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ABSTRACT

Energy Harvesting Networked Nodes:

Measurements, Algorithms, and Prototyping

Maria Gorlatova

Recent advances in ultra-low-power wireless communications and in energy harvesting will soon

enable energetically self-sustainable wireless devices. Networks of such devices will serve as building

blocks for different Internet of Things (IoT) applications, such as searching for an object on a

network of objects and continuous monitoring of object configurations. Yet, numerous challenges

need to be addressed for the IoT vision to be fully realized.

This thesis considers several challenges related to ultra-low-power energy harvesting networked

nodes: energy source characterization, algorithm design, and node design and prototyping. Addi-

tionally, the thesis contributes to engineering education, specifically to project-based learning.

We summarize our contributions to light and kinetic (motion) energy characterization for energy

harvesting nodes. To characterize light energy, we conducted a first-of-its kind 16 month-long indoor

light energy measurements campaign. To characterize energy of motion, we collected over 200 hours

of human and object motion traces. We also analyzed traces previously collected in a study with over

40 participants. We summarize our insights, including light and motion energy budgets, variability,

and influencing factors. These insights are useful for designing energy harvesting nodes and energy

harvesting adaptive algorithms. We shared with the community our light energy traces, which can

be used as energy inputs to system and algorithm simulators and emulators.

We also discuss resource allocation problems we considered for energy harvesting nodes. Inspired

by the needs of tracking and monitoring IoT applications, we formulated and studied resource alloca-

tion problems aimed at allocating the nodes’ time-varying resources in a uniform way with respect to

time. We mainly considered deterministic energy profile and stochastic environmental energy mod-

els, and focused on single node and link scenarios. We formulated optimization problems using utility

maximization and lexicographic maximization frameworks, and introduced algorithms for solving the

formulated problems. For several settings, we provided low-complexity solution algorithms. We also



examined many simple policies. We demonstrated, analytically and via simulations, that in many

settings simple policies perform well.

We also summarize our design and prototyping efforts for a new class of ultra-low-power nodes

– Energy Harvesting Active Networked Tags (EnHANTs). Future EnHANTs will be wireless nodes

that can be attached to commonplace objects (books, furniture, clothing). We describe the En-

HANTs prototypes and the EnHANTs testbed that we developed, in collaboration with other re-

search groups, over the last 4 years in 6 integration phases. The prototypes harvest energy of the

indoor light, communicate with each other via ultra-low-power transceivers, form small multihop

networks, and adapt their communications and networking to their energy harvesting states. The

EnHANTs testbed can expose the prototypes to light conditions based on real-world light energy

traces. Using the testbed and our light energy traces, we evaluated some of our energy harvesting

adaptive policies. Our insights into node design and performance evaluations may apply beyond

EnHANTs to networks of various energy harvesting nodes.

Finally, we present our contributions to engineering education. Over the last 4 years, we en-

gaged high school, undergraduate, and M.S. students in more than 100 research projects within the

EnHANTs project. We summarize our approaches to facilitating student learning, and discuss the

results of evaluation surveys that demonstrate the effectiveness of our approaches.
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Chapter 1

Introduction

Recent advances in ultra-low-power wireless communications and in energy harvesting will soon

enable networks of self-powered wireless devices. Such networks will serve as building blocks for

different Internet of Things (IoT) applications. For example, they can be used to enable new track-

ing and monitoring applications for supply chain management (continuous monitoring of objects,

keeping track of object configurations), wearable computing, and smart buildings. With energy

harvesting (also known as energy scavenging), nodes can derive energy from environmental sources,

such as light and motion [68]. However, in many commonplace environments energy availability is

low. For example, the amount of light energy available indoors is a thousand times less than the

amount of energy available outdoors [77]. Wireless communication technologies have only recently

reached a point at which it is possible to network nodes powered by such low-intensity sources.

Correspondingly, numerous challenges need to be addressed before the ubiquitous object networking

vision is fully realized. This thesis focuses on the following questions.

• What are the properties of environmental energy sources for ultra-low-power en-

ergy harvesting nodes? – Powering wireless nodes with ambient energy sources only re-

cently became possible. Correspondingly, there is lack of data and analysis regarding energy

availability, variations, and influencing factors.

• How shall nodes adapts their communications and networking to environmental

energy conditions? – A network of nodes powered by environmental energy sources (such
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Figure 1: A network of wireless ultra-low-power energy harvesting networked nodes.

as a network shown schematically in Fig. 1) needs to adapt to energy conditions on all layers

of the protocol stack. Furthermore, as environmental energy availability is low, such adap-

tations require specifically designed low-complexity communication, networking, and resource

allocation algorithms.

• How to design ultra-low-power energy harvesting networked nodes? – While there

is keen interest in creating small ultra-low-power devices that can be attached to different IoT

objects, existing nodes are heavy, bulky, and use orders-of-magnitude more energy than the

energy available in commonplace environments. Overcoming these limitations requires cross-

layer interactions between energy harvesting, communications, circuit design, and networking.

To outline the contributions of this thesis, in this chapter we first provide the background related

to energy sources and hardware for energy harvesting nodes (Section 1.1), introduce the design space

for energy harvesting adaptive algorithms (Section 1.2), and provide a high-level overview of the

ultra-low-power nodes we designed and prototyped – the Energy Harvesting Active Networked Tags

(Section 1.3). We overview the contributions of this thesis in Section 1.4.

Section 1.1 is partially based on the material we presented in [23,32]. Section 1.2 is based on the

material we presented in [30, 31]. Section 1.3 is based on the material we presented in [23, 25, 32].
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1.1 Energy Harvesting and Storage for Ultra-low-power En-

ergy Harvesting Nodes

In traditional (non-energy-harvesting) nodes, all energy a node can use throughout its lifetime is

pre-stored in a non-rechargeable battery. Energy harvesting nodes, on the other hand, obtain their

energy from the environment. In this section, we briefly describe energy harvesting and energy

storage technologies for ultra-low-power energy harvesting nodes.

Light energy harvesting – Light is one of the most abundant energy sources, with typical ir-

radiance (total energy projected and available for collection) ranging from 100 µW/cm2 in indoor

environments to 100 mW/cm2 in direct sunlight (note the significant difference) [68, 77].

Various solar cell technologies are available for light energy harvesting. The energy conversion

efficiency of a solar cell is defined as the percentage of the available energy that is harvested by the

solar cell. Conventional single crystal and polycrystalline solar cells, such as those commonly used

in calculators, have conversion efficiencies of around 10%–20% in direct sunlight. However, their

efficiency rapidly declines with a reduction in energy availability (i.e., they are less efficient with

dimmer sources). Additionally, conventional solar cells are rigid (inflexible), which makes it difficult

to attach them to non-rigid items (e.g., clothing, paperback books). Numerous lightweight mechani-

cally flexible solar cells are becoming commercially available, and new technologies are being actively

developed [69]. Efficiencies of these solar cells are typically lower than the efficiencies of conventional

single crystal and polycrystalline solar cells. For solar cells based on organic semiconductors [71],

for example, the efficiency is typically 1%–1.5%.

Motion energy harvesting – Another potential source of energy is kinetic (motion) energy. In

industrial scenarios, certain machine motions may correspond to substantial energy availability (e.g.,

rotating turbines). In commonplace environments, human activities such as walking can generate

substantial power [86], and harvesting even a small fraction of that power is useful for energy

harvesting nodes.

There are several possible ways of harvesting motion energy. For example, in piezoelectric har-

vesters, energy is generated from straining a material. An example of piezoelectric energy harvesting

is energy harvesting through footfall, where a harvesting device is placed in a shoe and energy is
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generated and captured with each step [51]. In inertial harvesters, power is drawn from the relative

motion between an oscillating proof mass and the frame from which the mass is suspended [60].

Inertial harvesters can be manufactured in a form factor suitable for the IoT applications. Such

harvesters are currently under active development (while large devices, such as motion-based mobile

phone chargers [96] and “shake flashlights” have long existed, small form-factor harvesters are not

yet commercially available). An inertial harvester suitable for a small IoT device (e.g., under 5 cm

x 5 cm, and weighting less than 2 grams) can generate 100–200 µW from human walking [39, 103].

Other energy sources for energy harvesting – Energy harvesting nodes may potentially ob-

tain energy from other sources, such as radiowaves and temperature gradients [58, 68]. However,

these sources are currently of a limited use for powering nodes in commonplace environments. The

power available from radiowaves, for example, is 100 times less than the power available from indoor

light [104].

Energy storage – Without the ability to store energy, an energy harvesting node would be able

to operate only when directly powered by the environmental energy. For an ultra-low-power node,

energy storage components need to be compact and efficient, and need to have very low self-discharge

rates.

