104 frames, and each user demonstration lasts 500
frames, a complete training set comprises a total of 60 user
demonstrations. In each of the following experiments, we ran
50 full training sessions, which is equivalent to training 50
independent and identical agents in the same environment.

B. Content-Independent Hologram Placement

We first show that the student agent is able to learn the
user’s placement preference of a single hologram, independent
of the application’s content. That is, the agent’s goal is simply
to mimic the way in which the user moves around a hologram
from arbitrary initial positions in the environment. The state
of the environment at every video frame is given by the
coordinates of the hologram and real-world object, and the
size of their bounding boxes. Including features of real-world
objects in the state is important because users may have
different placement preferences depending on how real objects
are configured. The action vector indicates how much to move
the hologram along the x, y, and z directions.

Qualitative comparisons between the user and agent holo-
gram placements are given in Fig. 4. Observe that the agent
is not only able to learn the preferred final position of the
holograms, but also the physical trajectory taken by the user.
The full training session was ≈ 7 minutes; but the agent’s
actions began to closely match those of the user in much less
than the allotted time. Furthermore, we see in Fig. 5, which
depicts the birds-eye view of the examples given in Fig. 4,
how the size of the hologram bounding box comes into play:
the agent learns that the user prefers smaller holograms to be
placed closer to them, to maintain a similar level of visibility
as a larger hologram. A particularly useful benefit of this is
that the agent can adapt to users with different strengths of
eyesight.

To provide a more quantitative analysis of learning ability,
we defined a deterministic (noiseless) function for controlling
the behavior of the teacher agent. Given an initial hologram
position selected by the AR content generator, and a target
destination representing the user’s preferred final position, the
teacher agent moves the hologram in a perfectly straight line
from start to finish.

We collected data on 50 training sessions, each with 60
demonstrations from the teacher agent. At the end of each
demonstration, we recorded the final destinations of both
the teacher agent’s and student agent’s holograms. Fig. 6
shows these destinations for all 50 training sessions, at the
beginning, middle, and end of training. The policies estimated
by the student agent early in training occasionally yield actions
that deviate widely from the target. However, as more user
demonstrations from the teacher are provided, the student
agent’s accuracy and precision improve.

The metric we use to assess the performance of the student
agent is the distance between its hologram and the teacher
agent’s hologram at the end of each trial. Fig. 7 shows
the median and mean (with standard error) of this metric
over the duration of training. Overall, the agent’s actions
converge quickly to the target, but with high variability near
the beginning of training. A couple of outliers around the 30-
40 demonstration mark result in high standard error.

Fig. 8 shows the empirical cumulative distribution function
(CDF) of the number of demonstrations needed for the student
agent’s hologram to converge to the target destination. Here,
we define convergence to have occurred when the agent
moves the hologram to a specified radius threshold (in meters)
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(a) 1 demo (b) 20 demos (c) 40 demos

Fig. 6: Content-independent hologram destinations at the beginning, middle, and end of training, shown for 50 training sessions.
The green circles represent the hologram destinations chosen by the agent, while the red circle represents the target destination.
As more user demonstrations from the teacher are provided, the student agent’s accuracy and precision improve.

(a) Median (b) Mean
Fig. 7: Median and mean distances between the agent-
positioned hologram and the target in the content-independent
case, over 50 training sessions. The agent’s actions converge
quickly, but with high variability in the beginning of training.

Fig. 8: Content-independent empirical CDF of user demos
required for the agent to converge to the target. Convergence
occurs in ≤ 10 demos w.p. ≥ 80% for all three thresholds.

from the target, three consecutive times. For the strictest
threshold shown (0.45 meters), the policy converges in under
10 demonstrations more than 80% of the time. Successively
looser thresholds lead to faster convergence times.

C. Content-Dependent Hologram Placement

We next test the student agent’s learning ability when
features of the hologram content are included in the state.
The motivation is that users may prefer having different
types of applications (e.g., email or navigation) in different
positions in the environment. In our AR simulator, we use the
hologram’s color to represent its application category. This
color is then encoded as an integer in the environmental state.
Our experiment uses two different categories, represented by
red and blue, and we apply a deterministic function that moves

holograms in a straight line to one of two separate target
destinations (depending on the hologram’s color).

We generate a similar set of figures to those in the previous
experiments. Fig. 9 shows the student agent-driven destinations
of the blue and red holograms at three different points in the
training process. Early on, the student agent drives most of the
holograms to the correct target, with a few misclassifications.
However, even as early as 13 demos, the agent achieves full
accuracy. Policy convergence is demonstrated in Figs. 10 and
11. Convergence is again defined with respect to a distance
threshold from the correct target.

D. Learning in the Presence of Noise

In practice, slightly inconsistent or noisy user actions are
inevitable. We showed qualitatively in Figs. 4 and 5 that the
agent is able to closely match the overall trajectory of the
user’s hologram. In those experiments, the user was an actual
person whose demonstrations were inherently noisy.

