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Abstract—We study a multi-agent partially observable environ-
ment in which autonomous agents aim to coordinate their actions,
while also learning the parameters of the unknown environment
through repeated interactions. In particular, we focus on the
role of communication in a multi-agent reinforcement learning
problem. We consider a learning algorithm in which agents make
decisions based on their own observations of the environment,
as well as the observations of other agents, which are collected
through communication between agents. We first identify two
potential benefits of this type of information sharing when
agents’ observation quality is heterogeneous: (1) it can facilitate
coordination among agents, and (2) it can enhance the learning
of all participants, including the better informed agents. We
show however that these benefits of communication depend in
general on its timing, so that delayed information sharing may
be preferred in certain scenarios.

Index Terms—Multi-agent reinforcement learning, information
sharing, cooperative games.

I. INTRODUCTION

The study of decentralized decision making under uncer-
tainty by multiple autonomous agents arises in a wide variety
of applications, including in wireless and telecommunication
networks (e.g., opportunistic spectrum access, dynamic re-
source allocation), management of the smart grid and elec-
tricity markets, the operation of cyber-physical systems, and
in a variety of other physical, social, and economic networks
[1]–[7]. In these scenarios, the outcomes experienced by each
agent is affected not only by their own decisions, but also by
the actions taken by (a subset) of other agents in the system.

An instance of practical interest in these problems is when
agents are willing to collaborate in order to achieve a common
goal; these are referred to as cooperative games. In these
environments, the literature has identified communication or
information sharing as a way to facilitate coordination among
agents, so that they can collaborate on reaching a shared goal.
Examples include the study of communication for multi-robot
formation control [5], autonomous vehicle coordination [6],
and control of microgrids [4]. These works identify optimal
communication schemes, agents’ strategies, and the benefits
of information sharing, under the assumption of some a priori
knowledge about the environment and/or its dynamics.

However, the rise of self-organizing multi-agent systems in
fully unknown environments, such as those arising in edge
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computing applications, has introduced an additional challenge
for multi-agent systems. In particular, even in the absence of
coordination problems, agents face the additional challenge
of learning to act in the a priori unknown environment. For
instance, a fleet of drones deployed for monitoring climate
change [8] or for anti-poaching efforts in a wildlife area [9],
or a team of disaster relief robots [10], will not only need
to coordinate with one another, but at the same time need to
learn features of the unknown environment in which they are
deployed. The problem of learning to act through repeated
interactions with an unknown environment, in the presence of
other agents, is the subject of the multi-agent reinforcement
learning literature; see [11] for a survey.

In this paper, we study the problem of multi-agent rein-
forcement learning in cooperative environments, and aim to
analytically evaluate the effects of information sharing on both
the coordination and learning of the agents. We are partic-
ularly interested in the role of communication when agents
have heterogeneous capabilities in assessing their shared en-
vironment. This is motivated by the possible heterogeneity
in agents’ platforms; for instance, an agent might have a
less accurate perception of the environment due to having
weaker sensors, energy constraints, or limited storage. Such
heterogeneity would be the case in fog computing [12]–[14],
for example, where powerful cloud services and resource-
limited edge nodes cooperate to assess the environment.

Specifically, we consider a collaborative, binary, partially
observable environment, in which two agents receive indepen-
dent observations about the state of the world. We assume that
one of the agents is better informed, i.e., it makes an accurate
observation of the true state of the environment. We analyze
how enabling the sharing of these independent observations of
differing quality between agents affects their decision making
and learning.

We consider learning through a multi-agent version of the
REINFORCE algorithm [15], which is a special case of actor-
critic algorithms [16], [17], by extending it to incorporate
communication between agents. The idea of using inter-agent
communication for better learning has also been recently
studied empirically in [18]–[20]. These works have proposed
deep reinforcement learning methods based on actor-critic
algorithms for multi-agent learning problems, with either
policy parameter sharing [18] or full experience sharing [19],
[20], and evaluate the performance of the resulting learning
algorithms through empirical analysis. Our work, which only



requires sharing of environmental observations, provides a
formal analysis of the various aspects in which communica-
tion can benefit agents, and more importantly, identifies its
potential drawbacks, in multi-agent reinforcement learning.

Our contributions: We identify two potential benefits
of communication in these multi-agent systems. First, the
instantaneous effect of communication is to enable better
coordination among the agents in reaching their collaborative
goal. This effect is in line with that commonly identified in
the existing literature on multi-agent decision making.

Moreover, we identify a forward effect of communication,
as it relates to agents’ learning: we show that communi-
cation can also improve the learning of both agents. Such
improvement may be expected in the less informed agent’s
learning, as the quality of information available to this agent
improves through communication. More interestingly, our
analysis shows that the learning of the informed agent also
improves, even though communication does not affect the
quality of the information available to this agent. That is,
agents can benefit even if communication does not provide
them with additional information. Intuitively, this finding can
be explained as follows: by aiding the learning of another
less informed agent, and given the collaborative nature of the
agents’ goal, an informed agent can collect more “informative”
sample trajectories during its repeated interactions with the
environment, hence enhancing its learning. Our analysis thus
elaborates on the coupling between the agents’ coordination
and learning tasks in collaborative multi-agent environments.