Rechargeable batteries are an excellent option for energy storage, and numerous battery options

are available. Thin film batteries are particularly attractive for ultra-low-power IoT nodes since

they can be made flexible. Use of capacitors for storing harvested energy recently started gaining

attention [35,43,120]. Capacitors can be cycled many more times than batteries. The disadvantage

of using capacitors, however, is that large electrolytic capacitors self-discharge over hours or days.

The energy density (how much energy can be stored per unit of volume) of capacitors is also much

lower. A typical battery can store about 1000 J/cm3, whereas high performance ceramic capacitors

can store 1-10 J/cm3.

1.2 Design Space for Energy Harvesting Adaptive Algorithms

Within the overall energy harvesting adaptive networking space, there is a wide variety of different

scenarios, which call for different algorithmic approaches. In this section, we briefly introduce several
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Figure 2: Examples of different light energy sources: (a) deterministic profile (Las Vegas, NV [95],
outdoors), (b) partially predictable profile (New York City, NY, a stationary indoor node), and (c)
stochastic process (New York City, NY, a mobile node in Times Square at nighttime).

dimensions of the algorithm design space for energy harvesting nodes. The combinations of values

along these dimensions induce several “working points”, some of which we study in this thesis.

Environmental energy model – The model representing harvested energy depends on various

parameters such as the energy source (e.g., solar or kinetic), properties of the environment, and node

behavior (e.g., stationary, semi-stationary, or mobile).

Fig. 2 provides examples of light energy sources in different settings. Fig. 2(a) shows the light

energy recorded over 4 days by National Renewable Energy Laboratory [95] in Las Vegas, NV.

Fig. 2(b) shows the light energy recorded, over the same 4 days, in an indoor environment. This data

was obtained as part of our light energy measurements campaign (see Chapter 3). In Fig. 2(a), the

energy availability is time-dependent and predictable. On the other hand, in Fig. 2(b) the energy is

time-dependent and periodic, but harder to predict. Time-dependent and somewhat periodic energy

source behaviors (along with other inputs such as weather forecasts) allow to develop an energy

profile [19,46]. We will refer to energy profiles that accurately represent the future as deterministic

profiles, and to those that are inaccurate as partially predictable profiles.
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Figure 3: An example of harvested power versus energy storage “curves” for a light energy harvesting
node that uses a capacitor for energy storage.

Energy behavior that does not warrant a time-dependent profile appears in Fig. 2(c). Fig. 2(c)

shows the irradiance recorded by a mobile device carried around Times Square in New York City

at nighttime, obtained as part of our light energy measurements campaign. In this case, the energy

can be modeled by a stochastic process. Other scenarios where stochastic models are a good fit are

a floorboard that gathers energy when it is stepped on and a solar cell in a room where lights go

on and off as people enter and leave. Finally, in some settings, not relying on an energy model (a

model-free approach) is most suitable.

Energy storage type – As indicated in the previous section, in order to operate when not directly

powered by the environmental energy, energy harvesting devices require an energy storage component

– a rechargeable battery or a capacitor. Rechargeable batteries can be modeled by an ideal linear

model, where the changes in the energy stored are linearly related to the amounts of energy harvested

or spent, or more realistically by considering their chemical characteristics [78]. For capacitors, we

consider the nonlinearity of capacitor-based energy harvesting devices. In a simple capacitor-based

device, the amount of power harvested depends both on the amount of energy provided (irradiance),

and on the amount of energy stored [35, 56].1 The nonlinear relations are demonstrated in Fig. 3.

Energy storage capacity versus amount of energy harvested – Energy storage capacity can

vary from 0.16 J for an EnerChips solid state energy storage device [90] to 4700 J for an AA battery.

The environmental energy availability also varies widely, from thousands of J/cm2/day in sunny

outdoor conditions to under 2 J/cm2/day in indoor environments (see Chapter 3).

Time granularity – Nodes can characterize the harvested energy and make decisions on timescales

1Solar cells have highly nonlinear output-versus-voltage characteristics. In simple energy harvesting systems, the
voltage of the solar cell is determined by the voltage of the energy storage device. Within the battery operating range,
the battery voltage is nearly constant. Capacitor voltage, on the other hand, is directly related to the energy stored
on a capacitor, and changes substantially as energy is harvested or spent.
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Figure 4: The envisioned EnHANTs: (a) the intended EnHANT form factor, (b) EnHANTs in
comparison to sensor networks and RFIDs, and (c) an organic semiconductor-based mechanically
flexible solar cell developed in the Columbia Laboratory for Unconventional Electronics.

from seconds to days. This timescale is related to the storage-to-energy-harvesting ratio and to the

environmental energy model.

Problem/network size – Energy harvesting affects nodes’ individual decisions, pairwise (link)

decisions, and behavior of networked nodes (e.g., flow control, topology determination, routing).

1.3 Energy Harvesting Active Networked Tags (EnHANTs)

One of the challenges considered in this thesis is the design of ultra-low-power energy harvesting

nodes. Specifically, we focus on the design of Energy Harvesting Active Networked Tags (EnHANTs),

which will be a new class of ultra-low-power wireless nodes. The design of the EnHANTs is influenced

by the properties of environmental energy sources we study in this thesis. Moreover, the EnHANTs

serve as a platform for experimenting with energy-adaptive algorithms we develop in this thesis for

energy harvesting nodes.

The envisioned EnHANTs will be devices that:

• Network – Actively communicate with one another and with EnHANT-friendly devices in

order to forward information over a multihop network.

• Operate at ultra-low-power – Spend a few nJ or less on every communicated bit.

• Harvest environmental energy – Collect and store energy from sources such as light and

motion.

• Are energy adaptive – Adapt communications and networking to satisfy energy harvesting

constraints.
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• Exchange small messages – Exchange limited information (i.e., mostly IDs) using low data

rates.

• Transmit to short ranges – Communicate only when in close proximity (1 to 10 meters) to

one another.

• Are thin, mechanically flexible, and small – A few square centimeters at most.

The envisioned EnHANT form factor is shown in Fig. 4(a). In terms of complexity, through-

put, size, and energy requirements, EnHANTs fit between RFIDs and sensor networks, as shown

schematically in Fig. 4(b). Similarly to RFIDs, EnHANTs can be attached to commonplace ob-

jects. Presence of power sources (via energy harvesting) and distributed multihop operation shift

EnHANTs closer to sensor networks than to RFIDs that are traditionally passive and not networked.

Compared to sensor nodes, however, EnHANTs operate at significantly lower data rates, consume

less energy, and transmit mostly ID information.

EnHANTs will support a variety of tracking and monitoring applications beyond what RFIDs

permit. While RFIDs make it possible to identify an object in proximity to a reader, EnHANTs will

make it possible to search for an object in a network of devices, and to continuously track objects’

whereabouts and their proximity to each other. One application that demonstrates the building

blocks of an EnHANTs-based application is misplaced library book locator. In this application,

library books will be able to identify those among themselves that are significantly misplaced (e.g.,

in an incorrect section), and report the misplacement. To accomplish this task, each book is assigned

a unique ID using an assignment scheme closely related to the Dewey Decimal Classification. Each

book has a light-powered tag (EnHANT) that can transmit and receive information within a radius

of one meter or less and can perform some basic processing. Nearby books wirelessly exchange IDs.

The IDs of books that appear out of place are further forwarded through the network of books,

eventually propagating to sink nodes.

The same building blocks used in the library applications can enable several other applications.

A variety of items can be tracked, and a range of possible desirable or undesirable object configu-

rations can be queried for, and can trigger reports. Examples include finding items with particular

characteristics in a store, continuous peer monitoring of merchandize in transit, locating misplaced
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items (e.g., keys or eyeglasses), and locating survivors in disasters such as structural collapse.

EnHANTs can potentially be implemented by combining organic solar cells with communications

chips supporting Ultra-Wideband Impulse-Radio (UWB-IR):

Energy harvesting with organic solar cells – Advances in the area of organic semiconductors

for energy harvesting allow the fabrication of organic solar cells on flexible substrates [71], thereby

enabling pervasive use of future mechanically flexible EnHANTs. An array of flexible solar cells

recently designed in the Columbia University Laboratory for Unconventional Electronics is shown

in Fig. 4(c).

Ultra-low-power ultra-wideband communications – UWB-IR is a compelling technology for

short range ultra-low-power wireless communications [15, 16, 108]. It uses very short pulses (on the

order of nano-seconds) that are transmitted at regular time intervals, with the data encoded in the

pulse amplitude, phase, frequency, or position. At low data rates, the short duration of the pulses

allows most circuitry in the transmitter or receiver to shut down between the pulses, resulting in

significant power savings compared to traditional narrow-band communication systems.