We further investigate learnability in the presence of noisy
demonstrations by modifying the deterministic function used
in the previous experiments. The teacher agent first computes
the straight-line trajectory from the hologram’s initial position
to the target destination (as usual), but uniformly random noise
in the range [−0.05, 0.05] meters is added along the x, y
and z directions to the original action vector in each video
frame. Examples from training in the content-independent
and content-dependent cases are shown in Figs. 12 and 13,
respectively. In both cases, the agent’s hologram placements at
the beginning of training exhibit noticeably higher variability.
Ultimately, however, the destinations converge to the correct
target (with the exception of one data point in each figure,
which lies slightly outside of the target).

E. Benefits of Dimensionally Reduced State Space

Many current AR and video applications require entire
image frames to be offloaded to an external cloud service.
Our behavioral cloning approach, in contrast, uses a reduced,
feature-based state vector that constitutes a small portion
of the environment’s overall complexity, but still captures
an adequate amount of information for the student agent to
learn properly (as supported by the previous experiments). We
sought to investigate the effect of using the full image as the
state on the training time and policy accuracy.

6



(a) 4 demos (b) 6 demos (c) 13 demos

Fig. 9: Content-dependent hologram destinations at three different stages of the learning process. The color of the circles and
dots corresponds to the application category. Even as early as 13 demos, the agent achieves full accuracy.

(a) Median (b) Mean

Fig. 10: Median and mean distances between the agent-
positioned hologram and the target in the content-dependent
case. Again, learning converges quickly, but has high variabil-
ity in the beginning of training.

Fig. 11: Content-dependent empirical CDF. Convergence oc-
curs in ≤ 15 demos w.p. ≥ 80% for all three thresholds.

(a) 1 demo (b) 60 demos

Fig. 12: Content-independent learning with noise.

(a) 2 demos (b) 60 demos

Fig. 13: Content-dependent learning with noise.

Fig. 14: Hologram destinations after 12 trials when using the
full AR image as the state, in lieu of select features. Compared
to Fig. 9 there is a clear degradation in accuracy.

We configured the Unity AR simulator to obtain the state in
each frame by converting what is seen by the agent’s camera
into a Texture2D object (essentially an image) of size
460×315. The student agent was tasked with learning content-
dependent hologram placements from noiseless demonstra-
tions. Everything except for the state representation was kept
identical to the previous content-dependent experiments.

Over the course of 3 hours, only 12 demonstrations were
completed for a single agent. This rate of training is pro-
hibitively slow – about 8 times longer than using the reduced
state space. After 12 trials were completed, the training
system crashed from a memory error. Fig. 14 plots all of the
destination data that was collected. When compared to Figs. 9
and 13, there is a clear degradation in hologram accuracy and
precision – none of the agent’s 12 attempts landed within one
of the target circles, let alone within the correct one for the
application category. Thus, a reduced state representation we
have employed in this work can help reduce training time,
minimize communication costs (with respect to both time and
energy), and facilitate privacy preservation, all without loss of
policy performance.

V. SYSTEM ARCHITECTURE CONSIDERATIONS

This section discusses the use of local servers, the expected
communication costs, and privacy considerations for person-
alized AR experiences.

A. Local servers and AR

Local servers, e.g., fog and edge computing nodes, have
been proposed as an aid to AR by many researchers [11],
[31]. In particular, the latency demands of AR make fog/edge
computing an attractive alternative to more geographically
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distant cloud services [9]. Our methods can be integrated
within a fog computing architecture.

Specifically, the Microsoft HoloLens developer guidelines
state that a steady 60 FPS must be maintained to create an ideal
AR experience [32]. In terms of latency, this is equivalent to
the operating system receiving a new video frame (i.e., image)
every 16 ms. For games and other immersive applications, it
is crucial to have latencies under 20 ms [10]. We argue that
our approach to personalized AR experiences adheres to these
strict performance requirements, as detailed below.

B. Communication Costs

1) Policy Learning Phase: In the learning phase, commu-
nication costs are incurred by the transfer of state and action
information between the user and the local server. Suppose
each state and action is encoded as an n- and m-dimensional
vector of 32-bit floats, respectively. Then at each time step,
the local server sends 32 · n · N bits for the N total states
sent to the users. The server also receives 32 · m · N bits
for the actions returned by the users. Thus, in total, the
communication cost of the learning phase is 32 ·N · (n+m)
bits per time step. Assuming the dimensions of the state and
action spaces are similar (i.e., n ≈ m), then there is roughly
symmetrical utilization of the downlink and uplink data rates.
This is in contrast to the asymmetric link utilization that is
typical of most AR scenarios (in which more data is offloaded
rather than downloaded by the AR device). The learning phase
communications are not delay-sensitive. Traditional content
transfer protocols fully satisfy the requirements of this phase.