We then show that the realization of the two identified ben-
efits from communication will in general depend on its timing,
and more specifically, on the agents’ policy initialization. In
particular, depending on the initialization of agents’ policy
parameters, communication in earlier stages of the game may
in fact decrease the likelihood of agents’ coordination and
deter agents from learning. In these scenarios, and especially
when agents are more shortsighted (i.e., place higher value on
their immediate rewards), delayed information sharing may
be preferred. We illustrate our findings through numerical
examples.

Our main contributions can be summarized as follows:
• We show that the potential benefits of communication

in multi-agent systems are in general two-fold: it not
only facilitates coordination, but can further enhance the
learning of both informed and less informed agents.

• We show that the realization of these benefits from
communication is dependent on its timing: communica-
tion in earlier stages of the game may in fact hinder
both coordination and agents’ learning, making delayed
communication preferable.

• We identify the parameters affecting the optimal timing
of communication, including the policy initializations, the
agents’ patience, and the quality of the agents’ indepen-
dent observations.

The remainder of the paper is organized as follows. We
present the model for the environment in Section II, followed
by the multi-agent learning algorithm in Section III. Section

IV analyzes the potential benefits of communication. Section
V illustrates the effects of communication timing. We validate
our results through numerical studies in Section VI, and con-
clude with a discussion of some implications of our findings
in Section VII.

II. MODEL AND PRELIMINARIES

A. The POMDP environment

We consider a multi-agent Partially Observable Markov
Decision Process (POMDP) in which N agents take actions
over an infinite time horizon t = {1, 2, . . .}. We begin
by introducing the general model, followed by the specific
parameters used in establishing our analytical results.

In general, a POMDP (N ,A,S, p,O,q, r, δ) is determined
by the following elements:

Agents: A set of agents N interact with one another, and
with the environment.

Actions: At time t, each agent i ∈ N takes an action ait ∈
Ai, where Ai denotes the agent’s discrete action space. Let
at = {a1t, . . . , aNt} denote the vector of joint actions of all
agents at time t, and A := A1 × · · · × AN denote the joint
action space.

States: The underlying environment evolves according to
a Markov Decision Process (MDP) with a finite state space
S = {s1, . . . , sm}. The state of the MDP at time t is denoted
st ∈ S. Following agents’ actions a ∈ A, the environment will
transition from state s to s′ according to a transition probability
p : S × A → Π(S). Denote p(s′, s,a) := P (st+1 = s′|st =
s,at = a).

Observations: In a POMDP, the state of the environment is
not directly observed by the agents; rather, each agent i has
a private observation or belief about st, denoted oit. These
private observations are generated according to an observation
function qi : S → O, where O denotes the finite set of all
possible observations. Denote qi(o, s) := P (oit = o|st = s).
We assume that the private observations {oit,∀i} are indepen-
dent across agents. Note also that the observation functions qi
are agent-dependent, so that the accuracy of the observations
can vary across agents.

Rewards: Each agent i collects a reward rit at each time t.
The reward is determined by the reward function ri : S×A →
R, which depends on the current state, as well as the choice
of actions of all users. All agents discount future rewards by
a factor δ. The discounted long run reward of agent i will be
given by Ri :=

∑
t δ
trit. Each agent’s goal is to maximize its

own expected long-run reward E[Ri].
Based on the above definition, we observe that as the agents’

rewards depend not only on the state of the environment and
their own actions, but also on the actions of other agents,
the POMDP can be viewed as an N -person game among the
agents. The type of this game will be determined by the rela-
tion between the agents’ reward functions. In particular, two
special cases that are commonly of interest include cooperative
(ri = r, ∀i) and competitive or zero-sum (r1 = −r2) games.
More generally, any environment in which ri 6= rj for at
least one pair of agents i, j is referred to as a non-cooperative



game. In this paper, our focus is on cooperative environments;
the study of communication in non-cooperative games is an
interesting direction of future work.

B. The collaborative binary POMDP

For concreteness, we will evaluate the effects of com-
munication in the following POMDP. We will focus on an
N = 2 agent cooperative environment with two states, two
observations, and two actions.1

Specifically, we consider two agents, i ∈ N = {1, 2},
selecting one of two possible actions ait ∈ A = {0, 1}
at each time step t. They interact in an environment with
states st ∈ S = {−1, 1}, and each obtain an observation
oit ∈ O = {−1, 1} of the state at each time step t.

To model heterogeneity in agents’ observations, we let agent
1 be the more informed agent. In particular, we will proceed
with the analysis under the following assumption. We let agent
1 be fully informed, i.e. q1(o1 = s, s) = 1 for all s. On the
other hand, agent 2 is only partially informed, with q2(o2 =
s, s2 = s) = β < 1.2 Finally, the fact that agent 1 is better
informed is common knowledge between the agents.

Following agents’ actions, we let the rewards be given by
ri(s = 1, a1 = 1, a2 = 1) = 1 and ri(s = −1, a1 = 0, a2 =
0) = 1, for all i, with the remaining rewards being zero.
Therefore, it is beneficial for the agents to coordinate (so as
to take the same action) with the right coordination actions
dependent on the current state (hence the need for learning).
Finally, for the state transition probabilities, we assume the
state will self-transition when agents correctly coordinate,
but transition to the other state under other combinations of
actions. That is, we let p(s′ = 1, s = 1, a1 = 1, a2 = 1) = 1
and p(s′ = −1, s = −1, a1 = 0, a2 = 0) = 1.