Practical CMOS IR circuits with energy consumption on the order of a nano Joule per bit have

recently been demonstrated. For example, [14] demonstrated a UWB-IR receiver and transmitter

that require 1.65 nJ/bit and 280 pJ/bit, respectively, at a data rate of 1 Mbit/s. Research indicates

that UWB-IR transceivers in the 3–5 GHz band with data rates of 0.1–1 Mbit/s and receiver and

transmitter consumption of less than 500 pJ/bit and 50 pJ/bit, respectively, are within reach.

To put these numbers in perspective, consider an EnHANT with a 10 cm2 organic semiconductor

solar cell. Outdoors, the system would harvest 10cm2·100mW/cm2·0.01=10 mW. Under the assump-

tion that receiving a bit requires 1 nJ, the achievable data rate would be (10 · 10−3)/(1 · 10−9) =

10 Mbit/s. The achievable data rate in indoor environments would be (10−5)/(1 · 10−9) = 10 Kb/s.

Such data rates should be sufficient for EnHANTs to communicate and network.

1.4 Summary of Contributions

This thesis focuses on ultra-low-power energy harvesting networked nodes. In this general area,

we made contributions to energy source characterization, algorithm design, and node design and
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prototyping. We also made contributions to project-based engineering education. In this section,

we briefly summarize the contributions of this thesis.

1.4.1 Characterizing Environmental Energy for Energy Harvesting Nodes

In Chapters 3 and 4, we present characterizations of environmental energy availability for energy

harvesting IoT nodes. Until recently, harvesting low levels of ambient energy was impractical.

Correspondingly, few efforts to characterize ambient energy sources were undertaken. In this work

we determined energy availability and properties for indoor light and human and object motion. Our

insights are important for system design (e.g., determining harvester size, battery size) and algorithm

design (e.g., defining available data rates, expected energy variations, predictability). The specific

contributions are summarized below.

Light energy harvesting (Chapter 3): To characterize indoor light energy, we conducted a first-of-

its-kind long-term indoor irradiance (light energy) measurement study. We designed and developed a

system for long-term irradiance data collection, and deployed the developed systems in a set of loca-

tions in Columbia University for over 1.5 years. Using the collected light energy traces, we obtained

insights into indoor light energy availability and characteristics. The characterizations demonstrated

the feasibility of powering IoT nodes using indoor light energy harvesting. They also demonstrated

that light energy availability levels are substantially different even within seemingly uniform environ-

ments, and that simple parameters can substantially improve light energy predictions. The collected

traces can be used as inputs to energy harvesting system simulators and emulators.

We summarized the findings of the study in [30, 31], and shared the indoor light energy traces

with the community on enhants.ee.columbia.edu and via CRAWDAD at [33].

Kinetic (motion) energy harvesting (Chapter 4): Characterizing motion energy is more complex

than characterizing light energy because it requires in-depth characterizations of motion frequencies

and amplitudes. We examined energy corresponding to moving objects, specific human motions

(walking, running, cycling), and daily human routines. For specific human motions, we used a

dataset with over 40 participants [111], obtaining extensive and general human motion kinetic en-

ergy characterizations. To characterize motion energy associated with daily human routines, we
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conducted an acceleration measurements campaign with 5 participants over a total of 25 days, col-

lecting traces with more than 200 hours of acceleration information. The results indicated that

energy availability associated with object motion is low, and demonstrated the range of motion fre-

quencies and harvested powers for different participants and activities. The results also highlighted

the importance of human physical parameters for energy harvesting, and demonstrated that the

power generation process associated with human motion is highly variable, with only brief intervals

of high power levels.

1.4.2 Resource Allocation Algorithms for Energy Harvesting Nodes

In Chapter 5, we summarize the modeling frameworks and the design, development, and performance

evaluations of resource allocation algorithms for ultra-low-power energy harvesting nodes. The

energy available to energy harvesting nodes varies in time. Motivated by the needs of tracking and

monitoring IoT applications to communicate consistently, we aimed to allocate energy harvesting

nodes’ resources in a uniform way with respect to time. To formulate the energy allocation problems,

we used the utility maximization and the lexicographic maximization frameworks. These frameworks

are typically applied to achieve fairness among nodes [7, 19, 48, 55, 67]. We applied them to achieve

time-fair resource allocations.

We mainly considered deterministic energy profile and stochastic environmental energy models,

for battery-based systems and for capacitor-based systems, and focused on the cases of a single node

and a node pair (link). For the deterministic profile energy model, we obtained data rate and energy

spending rate allocations (once the energy spending rates are determined, they can be converted

to duty cycles, sensing rates, or communication rates). We examined optimal policies, as well as

a number of simple policies, for which we obtained performance guarantees. For the stochastic

energy model, we considered the case in which the energy inputs are i.i.d. random variables, and

formulated allocation problems as average-cost Markov Decision Processes (MDPs). We examined

an approximation to the optimal policy that uses the uniform discretization of the problem, and

obtained a bound on the performance degradation due to discretization. We additionally examined

several simple policies, for some of which we provided performance guarantees.

We summarized some of the contributions in [21, 30, 31].
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1.4.3 EnHANTs Prototypes Testbed for Energy Harvesting Adaptive

Policy Evaluations

In Chapter 6, we focus on the design and the prototyping effort for Energy Harvesting Active Net-

worked Tags (EnHANTs) and the EnHANTs prototype testbed. Features of the designed EnHANTs

prototypes include energy harvesting using organic solar cells, multihop data forwarding over UWB-

IR physical layer, real-time energy storage state tracking, and adaptations of communications and

networking to the environmental energy. Specifically, the prototypes implement energy harvesting

adaptive energy spending rate control, flow control, and topology selection functionalities. The de-

signed EnHANTs testbed uniquely incorporates a software-based light energy control setup, which

allows evaluating algorithms in controllable environments with real energy harvesting hardware.

We presented the high-level EnHANTs design in [23,32]. The EnHANTs prototype and testbed

design and development were conducted over 4 years in 6 iterative phases, each of which was pre-

sented in a conference demonstration session [26, 28, 57, 80, 85, 119]. We summarized the EnHANTs

prototype and testbed design in [25].

We used the testbed to evaluate energy harvesting adaptive algorithms (i.e., the contributions we

describe in Chapter 5) with the light energy traces (i.e., the contributions we describe in Chapter 3).

To the best of our knowledge, our work is the first attempt to evaluate energy harvesting adaptive

policies in a controllable experimental environment.

1.4.4 Project-based Learning

Appendix A summarizes our contributions to engineering education. Modern engineering landscape

will increasingly require system engineering skills that are not typically acquired in traditional

engineering and computer science programs. Thus, over 11 semesters, we engaged more than 50 high

school, undergraduate, and Masters students in more than 100 interdisciplinary research projects

related to the energy source characterizations and to the EnHANTs prototype and testbed design

and development. To the best of our knowledge, our experience with organizing multiple student

projects to contribute to a large-scale effort is unique. We describe the challenges and the solutions

associated with our approaches to project-based learning, and present the results of a survey-based
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assessment that demonstrate the effectiveness of our approaches.

The contributions presented in Appendix A were summarized in [27].
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Chapter 2

Related Work

In this chapter, we provide a brief overview of the related work. Energy efficiency in wireless networks

has long been a subject of research (see reviews [3, 45, 59]). In comparison, networking energy

harvesting nodes has only recently started gaining attention. We first overview the work related

to energy source characterization for energy harvesting nodes (Section 2.1). Then, we provide an

overview of the work related to energy harvesting adaptive algorithms (Section 2.2). We then describe

the work related to ultra-low-power energy harvesting node design and prototyping (Section 2.3).

Finally, we overview the work related to student project organization (Section 2.4).

2.1 Energy Source Characterization for Ultra-low-power En-

ergy Harvesting Nodes

In this work, we characterize indoor light energy and kinetic (motion) energy for ultra-low-power

energy harvesting nodes.

Light energy – Since large-scale outdoor solar panels have been in used for decades, properties of

the Sun’s energy were examined in depth [50, 77, 95]. Practical outdoor solar energy considerations

for energy harvesting in sensor networks (e.g., light obstructions, scattering) were discussed in [88].

Until recently, using indoor light energy for networking applications was considered impractical, and

indoor light was studied mostly in the areas of architecture and ergonomics [36,79]. However, in these
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domains the important factor is how humans perceive the given light (photometric characterization

– i.e., measurements in Lux) rather than the energy of the light (radiometric characterization).

Photometric measurements by sensor nodes were reported in [35, 94]. Photometric measurements,

however, do not provide energetic characterization, and there is lack of data (e.g., traces) and analysis

(e.g., variability, predictability, and correlations) regarding energy availability [77].