2) Policy Distribution and Execution Phase: After the
learning phase is complete, the degree of subsequent com-
munication costs depends on the computational resources
available to the AR device.

To gauge the complexity of policies generated with our
approach, we draw a comparison to YOLO [29]. The standard
YOLO architecture uses 24 convolutional layers and 2 fully
connected layers. A smaller Fast YOLO architecture uses
a neural network with fewer convolutional layers (9 rather
than 24). YOLO maintains 45 FPS on average, while Fast
YOLO maintains 155 FPS. In contrast, our neural network
architecture – with only an input layer, 4 hidden layers, and
an output layer – is much simpler than YOLO’s. Moreover,
we use select features of the environmental state as the input
vector, rather than the entire image (as YOLO does). From
our experiments in Sect. IV, we also find that the typical
policy file size is 58 KB for a simple environment. Thus, the
main limiting factor of our approach in most cases will be
communication, rather than computation.

Powerful Devices. In this case, the device needs to down-
load the policy from the local server only once, at initializa-
tion; so the communication cost is limited to the size of the
policy. This is akin to installing an app on a device.

Resource-Constrained Devices. We analyze the communi-
cation costs of having the local server perform the feedforward
function of the policies at runtime, on behalf of the devices.

We measured ICMP ping round-trip time between nodes
located in different places with respect to one another, with

nodes connected over WiFi. The median round-trip latencies
ranged from 0.9 ms for the devices located in the same room
to 2.3 ms for the devices located in the same building to 16 ms
between a fog node located on campus and a device located a
couple of miles away. Similar latencies were observed in prior
studies as well [31].

In a smart city setting, it is therefore reasonable to assume
that the round-trip latency between AR devices and a nearby
server is ≈ between 2 ms and 16 ms. The remaining latency
is due to running the policy itself on the local server. Using
the neural network policies generated in our experiments, as
described in Sect. IV, we found the policy execution time to
be negligible (on the order of microseconds) for a relatively
sparse environment. We can then estimate the total latency
for an AR device to send its state and receive an action from
the server to be 2 ms - 16 ms. Thus, even a resource-poor
AR device is likely to achieve at least 60 FPS. For more
complex environments with high-dimensional state and action
spaces, the overall latency is still expected to be well within
that required for a seamless AR experience.

However, the overall frame rate could be rate-limited by
image processing techniques that may exist earlier in the
pipeline. For example, if the full version of YOLO is used
to extract features from the AR device’s video stream, then
the frame rate may be limited to roughly 45 FPS. This can be
mitigated by using Fast YOLO or another simpler algorithm.

C. Privacy Considerations

Our behavioral cloning approach to hologram personal-
ization applies the principles of focused collection and data
minimization proposed by the White House in 2012 [33]. The
main idea is that only what needs to be collected should be
collected. This notion is especially pertinent in AR, where the
common practice is to offload raw video streams and other
sensor data to the cloud for processing, which may compro-
mise the privacy of both the user and nearby people who are
unknowingly tracked by these sensors. For the purposes of
personalized hologram placement, we argue that less is more:
by limiting the state space to only what is necessary to generate
policies, we preserve user privacy, improve learning speed, and
minimize storage and communication costs.

There is also an inherent tradeoff between personalization
and privacy preservation, as fitting a policy to a user’s prefer-
ences requires access to potentially private information.

Our approach helps preserve privacy by keeping the sensi-
tive data closer to users (i.e., either on a local server or on their
personal devices). In this setting, if an adversary wants to per-
form an attack, it has to target specific local servers or devices,
each of which contains only a small portion of the overall data.
In contrast, using a centralized cloud service would place all
users in a vulnerable position. So, even if certain applications
call for entire images to be offloaded to enable learning,
the data would be distributed across multiple nodes in our
approach, limiting privacy loss compared to centralized data
collection. Similar edge-based learning solutions have been
recently proposed for personalized recommendation [20], and
activity recognition and topic identification tasks [34].
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A potential drawback of this approach is the limited amount
of data available locally per user. In these scenarios, our batch-
training (similarity-based) approach provides a collaborative
personalized model training solution: a trusted shared server
can be used by a group of users with similar interests for
privacy-preserving training, acting as a middle ground between
the cloud-level and device-level training alternatives.

VI. CONCLUSIONS

We proposed an (edge-based) behavioral cloning approach
to the new area of AR personalization. By using a reduced
state space that captures only the necessary features of the
user’s perspective to send to a local server for learning, the ap-
proach offers many benefits such as privacy preservation, faster
training time, and low-cost communication. Our empirical
results demonstrate that an autonomous agent can quickly and
accurately learn a user’s preferences for hologram placements
(in both the content-independent and -dependent cases), even
in the presence of noisy demonstrations.
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