III. THE MULTI-AGENT REINFORCE ALGORITHM

A. Multi-agent reinforcement learning

Each agent’s goal when interacting with the POMDP en-
vironment is to choose her actions so as to maximize her
expected long run reward E[Ri]. The choice of actions is
determined by the agent’s policy. Specifically, an agent’s
(stochastic) policy πi : O → Π(Ai) maps her private
observation of the current state of the environment to the
probability of selecting each action. If all of the environments’
parameters where known to the agents, they could solve for
the optimal policy using dynamic programming methods, and
behave accordingly.

Nevertheless, when the environment is unknown to the
agents, each agent only has access to her own rewards and
private observations, collected through repeated interactions
with the environment, while all else in unknown. These
scenarios are the focus of the reinforcement learning (RL)
literature. This literature studies how an agent should learn to

1All restrictions of the size of the environment are without loss of generality
to the obtained results, and are adopted to simplify the exposition. In
particular, the extension to N agents is possible at the expense of additional
notational complexity, and can be found in the online appendix [21].

2We will assume, without loss of generality, that β ≥ 0.5.

act in such unknown environments, by using RL algorithms
which repeatedly take the outcomes attained by following the
agent’s current policy as input, and output an updated policy
accordingly. More generally, the multi-agent reinforcement
learning literature (MARL) studies this problem in the setting
where multiple agents simultaneously interact and learn their
optimal polices in an unknown environment.

Here, following the literature on policy iteration in rein-
forcement learning, we assume that the agents choose the
general form of their policies from a parameterized set
{π(a|o, θ)}, with the choice of parameter θ determining an
agent’s specific policy. In this approach, the policy updates
can be done by adjusting only the parameter of the policy.

In particular, for the RL algorithm used by the agents,
we will consider the well-known REINFORCE algorithm of
[15]. REINFORCE, which is often considered a special case
of actor-critic algorithms [16], [17], was originally proposed
for single-agent reinforcement learning problems. Here, we
present a variant with extension to multi-agent environments
which incorporates communication.

B. The REINFORCE algorithm
We consider the episodic REINFORCE algorithm [15],

also known as the Monte Carlo policy gradient algorithm
[22], in which agents update the parameter of their policy
based on their interactions with the environment over multiple
episodes. Specifically, in an episode of length T , the agent
uses her current policy to collect a set of observations, actions,
and rewards {oi, ai, ri}Ti=1, and then runs the REINFORCE
algorithm to update the parameter of her policy.

The update after the conclusion of each episode is as
follows. Let Jθi = Es∼πθ,a∼πθ

[Ri] be the expected reward of
agent i with respect to the state and action distribution realiza-
tions under a policy parametrized by θ. In the REINFORCE
algorithm, agents use gradient ascent to update their policy
parameter θi in the direction of the gradient of this reward.
The policy gradient theorem [16] states that this gradient can
be approximated by,

∇θJθi ∝ Eπθ
[∇θ log π(a|o, θ)

T∑
l=t

δl−tril] . (1)

Therefore, using gradient ascent, the updated parameter at time
t+ 1 will be given by,

θi(t+1) = θit + α∇θJθit , (2)

where α is the learning rate.3 The steps of the algorithm are
outlined in Algorithm 1.

For the parametrized family of policies {πθ} to be used
in our proposed POMDP, we will assume that agents are
Bernoulli-logistic units.4 This family is defined as follows:

3Throughout, we assume that the step size α is chosen appropriately to
guarantee convergence.

4The choice between different policy parametrization options can be a way
to inject prior knowledge in the learning algorithm. In particular, for the
binary POMDP of Section II-B, the family of Bernoulli-logistic policies is
particularly suitable as it closely approximates the optimal policy for large θ.
We will further set the bias term of the units to zero for simplicity.



Algorithm 1 The Monte-Carlo policy gradient (REINFORCE)
algorithm

function REINFORCE
Initialize θi arbitrarily

for each episode {oit, ait, rit}Tt=1 ∼ π(·|·, θi) do
for t = 1 : T do

θi ← θi + α∇θ log π(ait|oit, θi)
∑T
l=t δ

l−tril
end for

end for
return θi
end function

given the current parameter θit in agent i’s policy, she chooses
her action ait with the following probabilities:

πθit(ait|oit) =

{
1

1+e−θitoit
for ait = 1,

e−θitoit

1+e−θitoit
for ait = 0.

(3)

For this class of policies, using the policy gradient theorem,
the change in the policy parameter in the REINFORCE
algorithm following step t is given by,

∆θit = αEπ[

T∑
l=t

δl−tril ·

{
oite

−θitoit

1+e−θitoit
for ait = 1

−oit
1+e−θitoit

for ait = 0
] . (4)

To extend the above algorithm to multi-agent settings with
communication, we assume that agents have access to a
communication channel through which they can share their
private observations with one another, and update the input to
their policy according to the shared information.5

More specifically, for the environment of Section II-B, given
our assumption that agent 1 is fully informed, she will have
the ability to share any desired level of information with agent
2. Given that agent 2 is only partially informed, combined
with the cooperative nature of the game, a natural conjecture
is that full information sharing and adoption will lead to a
Nash equilibrium of the cooperative game. Specifically, we
may expect that agent 1 will fully share her state observation
with agent 2, and agent 2 will discard his own observation and
substitute agent 1’s communicated observation as an input to
his policy instead of his own observation.