Kinetic energy – In this work, we characterize energy of object and human motion, short-term

(i.e., per-activity) and longer-term (i.e., on a scale of days). To the best of our knowledge, the energy

availability from object motion has not been characterized before. Previous human motion energy

harvesting studies had a limited number of participants (10 in [39] and 8 in [103, 116]) and focused

on walking and running on a treadmill at a constant pace. Due to the small sample sizes and number

of activities considered, these studies do not lead to general conclusions about energy availability

and characteristics for wireless and mobile nodes. To the best of our knowledge, the 40-participant

dataset [111] that we analyze is the first publicly available acceleration dataset collected from a

large number of participants. This dataset was not previously used for an energy harvesting study.

A relatively small set of day-scale human motion acceleration traces was studied in [116], which

focused on determining node energy budgets under assumptions corresponding to relatively large

electronic devices. In this work, we collect day-scale data that in some cases has more information

per participant, examine the traces under assumptions corresponding to ultra-low-power energy

harvesting nodes, and characterize various properties that have not been considered before.

2.2 Energy Harvesting Adaptive Algorithms

This thesis deals with resource allocation in energy harvesting devices. The design of energy

harvesting-adaptive communication, networking, and resource allocation algorithms has recently

been gaining attention. Related work in this area can be classified according to the environmental

energy model we introduced in Section 1.2:

• Deterministic profile – In [38, 46], duty cycle adaptations (mostly for single nodes) are

considered. Transmission power adaptation and transmission scheduling for small scenarios

(nodes, links) are examined in [89, 112, 113] and [2], respectively. For a network, various
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metrics are considered including data collection rates [19], data retrieval rates [114], throughput

maximization [10], and routing efficiency [54].

• Partially predictable profile – While considering energy predictable, [10, 46, 55, 65] have

provisions for adjustments in cases in which the predictions are inaccurate.

• Stochastic process – Dynamic activation of energy harvesting sensors is described in [42]

for a single node, and for a cluster in [47]. Admission and power allocation control policies

are developed in [20]. Routing and scheduling policies are developed in [49]. Maximizing the

utility of the average data rates via joint power allocation and energy management is examined

in [40]. Energy allocation policies for source-channel coding are developed in [9].

• Model-free approach – Duty cycle adjustments for a single node are examined in [102]. A

capacitor-based system is presented and the capacitor leakage is studied in [120].

In this thesis, we examine policies that are aimed at allocating the nodes’ dynamic and time-

dependent resources in a uniform way with respect to time. This goal is motivated by the needs of

tracking and monitoring systems to communicate consistently. The need for policies that enable such

behavior in energy harvesting devices has been noted by many researchers [19,46,64,102]. “Smooth-

ing” node duty cycles using a control theory approach is examined in [102]. Energy allocation vectors

with minimal variance are sought in [64]. We note that the approach introduced in [117] for through-

put optimization in quality-of-service-constrained single node scenarios (for non-energy-harvesting

devices) can also be used to achieve smooth energy allocation in energy-harvesting devices (where

finite energy storage constraint can be related to the communications buffer constraint [112]). A

throughput optimization framework for energy-harvesting nodes [10], developed in parallel with our

work, can also be extended to achieve smooth resource allocation. However, applications of these

frameworks to energy-harvesting scenarios result in implicit assumptions of linear energy storage. To

the best of our knowledge, our approach to resource allocation problem formulations is the first that

allows obtaining resource allocations for systems with non-linear energy storage (i.e., capacitor-based

systems).

A number of works on energy harvesting adaptive algorithms pursue different objectives and lead

to different resource allocations. For example, [89] aims to maximize the short-term throughput, [113]



17

minimizes the packet transmission time, and [11,20,40] maximize the sum of utilities of nodes’ time-

averaged communication rates. Achieving these objectives does not result in resource allocations

that are uniform with respect to time.

In this thesis we focus on optimal and heuristic policies for the deterministic profile and stochastic

environmental energy models, and evaluate the policies both analytically and experimentally. Some

of the policies we examine for the deterministic profile energy model have been used as heuristics

before (for example, in [19, 55]). We demonstrate the bounds on the performance of these policies.

For the stationary stochastic energy model, in this work we use a Markov Decision Process-based

(MDP-based) approach to node resource allocation. While MDP-based approaches have been pro-

posed before [47,105], such approaches typically assume that the node’s harvested energy and energy

storage are discretized.1 To the best of our knowledge, our work is the first to examine the perfor-

mance degradation associated with the energy storage state discretization. This thesis also uniquely

considers analytically a set of simple policies for the stochastic energy model that have been used

as heuristics before (for example, in [47, 63]).

We note that resource allocation in energy harvesting nodes has some similarities with power

consumption scheduling in power networks (e.g., [53] and references therein). However, these works

consider scenarios where energy sources are centralized and infinite. In contrast, in our settings

energy availability is restricted, and is specific to each node and each time slot.

2.3 Designing and Prototyping Energy Harvesting Active

Networked Tags

While the idea of pervasive networks of objects has been proposed before (e.g., in the Smart Dust

project [106]), the harvesting and communications technologies have only recently reached a point

where networked energetically self-reliant tags are becoming practical [76,92]. Correspondingly, com-

bining the advances in energy harvesting and ultra-low-power communications has recently attracted

increasing attention from industry and academia [91, 100] .

The Energy Harvesting Active Network Tag prototypes we have designed and developed offer

1The energy storage state discretization is assumed in many non-MDP-based approaches as well, e.g., [20, 40, 83].
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several advantages over the state of the art. The prototypes include an energy harvesting module

which provides real time energy awareness, and organic photovoltaics, which are specifically designed

for indoor light energy harvesting. Other existing energy harvesting modules [74, 93, 97] offer only

limited energy awareness and do not provide real time harvesting rate information. Existing sensor

network nodes that harvest energy from sunlight [46, 88, 114] and indoor light [115] typically use

monocrystalline or amorphous silicon solar cells, rather than organic photovoltaics. The EnHANTs

prototypes include an ultra-wideband impulse radio (UWB-IR) communication module and support

medium access control and networking functionalities over the UWB-IR physical layer. While there

have been other UWB-IR implementations [16, 84, 108], to the best of our knowledge, none have

implemented and tested functionality above physical layer over the UWB-IR transceivers.

To the best of our knowledge, the EnHANTs testbed we have developed is the first to allow

experiments with real energy harvesting hardware under repeatable controllable energy inputs. Several

energy harvesting testbeds exist (e.g., [18,88,114]) and a few are under development (e.g., [17,44]).

These testbeds do not control the amount of energy nodes can harvest. Solar simulators (used for

testing solar cells) can provide precisely controlled illumination (approximating sunlight), but cannot

create trace-based dynamic light environments for the nodes.

Using the EnHANTs prototypes and the EnHANTs testbed, we evaluated several energy har-

vesting adaptive policies. While many policies have been proposed (see Section 2.2), the majority

of the policies were only evaluated via simulations.

2.4 Project-based Learning

In this thesis, we describe a method for engaging students in project-based learning within a large-

scale multidisciplinary research effort. Previous research has described structuring student research

experiences as a course [34,72], and examined a research-based program aimed at undergraduates [70]

and a framework for accommodating undergraduate students in a research group [6,107]. Researchers

have also examined methods for providing students with interdisciplinary research opportunities [75]

and for increasing student communication and collaborative skills [13]. The necessity of engaging

students in large-scale system development projects has been recognized as an important educational

objective, and some tools for emulating the development scale have been proposed [81]. However, to
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the best of our knowledge, our experience with providing many students interdisciplinary project-

based research opportunities as part of a single large-scale ongoing research effort is unique.
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Chapter 3

Characterizing Light Energy for

Energy Harvesting Nodes

In this chapter, we focus on light energy availability and properties for ultra-low-power energy

harvesting nodes. Specifically, we consider light energy available indoors and light energy available

to mobile nodes.

To characterize this energy, we conducted a first-of-its kind 16 month-long indoor radiant energy

measurements campaign and a mobile outdoor light energy study. Based on our measurements, we

obtained insights into energy availability in different environments, and made observations regarding

energy variability, predictability, and influencing factors. Our long-term energy measurements cam-

paign resulted in unique irradiance traces that can be used as energy inputs to energy harvesting

adaptive system and algorithm simulators and emulators. We made the traces publicly available at

enhants.ee.columbia.edu, and also published them via the CRAWDAD repository [33]. The in-

sights and observations we obtain are important for designing energy harvesting systems and energy

harvesting adaptive algorithms.

Some elements of the presented study were completed as part of undergraduate and M.S. projects

(see Appendix A). Specifically, projects of M. Bahlke, M. Zapas, and E. Xu contributed to mea-

surement setup design and development; some of the measurements were carried out by M. Zapas,

S. Shetkar, C. Sun, and K. Kim.
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Figure 5: A schematic diagram of the relationships between energy parameters: irradiance, I,
irradiation, H , energy available to a node, D, and energy harvested by the node, Q.