In the next section, we show that the above can indeed be an
equilibrium under an assumption on the initializations of the
policies’ parameters. We show how this equilibrium improves
upon the outcomes from the default equilibrium in which
agents learn independently. Through this analysis, we identify
the benefits of communication in terms of both facilitating
coordination and improving agents’ learning.

IV. BENEFITS OF COMMUNICATION: COORDINATION AND
LEARNING

Consider the POMDP of Section II-B when agents learn
using the REINFORCE algorithm of III-B. To find conditions

5Availability of a single communication channel entails public commu-
nication. Assuming pairwise communication channels which enable private
communication may be of interest, but as our results show, will yield the
same outcomes in cooperative environments.

under which full information sharing and adoption can be a
Nash equilibrium in this setting, we need to evaluate the bene-
fits of following the equilibrium strategies for both agents. We
separate the analysis based on the instantaneous (current stage)
and forward (long-run) effects of the shared information.

A. Instantaneous effect: improved coordination

The immediate effect of sharing information can be seen in
the agents’ expected instantaneous reward. Our first proposi-
tion formally analyzes this effect.

Proposition 1 (Information sharing aids coordination).
Agents’ expected (instantaneous) reward at time t is increasing
in the information shared at time t if and only if agent 2’s
policy’s parameter at time t is non-negative, i.e., θ2t ≥ 0.
In particular, when θ2t ≥ 0, full information sharing by the
informed agent, and full adoption by the less informed agent,
will lead to the most increase in the instantaneous reward.

The proof is given in the appendix. This result is intuitively
interpreted as follows. Sharing of information from a more
informed agent 1 to the less informed agent 2, and the adoption
of this information by agent 2, will lead agent 2 to choose his
action according to the correct state of the environment. This
will lead to an increase in the expected reward from the current
state if and only if the current policy of agent 2 is such that he
is choosing the optimal action with higher frequency. In the
POMDP of Section II-B, this is equivalent to having θ2t ≥ 0.

In particular, one may envision scenarios in which the
informed agent would be better off when delaying information
sharing, so that the policy parameters have been improved
over their random initialization, and therefore sharing of
information can aid correct coordination. We elaborate on this
effect further in Section V.

It is also worth noting that the statement of Proposition
1 is independent of the informed agent’s policy parameter.
This is expected as the sharing of information does not affect
the informed agent’s choice of action in the current step.
Nonetheless, as we show in the next section, sharing of
information will affect the choice of actions by the informed
agent in future steps.

B. Forward effect: improved learning

The arguments presented above account only for the effects
of the shared information on the agents’ current reward, but
not on the future behavior of the agents. In this section, we
show that the shared information will affect the parameter
updates of both agents, and consequently, all future rewards.
More specifically, if communication between agents occurs
at a time 1 ≤ tc ≤ T during an episode, the collected
traces {oit, ait, rt}Tt=tc , and the REINFORCE updates at the
end of the episode, will be affected by this communication.
We therefore evaluate the effects of communication on both
agents’ parameter updates given these changes.



Proposition 2 (Information sharing aids agents’ learning).
When the informed agent 1 shares her state observation with
the less informed agent 2:
• If θ2t ≥ 0 at the beginning of an episode, agent 1’s

learning improves.
• Agent 2’s learning always improves.

The proof is given in the appendix. It is worth noting that
agent 2 always benefits from communication, while the same
is not necessarily true for agent 1. To see why, note that
by Proposition 1, the instantaneous reward collected at time
t by agents increases if and only if θ2t ≥ 0. This means
that when θ2t < 0 at the beginning of a learning episode,
communication decreases the likelihood that the agents collect
non-zero rewards in that episode; however, non-zero rewards
are the informative samples that guide the updates in the
REINFORCE algorithm. Thus, communicating when θ2t < 0
decreases the likelihood that agent 1 collects informative
traces, and hence is not necessarily beneficial to her learning.
For agent 2 on the other hand, even though the likelihood
of having informative traces decreases, communication allows
this agent to associate the correct actions with the correct true
state of the environment during the updates. Proposition 2
establishes that the latter effect of correct association is more
important than collecting additional informative traces, and
hence the less informed agent 2’s learning always improves
under communication.

Note also that the condition for improvement of agent 1’s
learning is only a sufficient condition. That is, it is still
possible for agent 1 to benefit from communication even if
θ2t < 0 at the beginning of the REINFORCE episode. This
is because by improving agent 2’s learning (even if collecting
less informative traces in the current episode), agent 1 can
increase agent 2’s learning speed, and hence, the likelihood
that they can collect higher rewards and more informative
samples in future episodes. We elaborate on the tradeoffs
between these effects in the next section.