In this chapter, we first describe our light energy study methodology (Section 3.1). We then

comment on spatial variability of indoor light energy levels (Section 3.2), energy budgets for indoor

light energy harvesting nodes (Section 3.3), and on properties of corresponding environmental energy

profiles (Section 3.4). Additionally, we also briefly discuss our mobile measurements and light energy

properties for mobile energy harvesting nodes (Section 3.5).

This chapter’s contributions were previously presented in [30, 31].

3.1 Methodology

The relationships between variables characterizing light energy availability for energy harvesting

systems are illustrated in Fig. 5. Our measurements capture irradiance, radiant energy incident

onto surface (in W/cm2), denoted by I. Irradiation HT (in J/cm2) is the integral of irradiance

over a time period T . In characterizing environmental light energy, we are particularly interested in

diurnal (daily) environmental energy availability. For T = 24 hours, we denote the daily irradiation

by Hd. The amount of energy (in J) a solar cell with the given physical properties (size, efficiency)

can harvest in a time slot i is denoted by D. For a solar cell with area A and energy conversion

efficiency η, D = A · η ·H . For the energy availability calculations presented in this chapter, we use

A = 10 cm2 (i.e., a small node with a form factor similar to the future EnHANTs demonstrated in

Fig. 4(a)) and η = 1% (i.e., the efficiency of an organic solar cell).

To characterize indoor energy availability, over the period of June 2009 – September 2010 we con-

ducted a light measurement study in office buildings in New York City. In this study we examined a

set of short-term indoor and outdoor irradiance measurements, including measurements with mobile

devices. We also collected a set of long-term measurements in several indoor locations. Table 1
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Figure 6: A schematic diagram of the indoor irradiance measurements locations L-1–L-6.
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Figure 7: Sample irradiance measurements in indoor locations L-2, L-3 and in outdoor location O-1
(Mar. 2, 2010 – Mar. 12, 2010).

provides a summary of the indoor measurement locations. The locations are shown schematically

in Fig. 6. For comparison, in addition to our own indoor measurements, we also analyzed a set

of outdoor irradiance traces provided by the US Department of Energy National Renewable En-

ergy Laboratory (NREL) [95]. Sample irradiance measurements (for two our setups and one setup

from [95] over the same 10 days) are provided in Fig. 7.

For the irradiance measurements we used TAOS TSL230rd photometric sensors [99] installed on

LabJack U3 DAQ devices. These photometric sensors have a high dynamic range, allowing to capture

widely varying irradiance conditions. We verified the accuracy of the sensors with a NIST-traceable

Newport 818-UV photodetector.

3.2 Spatial Variability

In this section, we demonstrate spatial variability of light energy available for indoor energy har-

vesting devices. We demonstrate the spatial variability in two sets of environments: on a bookshelf

and on a human body.



23

A B C D E

B o o k s h e l f

O v e r h e a d

 l igh ts

(a)

1

1

2

3

4

5

6

7

A
B

(b)

A B C D E
0

10

20

30

40

50

Ir
ra

di
an

ce
 (µ

W
/c

m
2 )

Bookshelf index

 

 

Shelf 7 −− top
Shelf 6
Shelf 5
Shelf 4
Shelf 3
Shelf 2
Shelf 1 −− bottom

(c)

Figure 8: Irradiance measurements in different parts of a bookshelf: (a) the floor plan of the office
where the measurements were taken, (b) the leftmost bookshelf stall (stall A) with measurement lo-
cations identified, and (c) the irradiance values in different locations on the bookshelf (measurements
taken when outdoor light did not affect the values).

Figure 9: Irradiance measurements I (in µW/cm2) in different locations on a person.

• Bookshelf – We measured the irradiance levels at different locations on a bookshelf which

consists of 4 stalls with 7 shelves in each, and is illuminated by overhead fluorescent lights as

shown in Fig. 8(a). We took measurements at the intersection points of shelves and bookshelf

stalls, as depicted in Fig. 8(b). Fig. 8(c) shows the measured irradiance levels for each of

the shelves. It can be seen that the irradiance levels vary as a function of the distance (and

orientation) from the light sources.

• Human body – We additionally measured the irradiance levels at different locations on a

person, for a person standing directly under an overhead lamp. The corresponding “map” of

the irradiance values (in µW/cm2) recorded in different location on a human body is shown in

Fig. 9. We note that there is a 9.8 times difference in the irradiance levels between the different

parts of the human body.
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Table 1: Light energy measurement setups – average daily irradiation and achievable bit rates.
Location Location description Experiment Hd σ(Hd) r

index timeline (J/cm2/day) (Kb/s, cont. )

L-1 Students’ office. South-facing, 6th floor

above ground, windowsill-located setup.

Aug. 15, 2009 –

Sept. 13, 2010

1.3 0.72 1.5

L-2 Students’ office (same office as setup

L-1). Setup on a bookshelf far from win-

dows, receiving direct sunlight for a short

portion of a day.

Nov. 13, 2009 –

Sept. 9, 2010

1.28 0.76 1.5

L-3 Departmental conference room. North-

facing, 13th floor above ground,

with large unobstructed windows.

Windowsill-located setup.

Nov. 7, 2009 -

Sept. 13, 2010

63.0 48.0 72.0

L-4 Students’ office. South-West-facing,

windowsill-located setup.

Nov. 5, 2009 –

Sept. 29, 2010

9.2 6.9 7.9

L-5 Students’ office (directly under the office

of setup L-1). Windowsill-located setup.

June 25, 2009 –

Oct. 11, 2009

12.3 8.3 13.9

L-6 Students’ office. East-facing, often re-

ceiving unattenuated reflected outdoor

light. Windowsill-located setup.

Feb. 15, 2010 –

Sept. 20, 2010

97.3 64.4 112.3

O-1 Outdoor : ECSU meteostation [95], Eliz-

abeth City, NC.

Jan. 1, 2009 –

Dec. 31, 2009

1517 787 1,750

O-2 Outdoor : HSU meteostation [95], Ar-

cata, CA.

Jan. 1, 2009 –

Dec. 31, 2009

1407 773 1,600

These results demonstrate that the available energy levels are substantially different even within

seemingly uniform environments.

3.3 Node Energy Budgets and Daily Energy Availability

One use of the measurements we have collected is to determine energy budgets for indoor light

energy harvesting nodes. We calculate the total daily irradiation Hd, representing energy incident

onto 1 cm2 area over the entire course of a day. For example, for setup L-1, the Hd values are shown

in Fig. 10. Table 1 presents the average and the standard deviation values, correspondingly Hd and

σ(Hd). We note that for the different setups, the Hd values vary greatly. The differences are related

to office layouts, presence or absence of direct sunlight, as well as use of shading, windows, and

indoor lights.

Table 1 also shows the bit rate r a node would be able to maintain throughout a day when exposed

to the irradiation Hd. As the energy cost to communicate, we use 1 nJ/bit, which corresponds to
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Figure 10: Long-term daily irradiation, Hd, for setup L-1 (Aug. 15, 2009 – Sept. 13, 2010).

energy spending of ultra-low-power transceivers envisioned for the EnHANTs, as we described in

Section 1.3. Specifically, we calculate the bit rate r as r = A · η · Hd/(3600 · 24)/(10−9). These

bit rates can be seen as the “communication budgets” for light energy harvesting devices (such as

EnHANTs) deployed in indoor environments.

To predict the daily energy availability Hd, a node can use a simple exponential smoothing

approach (also known as exponential averaging), calculating a predictor for a slot i, Ĥd(i), as

Ĥd(1)← Hd(0), Ĥd(i)← α ·Hd(i− 1) + (1− α) · Ĥd(i − 1)

for α constant, 0 ≤ α ≤ 1. The error for such a simple predictor is relatively high. For example,

for setup L-1 the average prediction error is over 0.4Hd, and for setup L-2 it is over 0.5Hd. For the

outdoor datasets the average prediction errors are approximately 0.3Hd.

Improving the energy predictions for outdoor conditions using weather forecasts has been studied

in [50,82]. We examined whether the Hd values in the indoor settings are correlated with the weather

data provided in [101]. We determined statistically significant correlations for all setups except L-2.1

This suggests that for some indoor setups the energy predictions may be improved, similar to outdoor

environments, by incorporating the weather forecasts into the predictions.

Work week patterns also influence indoor radiant energy in indoor office environments, particu-

larly for setups that do not receive direct sunlight. For setup L-2, for example, Hd = 1.63 J/cm2

on weekdays, and Hd = 0.37 J/cm2 on weekends (it receives, on average, 9.7 hours of office lighting

per day on weekdays and under 1 hour on weekends). By keeping separate predictors for weekends

and weekdays, the average prediction error for the weekdays is lowered from 0.5Hd to 0.26Hd.