V. COMMUNICATION TIMING: THE EFFECTS OF POLICY
INITIALIZATION

As shown in Propositions 1 and 2, if the parameter policy
θ2 is initialized to a positive value, information sharing is
always beneficial to both agents. Nevertheless, with a negative
initialization of the less informed agent 2’s policy, θ2 < 0,
sharing of information about the state of the environment will
in fact reduce the agents’ expected instantaneous reward, and
degrade agent 1’s learning, as long as θ2t remains negative.

On the other hand, communication always improves agent
2’s learning, which can in turn improve the future rewards
and learning of both agents given the collaborative nature of
their goal. Note also that through the use of the REINFORCE
algorithm, θ2t will improve over its initial (negative) initializa-
tion; once θ2t becomes non-negative, information sharing will
become beneficial to both agents. Given this, it will ultimately
benefit agent 1 to initiate communication at some point in the
interaction, once learning has progressed enough.

That being said, the optimal range of policy parameters is
in general not known a priori in learning problems, and can
therefore not be used directly to determine the optimal timing
of communication. In this section, we identify other param-
eters that affect the (sub-)optimality of early communication,
and can therefore be used to guide the decision of when to
communicate.

A. Parameters affecting the optimal timing of communication
We illustrate the trade-offs between the instantaneous and

forward effects of communication in a minimal instance of
the binary collaborative POMDP consisting of a 2 episodes of
length T = 1, in which policy parameters are initialized arbi-
trarily. We compare agent 1’s expected reward when starting
communication at the beginning of the game, or when delaying
communication until the beginning of the second episode.

Denote the instantaneous reward at time t by rot , and the
policy parameters of agent i at time t by θoit, where o ∈ {C,D}
denotes the decision to communicate or delay, respectively.
Early communication will be beneficial if and only if,

∆E(r1) + δ∆E(r2) ≥ 0 . (5)

where ∆E(r1) := E[rC1 − rD1 ] is the instantaneous effect, and
∆E(r2) := E[rC2 −rD2 ] is the forward effect of communication.

a) Instantaneous effect: From the proof of Proposition
1, we know that agents’ reward at t is,

E[rt] =
eθ1t

1 + eθ1t
(

eθ2t

1 + eθ2t
β +

e−θ2t

1 + e−θ2t
(1− β)) . (6)

Then,

∆E(r1) = (1− β)
eθ11

1 + eθ11
eθ21 − e−θ21

(1 + eθ21)(1 + e−θ21)
. (7)

b) Forward effect: We next look at the parameter updates
to be used in the second episode, θ12 and θ22, with and without
communication. From the proof of Proposition 2, we have,

θ12 − θ11 = α
eθ11

(1 + eθ11)2
βeθ21 + (1− β)e−θ21 + 1

(1 + eθ21)(1 + e−θ21)
,

θ22 − θ21 = α
eθ11

1 + eθ11
2β − 1

(1 + eθ21)(1 + e−θ21)
. (8)

Substituting for β = 1 in the above expressions determines
the parameter updates θCi2 attained if communication happens
in the first episode.

We are now ready to find ∆E(r2). As agent 1 is assumed to
start sharing information at the second episode (i.e., β = 1),
using (6), the change in her expected reward at time 2 will be,

∆E[r2] =
1

1 + e−θ
C
12

1

1 + e−θ
C
22

− 1

1 + e−θ
D
12

1

1 + e−θ
D
22

. (9)

Substituting for (7) and (9) in (5), we conclude that
communication in the first step is preferred over delayed
communication if and only if,

(1− β)
eθ21 − e−θ21

(1 + e−θ11)(1 + eθ21)(1 + e−θ21)
+

δ(
1

1 + e−θ
C
12

1

1 + e−θ
C
22

− 1

1 + e−θ
D
12

1

1 + e−θ
D
22

) ≥ 0 . (10)



From the above, we make the following observation:

Proposition 3 (Parameters affecting the optimal timing of
communication). The preferred timing of communication by
agent 1 depends on the initialization of agent 2’s policy
parameter θ2, the agents’ patience δ (discounting of future
rewards), and the quality of agent 2’s observations in absence
of communication β. In particular, for the problem instance
of this section,

1) [Initialization.] If θ21 ≥ 0, it is optimal for agent 1 to
start communication at the first episode.

2) [Discounting of future rewards.] If θ21 < 0, there exists
a δ0 ∈ [0, 1), such that for 0 ≤ δ ≤ δ0, delayed sharing
is preferred by agent 1.

3) [Observation quality.] When θ21 < 0, there exists a
β0 ∈ [ 12 , 1), such that for 1

2 ≤ β ≤ β0, delayed sharing
is preferred by agent 1.

The first statement above is consistent with Propositions 1
and 2, and can be seen by noting that both the (instantaneous
and forward) terms in (10) are positive at θ21 ≥ 0.

For the second statement, we note that the first term of
(10) (instantaneous effects of communication) is negative. The
second term may be negative as well, as by (8), we will have
θC12 ≤ θD12, that is, agent 1’s learning degrades under commu-
nication. The second term (forward effect) overall can still be
positive, as agent 2’s learning can improve. Nonetheless, it is
possible to find a small enough δ, such that (10) is dominated
by the first term, and delayed communication is preferable.

Finally, for the third statement, we note the two-fold ef-
fect of agent 2’s observation quality. First, for small β and
negative initialization of θ21, by (6), the loss of revenue
due to miscoordination will be larger. On the other hand,
increasing β from a small value up to 1 will lead to a more
considerable improvement in θ21. For the instance considered
in this section, if agent 2 is sufficiently uninformed (smaller
β), the loss of revenue dominates the benefit from improved
learning. That is, perhaps surprisingly, delayed information has
become more preferable even though the less informed agent’s
observations are of particularly low quality.

B. When to communicate?

From the analysis in the previous section, we have observed
that in general, the policy initializations, the quality of ob-
servations in the absence of communication, and the agents’
patience, all affect the optimal timing of communication.

First, note that the differentiation of the policy initialization
in Proposition 3, which is based on the sign of the parameters,
is indeed specific to the problem of Section II-B. More
generally, our insights point to the fact that communication
will be beneficial throughout the agents’ interaction when the
policy parameters are such that the optimal action is already
being selected with a higher frequency. If this condition holds,
sharing of information will not misguide the action choice of
the less informed agent, and can hence aid the coordination
and learning of the agents.

The optimal range of policy parameters is nonetheless not
known a priori in learning problems, and can therefore not be
used directly to determine the optimal timing of communica-
tion. A possible proxy for evaluating the progress of learning
is to keep track of the rate of change in the policy parame-
ters: if the learning step size is chosen appropriately, policy
gradient methods will lead to smaller updates as learning
progresses. Communication can therefore begin once agents
are sufficiently confident about their policies based on the rate
of change in their policy parameters.

Finally, for sufficiently patient agents (δ → 1), communi-
cation from early stages of the game will always be benefi-
cial. This is because through the use of learning algorithms,
even with suboptimal initializations, the policy parameters
will gradually improve towards their optimal values (and the
improvement will be faster under communication). Therefore
the agents will reap the benefits of communication sooner
through adapting early information sharing, at the expense of
lower rewards from a limited number of earlier stages.

VI. NUMERICAL EXAMPLES

A. Benefits of communication

We begin by illustrating the benefits of communication by
comparing the outcomes of the agents’ interactions, specifi-
cally their expected discounted rewards and the progress of
their learning, with and without communication. For this part,
we will initialize both θ1 and θ2 randomly to a non-negative
value between [0, 1]. In addition, we let δ = 0.9, β = 0.7, and
α = 0.1. Figures 1 and 2 illustrate the learned parameters and
expected rewards after 20 episodes of length T = 10, with and
without communication, respectively. The results are averaged
over random initializations of the starting state and parameter
policies over 10, 000 trials.

We observe that as illustrated in Fig. 1, communication
indeed aids the learning of both agents (Proposition 2). First,
it is worth noting that, without communication, the more
informed agent 1 learns faster than the less informed agent 2.
This is due to the fact that, without information sharing, agent
2 at times associates his updates to an incorrect state due to
the imperfect observations of the environment. On the other
hand, the policies learned in the presence of communication
outperform those of both agents in the absence of communi-
cation. That is, information sharing aids the learning of both
the better informed and the less informed agent. Note also
that under full sharing and adoption, both agents will perform
the same updates, and as their starting parameter is equal
on average, their policy parameter curves overlap throughout.
Lastly, as shown in Fig. 2, both agents will indeed benefit from
communication due to the increase in their expected rewards.
Note that by the cooperative nature of the game, both agents
receive the same rewards.

B. Timing of communication

Next, we illustrate the findings of Section V. For this
part, we will again initialize θ1 randomly to a value between
[0, 1], but will set θ2 to a negative value in [−1, 0]. We let
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Fig. 1. Information sharing improves the speed of learning of both
agents (under positive parameter initializations).
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Fig. 2. Information sharing improves the expected rewards of both
agents (under positive parameter initializations).

δ = 0.2 (i.e., less patient agents), β = 0.7, and α = 0.1.
Figures 3 and 4 illustrate the learned parameters and expected
rewards after 20 episodes of length T = 10, with and
without communication, respectively. The results are averaged
over random initializations of the starting state and parameter
policies over 10, 000 trials.

We first note that as shown in Fig. 3, communication
will, in the long-run, improve the learning of both agents.
Nevertheless, in the early steps, agent 1’s learning parameter
without communication θN1 , surpasses that in the presence of
communication θC1 . This is due to the negative initialization
of agent 2’s policy parameter, which causes the shared infor-
mation to misguide his actions, hence reducing coordination
and hindering agent 1’s learning. As illustrated in Fig. 4, the
expected rewards of agents is in fact higher without communi-
cation, due to the miscoordination caused by communication
in the early stages. Note also that, as shown in Proposition 2,
information sharing is beneficial to the less informed agent 2’s
learning irrespective of the policy initialization.

VII. DISCUSSION AND CONCLUSION

We studied the problem of concurrent learning and coordi-
nation of two heterogeneous agents in a partially observable
environment, when a better informed agent can share her
information with a less informed agent. We formally analyzed
the benefits of incorporating this explicit communication in
agents’ learning algorithm, and showed that information shar-
ing can enhance coordination and also improve the learning of
both agents in the long-run, but that it may hinder coordination
and learning in early stages of the cooperative game depending
on the initialization of agents’ policies.