1The correlation coefficients of the Hd values with the weather data are as follows: L-1: ρ = 0.35 (p < 0.001), L-2:
no statistically significant (p < 0.05) correlation, L-3: ρ = 0.137 (p < 0.05), L-4: ρ = 0.29 (p < 0.001), L-5: ρ = 0.24
(p < 0.05), L-6: ρ = 0.71 (p < 0.001).



26

0 5 10 15 20
0

100

200

Hours

I (
µW

/c
m

2 )

0 5 10 15 20
0

0.1

0.2

Hours

H
T
 (

J/
cm

2 /s
lo

t)

(a) Indoor location L-1.

0 5 10 15 20
0

100

200

Hours

I (
µW

/c
m

2 )

0 5 10 15 20
0

0.05

0.1

Hours

H
T
 (

J/
cm

2 /s
lo

t)

(b) Indoor location L-2.

0 5 10 15 20
0

2000

4000

Hours

I (
µW

/c
m

2 )

0 5 10 15 20
0

5

10

15

Hours

H
T
 (

J/
cm

2 /s
lo

t)

(c) Indoor location L-3.
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(d) Outdoor installation O-1.

Figure 11: Sample energy profiles for indoor locations L-1, L-2, L-3 and for the outdoor installation
O-1. Left: irradiance measurements from several different days, overlayed; Right: HT values, with
errorbars representing σ(HT ).

We also examined correlations between the Hd values of different datasets, and determined

statistically significant correlations for a number of setups. For example, for setups L-1 and L-2

located in the same room, ρ = 0.56 (p < 0.001), and for setups L-1 and L-5 facing in the same

direction, ρ = 0.71 (p < 0.001).2 This indicates that in a network of energy harvesting devices, a

device will be able to infer some information about its peers’ energy availability based on its own

(locally observed) energy state.

2We also detected the following statistically significant correlations: {L-1,L-3}: ρ = −0.19 (p < 0.05), {L-3,L-4}:
ρ = 0.52 (p < 0.001), {L-3,L-6}: ρ = 0.25 (p < 0.05), {L-4,L-6}: ρ = 0.47 (p < 0.001).
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3.4 Energy Profiles

To characterize energy availability at different times of day, we determine the HT values for different

0.5 hour intervals T , thus generating energy profiles for the different locations. Sample energy profiles

are shown in Fig. 11, where the left side shows the irradiance curves corresponding to different days

overlayed on each other, and the right side shows the HT values, with errorbars representing σ(HT ).

Due to variations in illumination and occupancy patterns, the energy profiles of different locations

can be substantially different. For example, while setup L-3 exhibits daylight-dependent variations

in irradiance, for setup L-2 the irradiance is either 0 or 45 µW/cm2 for most of the day (as this

setup is illuminated mostly by indoor light). In addition, while for setup L-2 the lights are often

turned on during late evening hours, for setup L-3 it is almost never the case. The demonstrated

σ(HT ) values suggest that these energy inputs generally fall under the partially predictable profile

energy models.

We have studied whether, similarly to outdoor environments, in the indoor environments the

accuracy of the energy profile for a given day can be improved when a device has observed some of

the incoming energy [1, 50]. Specifically, we examined correlations between the amount of energy

collected in a particular time slot i, HT (i), and the amount of energy available in some later time slot

j, HT (j). We also examined correlations between the amount of energy collected up to a particular

time slot j,
∑

i≤j HT (i), and the energy collected over the subsequent time slots,
∑

i>j HT (i).
3

We determined that such correlations are present in indoor environments, but they are generally

weaker than in outdoor settings. For example, for the outdoor setup O-1 the correlation between

the energy received in the 10:30–11:00 AM time slot and in the 16:30–17:00 PM time slot is ρ = 0.5

(p < 0.001), while for the indoor setup L-1 it is ρ = 0.2 (p < 0.001). For the outdoor setup O-1,

the correlation between the amount of energy received before 08:00 AM and the amount of energy

received after 08:00 AM is ρ = 0.77 (p < 0.001), while for the indoor setup L-3 it is ρ = 0.31

(p < 0.001). These results suggest that energy profile prediction techniques developed for outdoor

energy harvesting environments (such as [1,50]) may be extended to indoor environments, but their

performance indoors is likely to be worse.

3Additional correlation results are available in [29].
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Table 2: Mobile light energy measurements – average irradiance and achievable bit rates.
Meas. Measurement description Experiment Experiment I, σ(I) r
index start time duration (µW/cm2) (Kb/s)
LM-1 Pedestrian walking around university

campus (indoor and outdoor environ-
ments) carrying a measurement setup.

4/5/2010, 13:06 1:00:09 4,700 9,760 470

LM-2 Commuting on public transit, measure-
ment setup attached to a backpack, mea-
surements outdoors, indoors (subway,
train, office).

7/13/2010, 15:02 1:40:30 134 448 0.45

LM-3 Car-based roadtrip, measurement setup
attached to the dashboard.

7/16/2010, 12:26 2:57:00 11,416 4,370 38.1

LM-4 Car-based errand running, measurement
setup attached to the dashboard.

7/17/2010, 14:48 2:15:24 7,475 4,741 747.5

LM-5 Car-based errand running, measurement
setup attached to the dashboard.

7/18/2010, 09:58 2:06:00 16,472 5,563 1,647.4

LM-6 Pedestrian walking in Times Square, New
York City at nighttime, measurement
setup attached to a backpack.

7/22/2010, 20:02 1:31:59 22.9 17 1.49
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Figure 12: Irradiance measurements recorded by a mobile device: a mix of indoor and outdoor
conditions (note the log scale of the y-axis).

3.5 Mobile Measurements

We also conducted shorter-term experiments for mobile devices. Table 2 provides a summary of the

measurements conducted, demonstrating average irradiance I, standard deviation of the irradiance

σ(I), and the corresponding sustainable bit rate r. It can be observed that energy availability differs

drastically for different experimental conditions.

A sample irradiance trace for a measurement setup carried around Times Square in New York

City at nighttime (measurement set LM-6) was shown in Fig. 2(c). Fig. 12 demonstrates an irradiance

trace of a device carried around a set of indoor and outdoor locations (note the log scale of the y-

axis) during mid-day on a sunny day (measurements set LM-1). The measurements demonstrated in

Fig. 12 highlight the disparity between the light energy available indoors and outdoors. For example,

inside a lab, the irradiance was 70 µW/cm2, while in sunny outdoor conditions it was 32 mW/cm2.

Namely, the outdoor to indoor energy ratio was more than 450 times. In general, we observed that

mobile devices’ energy levels are diverse, poorly predictable, and could in some cases be represented

by stochastic energy models.
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3.6 Conclusions

In this chapter, we summarized our characterization of indoor light energy availability for ultra-

low-power energy harvesting nodes. Our characterizations, based on a first long-term indoor light

energy measurements campaign, demonstrate the feasibility of powering ultra-low-power nodes using

indoor light energy harvesting, and provide insights into the design of energy harvesting nodes and

algorithms for such nodes. For example, we demonstrate that the light energy availability levels are

substantially different even within seemingly uniform environments, and that in indoor environments

the energy models are mostly partially predictable. We also show that simple parameters can

significantly improve light energy predictions.

In later chapters, we use the indoor light energy traces we described in this chapter to provide

energy inputs for energy harvesting adaptive nodes, in order to obtain numerical results for en-

ergy harvesting adaptive policies (Chapter 5) and to examine the performance of energy harvesting

adaptive nodes in an energy harvesting testbed (Chapter 6).
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Chapter 4

Characterizing Kinetic Energy for

Energy Harvesting Nodes

In this chapter, we focus on availability and properties of kinetic (motion) energy for ultra-low-

power energy harvesting nodes. Characterizing kinetic energy of unrestricted naturally occurring

motions is a complex task [60]. In particular, since human motion is a combination of low frequency

vibrations that vary from activity to activity and from person to person [8, 39, 103], characterizing

kinetic energy that corresponds to human motion requires in-depth study of motion properties (e.g.,

the frequencies associated with different types of motions) and human mobility patterns.

Our motion energy study is based on object and human motion acceleration traces that we col-

lected and traces collected for over 40 participants in a dataset [111] (the traces in the dataset [111]

were collected for an activity recognition study and have not been analyzed from energy har-

vesting considerations before). Previous human motion energy harvesting studies only obtained

“rule of thumb” estimates for a small set of activities based on small numbers of participants [8,

39, 103]. Using the dataset [111], we obtain extensive and general kinetic energy characterization

for a set of common human motions (e.g., walking, running, cycling). Additionally, to study the

energy generation processes associated with day-scale human routines, we conducted an acceleration

measurements campaign with 5 participants, collecting traces with over 200 hours of acceleration

information. Our study demonstrates the range of motion frequencies and harvested powers for
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Figure 13: (a) A second-order mass-spring system model of a harvester with proof mass m, proof
mass displacement limit ZL, spring constant k, and damping factor b, and (b) the frequency response
magnitude for two different harvesters, H1 and H2.

different motions, participants and activities, shows the importance of human physical parameters

for energy harvesting, and provides insights that are important for algorithm design.