A main implication of our findings is in the design and
operation of self-organizing multi-agent systems in unknown
environments, and in particular those based on the edge/fog
computing paradigm. In this framework, learning and control
are performed primarily by agents residing on the edges of
the network. As a result, agents refine their policies and
consequently select their actions in a decentralized manner.
Our results show that leveraging cloud connectivity for limited
communication can be beneficial for multi-agent learning
and coordination, given correct timing or when agents are
sufficiently patient.

It is worth mentioning that our choice of allowing agents
to communicate only local observations (rather than, e.g.,

policies/actions) is motivated not only by the latency and costs
of communication, but also by the possibility that agents may
in general use heterogeneous learning algorithms and policies,
so that communication of information on policies may not
be interpretable by all agents. This type of communication is
particularly relevant in edge/fog computing scenarios, where
heterogeneous policies may be employed by different devices
as a result of their computational constraints.

Main directions of future work include analyzing the ef-
fects of communication in alternative reinforcement learning
algorithms, including analytical evaluation of the benefits and
drawbacks of communication in other actor-critic algorithms,
as well as empirical evaluation of the effects of communication
timing on the performance of multi-agent deep reinforcement
learning algorithms.

APPENDIX

A. Proof of Proposition 1

The expected reward of the agents is the same at time t,
and is given by,

Es,π[r(s, a1t, a2t)] = P (st = −1)E[r(−1, a1t, a2t)|st = −1]

+ P (st = +1)E[r(1, a1t, a2t)|st = +1]. (11)

We analyze case st = −1; a similar argument holds for st = 1.
Recall that in state st = −1, agents will obtain a non-zero

reward if and only if a1t = a2t = 0. Therefore,

E[r(−1, a1t, a2t)|st = −1] = πθ1t(a1t = 0|o1t = −1)

(πθ2t(a2t = 0|o2t = −1)q2(o2t = −1|st = −1)

+ πθ2t(a2t = 0|o2t = 1)q2(o2t = 1|st = −1))

=
eθ1t

1 + eθ1t
(

eθ2t

1 + eθ2t
β +

e−θ2t

1 + e−θ2t
(1− β)) , (12)

where we have used the fact that agent 1 knows the state
accurately (i.e., o1t = −1 w.p. 1), and agent 2’s knowledge is
given by β = q2(o2t = −1, st = −1). Define,

h(β, θ2t) := β(
eθ2t

1 + eθ2t
− e−θ2t

1 + e−θ2t
) +

e−θ2t

1 + e−θ2t
. (13)

Note that h(·) is a non-decreasing function of β if and only if
eθ2t−e−θ2t

(1+eθ2t )(1+e−θ2t )
≥ 0, which happens if and only if θ2t ≥ 0.

That is, an increase in β will increase agents’ reward if and
only if θ2t ≥ 0. In particular, full information sharing by the
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Fig. 3. Under negative parameter initialization for the less informed
agent, information sharing will ultimately improve the learning of both
agents, but may cause a slow down in the learning of the informed
agent at early stages.

0 50 100 150 200

Time

0.24

0.26

0.28

0.3

0.32

0.34

0.36

T
o

ta
l 
d

is
c
o

u
n

te
d

 r
e

w
a

rd

 Full sharing+adoption

 No communication

Fig. 4. Under negative parameter initialization for the less informed
agent, information sharing is not necessarily beneficial due to reduced
coordination and slow down of learning in early stages.

informed agent, which under full adoption by the less informed
agent leads to β = 1, would lead to the most increase in the
agents’ instantaneous reward. �

B. Proof of Proposition 2

We first note that for the environment of Section II-B,
agents’ optimal policy parameter is θ → +∞. As a result,
we establish improved learning by showing that agents take
larger gradient steps under communication.

We consider an episode of length T , and assume that
communication occurs (only) at some time 1 ≤ tc ≤ T within
the episode. We establish the effects of this change on the
parameter updates of both agents. The same analysis can be
carried out if information sharing occurs at multiple steps in
the episode, as the effects are superimposed.

Recall that under the REINFORCE algorithm, the change
in agent i’s parameter based on step t’s action and reward is,

∆θit = αEπ[

T∑
l=t

δl−tril ·

{
oite

−θitoit

1+e−θitoit
for ait = 1

−oit
1+e−θitoit

for ait = 0
] . (14)

We will evaluate agents’ parameter updates at a given step
tc ≤ t ≤ T . Note that the final update at time T will lead to
the parameter θi(T+1), which is the policy initialization at the
beginning of the next episode, and hence, determines the new
policy based on which agent i collects rewards in the future.