The methodology of the study is based on joint work with J. Sarik. Some elements of the study

were completed as part of undergraduate and M.S. projects (see Appendix A). Specifically, M. Cong

partially examined the dataset [111] and collected several measurements. S. Shetkar contributed to

the development of measurement setup and study methodology.

In this chapter, we first describe the harvester model and our measurement setup (Section 4.1)

and briefly comment on the energy associated with object motion (Section 4.2). We then describe

motion energy availability and characteristics for common human motions (Section 4.3) and for

day-scale human routines (Section 4.4).

4.1 Model and Measurement Setup

Our motion energy study is based on acceleration traces, which are processed to determine the energy

generated by an inertial harvester. In this section, we describe the harvester model and the collection

of acceleration measurements. We also detail the procedure for obtaining the power generated by

the harvester from the recorded traces and the procedures for determining the harvester parameters.

4.1.1 Inertial Harvester Model

An inertial harvester can be modeled as a second-order mass-spring system with a harvester proof

mass m, proof mass displacement limit ZL, spring constant k, and spring damping factor b [61,103,
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118]. Fig. 13(a) demonstrates such harvester model.

Two important harvester design parameters are m and ZL. The harvester output power, P ,

increases linearly with m [5], and is non-decreasing (but generally non-linear) in ZL. Yet, m and

ZL are limited by the harvester weight and size considerations, which ultimately depend on the

application. We use the following values that are consistent with the mobile systems’ restrictions

on the size and weight of the overall node, and correspond to one of the harvester configurations

examined in [103]:

• Harvester proof mass, m = 1 · 10−3 kg (1 gram), and

• Harvester proof mass displacement limit, ZL = 10 mm.

The other two model parameters, k and b, are tuned to optimize the energy harvested for given

motion properties. The parameter k determines the harvester resonant frequency,

fr = 2π

√
k

m
.

To maximize power output, the resonant frequency, fr, should match, reasonably closely, the domi-

nant frequency of motion, fm.

Jointly, k and b determine the harvester quality factor,

Q =

√
k ·m
b

,

which determines the spectral width of the harvester. A harvester with a small Q harvests a wide

range of frequencies with a low peak value, while a harvester with a large Q is finely tuned to

its resonant frequency fr. The role of fr and Q can be observed in Fig. 13(b), which shows the

magnitude of the frequency response of two different harvesters, denoted by H1 and H2. For H1,

fr = 2.06 Hz (which corresponds to a typical frequency of human walking) and Q = 2.35 (k = 0.17,

b = 0.0055). For H2, fr = 2.77 Hz (which corresponds to a typical frequency of human running)

and Q = 3.87 (k = 0.30, b = 0.0045).
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(a) (b)

Figure 14: Acceleration measurement unit and placements: (a) our sensing unit which is based on
a SparkFun ADXL345 evaluation board, and (b) the sensing unit placements in a multi-participant
human motion characterization study [111].

4.1.2 Collecting Motion Information

In this thesis, we examine measurements that we collected and measurements provided in an acceler-

ation dataset of common human motions [111]. Our measurements were obtained using sensing units

based on SparkFun ADXL345 evaluation boards (see Fig. 14(a)). Each unit includes an ADXL345

tri-axis accelerometer, an Atmega328P microcontroller, and a microSD card for data logging.1

The sensing units record acceleration along the x, y, and z axes, ax(t), ay(t), az(t), with a 100 Hz

sampling frequency. We conducted multiple experiments with different sensing unit placements, as

we will describe in Sections 4.2 and 4.4.

The dataset of [111] was obtained using an ADXL330 tri-axis accelerometers with a 100 Hz

sampling frequency. The measurements of [111] were conducted with sensing unit placements cor-

responding to a shirt pocket, waist belt, and trouser pocket, as shown in Fig. 14(b).

In all the measurements, the orientation of the sensing unit was not controlled. We examine

the overall magnitude of acceleration, a(t) =
√
ax(t)2 + ay(t)2 + az(t)2. Due to the earth gravity

of 9.8 m/s2 (“1g”), the measured acceleration includes a constant component that we filter out

(similarly to [103,116], we use a 3rd order Butterworth high-pass filter with a 0.1 Hz cutoff frequency).

We examine two motion properties of the measurements: the average absolute deviation of the

acceleration, D, and the dominant frequency of motion, fm. D quantifies the variability in the a(t)

value and is a measure of the “amount of motion”. We calculate it as D = 1
T

∑
T (a(t)−a(t)), where

1Although smartphones include accelerometers, we use dedicated sensing units since the phones’ accelerometers
have a limited range, restricted sampling rate control, and high energy consumption (that hinders day-scale trace
collection).
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Figure 15: Demonstration of obtaining the power generated by a harvester, P (t), from the recorded
acceleration, a(t): (a) a(t) recorded by a person walking, (b) the corresponding harvester proof mass
displacement, z(t), and (c) the resulting P (t) for harvester H1.

a(t) denotes the average of a(t) over time interval T . We obtain fm by determining the maximum

spectral component of the Fourier Transform of a(t).

4.1.3 Harvesting Rates and Data Rates

We calculate the power generated by a harvester, P (t), subjected to acceleration a(t), using the

following procedure based on the approaches developed in [116, 118]. We first convert a(t) to proof

mass displacement, z(t), using the Laplace-domain transfer function:

z(t) = L−1{z(s)} = a(s)

s2 + (2π · fr/Q)s+ (2π · fr)2

Next, to account for the ZL, we limit z(t) using a Simulink limiter block. The power P (t) generated

by the harvester is then determined as

P (t) = b · dz(t)
dt

2

.
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Figure 16: The average power generated by a harvester, P , from the same motion (human running)
for different combinations of harvester resonant frequencies, fr, and harvester damping factors, b.

The average of the P (t) is denoted by P .

We implemented this procedure in MATLAB and Simulink. Fig. 15 shows an example of obtain-

ing P (t) for a particular a(t). The a(t) values were recorded by a sensing unit carried by a walking

person (Fig. 15(a)), and the z(t) and P (t) values were obtained using the procedure described above

for the harvester H1.

To characterize the performance of wireless mobile systems, we calculate the data rates, r, that

a node would be able to maintain when harvesting the generated P . We assume, similar to [116],

that the harvester energy conversion efficiency, η, is 20%. As a node’s cost to communicate, we use

ctx = 1 nJ/bit (corresponding to energy spending of ultra-low-power transceivers envisioned for the

EnHANTs). Hence, r = η · P/ctx = 2 · 105 · P Kb/s.

4.1.4 Optimizing Harvester Parameters

Finding the optimal harvester parameters k and b is difficult, since it requires optimizing over a

multi-dimensional surface of unknown geometry [103]. For example, Fig. 16 shows the average

power, P , values calculated from one set of a(t) measurements (corresponding to 20 seconds of a

person running) for different {fr, b} combinations. To determine the optimal harvester parameters

for short a(t) samples, we implemented an exhaustive search algorithm. This algorithm considers a

large number of k and b combinations, obtains the corresponding P (using the procedure described

in Section 4.1.3), and selects the k and b combination that maximizes P .

The exhaustive search algorithm is time-consuming even for relatively short a(t) samples. For

optimizing harvester parameters with longer a(t) samples, we implemented a simplified procedure
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Table 3: Object motion measurements.
Scenario P

Taking a book off a shelf <10 µW
Putting on reading glasses <10 µW
Reading a book <10 µW
Writing with a pencil 10–15 µW
Opening a drawer 10–30 µW
Spinning in a swivel chair <10 µW
Opening a building door <1 µW
Shaking an object >3,000 µW

developed in [116]. The procedure first determines the k value that matches the harvester’s fr to

the dominant frequency in the a(t) sample, fm. Specifically, the procedure selects k such that

k =
f2
r ·m
(2π)2

=
f2
m ·m
(2π)2

.

It then considers a relatively large number of b values and selects the b that maximizes P .

4.2 Object Motion Energy

Everyday motions generate large amounts of energy, but not all of that energy can be harvested by

an inertial harvester. In this section, we provide some observations regarding the energy availability

associated with the motion of objects. We conducted extensive measurements, recording a(t) and

calculating P for a wide range of motions. Our measurements included performing everyday activities

with a variety of objects (see Table 3), shipping a FedEx box containing a sensing unit from Houston,

TX to New York City, NY, transporting sensing units in carry-on and checked-in airplane luggage,

and taking sensing units on cars, subways, and trains.