We start with agent 2, and separate the expression based on
the realization of the state st. The change in agent 2’s policy
parameter when st = −1 is given by,

θ2(t+1) − θ2t = α·

E[(r(st = −1, a1t, a2t) +

T∑
l=t+1

δl−tr(sl, a1l, a2l))·{
o2te

−θ2to2t

1+e−θ2to2t
for a2t = 1

−o2T
1+e−θ2to2t

for a2t = 0
|st = −1] . (15)

From the above, we note that as the agents take their sum
reward looking forward in determining each REINFORCE
update, the update at time t will depend on the realization
of actions and rewards in the trace collected in the future up
to time T . At the same time, the realization of the state at time
t + 1 (and hence, forward) will itself depend on the actions

taken in the current state. We therefore have four different
possible updates, depending on the profile of actions at time
t and the realization of state st+1. Let R̄(st+1 = s) :=
E[
∑T
l=t+1 δ

l−tr(sl, a1l, a2l)| st+1 = s].
For the action profile at = (0, 0), the state will evolve to

st+1 = −1, and we have the following update:

∆(0, 0) := α · (1 + R̄(st+1 = −1))(πθ1t(a1t = 0|o1t = −1)

(πθ2t(a2t = 0|o2t = −1)q2(o2t = −1|st = −1)
1

1 + eθ2t
+

πθ2t(a2t = 0|o2t = 1)q2(o2t = 1|st = −1)
−1

1 + e−θ2t
))

= α(1 + R̄(st+1 = −1))
eθ1t

1 + eθ1t
f(β, θ2t) , (16)

where,

f(β, θ2t) :=
2β − 1

(1 + eθ2t)(1 + e−θ2t)
. (17)

We observe that f(β, θ2t) is increasing in β.
For all other action profiles, the agents will not receive any

reward from step t, and the state will transition to st+1 = +1.
Following steps similar to (16), the updates for these action
profiles are given by:

∆(1, 0) := αR̄(st+1 = +1)
1

1 + eθ1t
f(β, θ2t) ,

∆(0, 1) := −αR̄(st+1 = +1)
eθ1t

1 + eθ1t
f(β, θ2t) , (18)

∆(1, 1) := −αR̄(st+1 = +1)
1

1 + eθ1t
f(β, θ2t) .

Putting these expressions together, leads to,

θ2(t+1) − θ2t = α(1 + R̄(st+1 = −1)− R̄(st+1 = +1))

eθ1t

1 + eθ1t
f(β, θ2t) . (19)

First note that f(β, θ2t) is non-decreasing in β. We also note
that the terms R̄(st+1 = −1) and R̄(st+1 = +1) are evaluated
based on the trace collected from time t+ 1 onwards, and are
independent from communication at time t. Further, as they are
generated using the same, they are in fact equal in expectation.
We conclude that agent 2’s update in (19) is increasing in
β, and is maximized at β = 1, i.e., when full information



is shared by agent 1 and adopted by agent 2. The argument
for starting from st = +1 is similar. Therefore, information
sharing benefits agent 2’s learning.

We now turn to agent 1, and consider the update at time
t, separating the expression based on the state at time t. The
change in agent 1’s policy parameter when st = −1 is,

θ1(t+1) − θ1t = α·

E[(r(st = −1, a1t, a2t) +

T∑
l=t+1

δl−tr(sl, a1l, a2l))·{
o1te

−θ1to1t

1+e−θ1to1t
for a1t = 1

−o1t
1+e−θ1to1t

for a1t = 0
|st = −1] . (20)

From the above, we again note there are four different
possible updates, depending on the profile of actions at time
t and the realization of state st+1.

For the action profile at = (0, 0), the state will evolve to
st+1 = −1, the agents will collect a reward of 1, and we have
the following update:

∆(0, 0) := α(1 + R̄(st+1 = −1))

(πθ1t(a1t = 0|o1t = −1) · 1

1 + eθ1t
·

(πθ2t(a2t = 0|o2t = −1)q2(o2t = −1|st = −1)+

πθ2t(a2t = 0|o2t = +1)q2(o2t = 1|st = −1))

= α(1 + R̄(st+1 = −1))
eθ1t

(1 + eθ1t)2
h(β, θ2t) , (21)

where h(β, θ2t) is defined in (13).
For all other action profiles, the agents will not receive any

reward from step t, and the state will transition to st+1 = +1.
Following steps similar to (21), the updates for these action
profiles are given by:

∆(1, 0) := −αR̄(st+1 = +1)
eθ1t

(1 + eθ1t)2
h(β, θ2t) ,

∆(0, 1) := αR̄(st+1 = +1)
eθ1t

(1 + eθ1t)2
(1− h(β, θ2t)) ,

∆(1, 1) := −αR̄(st+1 = +1)
eθ1t

(1 + eθ1t)2
(1− h(β, θ2t)) .

(22)

Putting these expressions together, leads to,

θ1(t+1) − θ1t = α(1 + R̄(st+1 = −1)− R̄(st+1 = +1))

eθ1t

(1 + eθ1t)2
h(β, θ2t) . (23)

We first note that the first term above is again non-negative.
In addition, we know that h(β, θ2t) is non-decreasing in β if
and only if θ2t ≥ 0. The argument when starting from st = +1
follows similar steps. We therefore conclude that sharing of
information helps agent 1 take improved (here larger) gradient
steps during the execution of the REINFORCE algorithm only
in steps which θ2t ≥ 0.

Lastly, note that h is increasing in θ2t. Combined with
the analysis of agent 2’s learning, this means that while

communication will not improve agent 1’s learning at time
t when θ2t < 0, it will still lead to a faster increase in θ2(t+1),
and could therefore improve agent 1’s future updates. �
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