Below, we present observations based on our measurements. To put the P values in perspective,

we note that human walking typically corresponds to 120 ≤ P ≤ 280 µW, as we will describe in

Section 4.3.

• Only periodic motion is energy-rich – Due to the filter properties of inertial harvesters

(see Fig. 13(b), for example), a motion needs to be periodic to be “harvestable”. The vast

majority of common object motions are not periodic, and hence the corresponding energy

availability is low. For example, we attached a sensing unit to a book and observed that when
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the book was being taken off the shelf, read, or put back on the shelf, P < 10 µW. For a

sensing unit attached to a pencil used by a student to write homework, 10 ≤ P ≤ 15 µW.

Even high-acceleration non-periodic motions, such as a plane landing and taking off, and an

accelerating or decelerating car, correspond to only limited energy availability (P < 5 µW).

For example, when a unit was placed in a bag checked in on a 3 hour 13 minutes flight, the

recorded a(t) showed that the luggage was subjected to varying high-acceleration motions, but

the P did not exceed 5 µW even during the most turbulent intervals of the flight.

• Damped (softened) object motion is energy-poor – The motion of many objects in our

environment is damped for human comfort (e.g., by door dampers, cabinet drawer dampers,

and springs in swivel chairs). In such cases, most of the motion energy is absorbed in the

dampers and only small amounts can be harvested by external sticker form factor harvesters

(such as, for example, EnHANTs). Opening and closing a drawer, spinning a swivel chair, and

opening and closing a door of a building corresponded to 10 ≤ P ≤ 30 µW, 1 ≤ P ≤ 6.5 µW,

and P < 1 µW, respectively. This suggests that wireless nodes embedded in objects such as

doors and drawers should integrate motion energy harvesters with the mechanical dampers.

• Purposeful object motion can be extremely energy-rich – Periodic shaking of objects

can generate a relatively large amount of energy in a short time (as demonstrated by shake

flashlights). In our experiments, purposeful shaking of a sensing unit corresponded to P of up

to 3,500 µW, that is, 12–29 times more than the power for walking. In IoT applications with

mobile nodes, this can be useful for quickly recharging battery-depleted nodes.

4.3 Human Motion Energy

We now examine a dataset with over 40 participants performing 7 common human motions in

unconstrained environments. The dataset was collected in [111] and used for activity recognition,

rather than energy characterization. We first introduce the study. Then, we characterize the energy

availability for different motions, the variability in motion properties among sensing unit placements

and participants, and the dependence of energy availability on the participant’s physical parameters.
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Figure 17: Characterization of kinetic energy for common human activities, based on a 40-participant
study: (a) average absolute deviation of acceleration, D, (b) dominant motion frequency, fm, and
(c) power harvested by an optimized inertial harvester, P .

4.3.1 Study Summary

The dataset we examine [111] contains motion samples for 7 common human activities – relaxing,

walking, fast walking, running, cycling, going upstairs, and going downstairs – performed by over 40

participants and recorded from the 3 sensing unit placements shown in Fig. 14(b). For each 20

second motion sample in [111], we use the acceleration trace to calculate D, fm, P , and r. To obtain

P , we use the exhaustive search harvester optimization algorithm described in Section 4.1.4. By

determining the best harvester for each motion, we can offer important insights into the harvester

design.

To validate the data from [111], we replicated the measurements with our sensing units. The

results of our measurements were consistent with the provided data. We note that the fm values

calculated for the different motions in the dataset are consistent with the physiology of human

motions.

The statistics of the calculated D, fm, and P are summarized in the boxplots in Fig. 17. For
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Table 4: Energy budgets and data rates based on measurements of common human activities.
Activity Sensing unit # subjects Median fm P (µW) Median r

placement (Hz) 25th per-
centile

Median 75th per-
centile

(Kb/s)

Relaxing
Trouser pocket 42 N/A 1.0 3.1 4.8 0.6
Waist belt 42 N/A 0.3 2.4 4.8 0.5
Trouser pocket 42 N/A 0.2 1.4 5.9 0.3

Walking
Shirt pocket 42 1.9 128.6 155.2 186.0 31.0
Waist belt 42 2.0 151.8 180.3 200.3 36.0
Trouser pocket 42 2.0 163.4 202.4 274.5 40.4

Running
Shirt pocket 42 2.8 724.2 813.3 910.0 162.6
Waist belt 41 2.8 623.5 678.3 752.8 135.6
Trouser pocket 42 2.8 542.3 612.7 727.4 122.5

Cycling
Shirt pocket 30 3.5 37.4 52.0 72.3 10.4
Waist belt 29 3.8 36.3 45.4 59.2 9.1
Trouser pocket 30 1.1 35.6 41.3 59.5 8.3

each of the 7 motions the leftmost (black), middle (red), and rightmost (blue) boxes correspond to

shirt pocket, waist belt, and trouser pocket sensing unit placements, respectively. For each motion

and sensing unit placement, the number of participants that had a(t) samples appears on the top of

Fig. 17(a). On each box, the central mark is the median, the edges are the 25th and 75th percentiles,

the “whiskers” extend to cover 2.7σ of the data, and the outliers are plotted individually. In Table 4

we separately summarize the motion energy characterizations and the data rates for 4 important

motions.

4.3.2 Energy for Different Activities

Relaxing: As expected, almost no energy can be harvested when a person is not moving (P <

5 µW).

Walking and fast walking: Walking is the predominant periodic motion in normal human lives

and thus particularly important for motion energy harvesting. For walking, the median P is 155 µW

for shirt pocket sensing unit placement, 180 µW for waist belt placement, and 202 µW for trouser

pocket placement. These P values are in agreement with previous, smaller-scale, studies of motion

energy harvesting for human walking [39,103]. In comparison, indoor light energy availability is on

the order of 50–100 µW/cm2. Considering harvester energy conversion efficiency estimates [30,116],

a similarly sized harvester would harvest more energy from walking than from indoor light. Fast

walking (which was identified as “fast” by the participants themselves) has higher D and fm than

walking at a normal pace (Fig. 17) and generates up to twice as much P .

Running: Running, an intense repetitive activity, is associated with high D and fm (Fig. 17(a,b)),
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and hence results in 612 ≤ P ≤ 813 µW.

Cycling: For the examined sensing unit placements, cycling generates relatively little energy – the

median P values are 41–52 µW, 3.7–3.9 times less than the P for walking. While the high cadence of

cycling motion results in relatively high fm (Fig. 17(b)), a harvester not on the legs will be subject

to only small displacements, resulting in small values of D (Fig. 17(a)) and P (Fig. 17(c)). For

cycling IoT applications, harvester placements on the lower legs should be considered.

Walking upstairs and downstairs: Our examination demonstrates that human exertion (per-

ceived effort and energy expenditure) does not necessarily correspond to higher motion energy har-

vesting rates. While people exert themselves more going upstairs, the P for going downstairs is

substantially higher than for going upstairs. Specifically, for the downstairs motion, the median P

is 1.78 times higher than the upstairs motion for shirt unit placement, 2.1 times higher for waist

placement, and 1.65 times higher for trouser placement. Although counterintuitive, going downstairs

is associated with higher magnitudes of motion and higher motion frequencies (Fig. 17(a,b)), which

leads to the higher P . We observed the disconnect between perceived human effort and energy

harvesting rates in our own measurements as well, where we noted that highly strenuous activities,

such as push-ups and sit-ups, resulted in higher P values than non-strenuous walking at a normal

pace.

4.3.3 Consistency of Dominant Motion Frequency

To maximize power output, the resonant frequency of a harvester, fr, should “match” the dominant

frequency of motion, fm. In this section, we comment on the variability in fm and provide important

observations for harvester design. Due to space constraints, we leave the study of harvester sensitivity

to different design parameters to future work.

Consistency among sensing unit placements: The same motion will result in a different fm

depending on the sensing unit’s placement on the human body [39, 116]. We observed this in

measurements that we conducted, especially for sensing units attached to the lower legs and lower

arms. However, for the sensing unit placements examined in this section (i.e., shirt pocket, waist belt,

and trouser pocket), the same motion resulted in similar fm values, as can be seen in Fig. 17(b).

These placements are on or near the torso, and are subjected to similar stresses. Cycling is an
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exception; the fm for the trouser pocket placement is different from the other placements. Because

the body is in a sitting position, the stresses experienced by the legs and the torso are different, and

fm differs for the different placements.

The uniformity of fm offers valuable hints for energy harvesting node designers. People are

likely to keep many objects that will become energy harvesting communicating Internet of Things

nodes (for example, keys, wallets, and cell phones) in pockets located in places that correspond to

the placements we examine. This suggests that a harvester will perform well regardless of where a

person chooses to carry such an object.

Inter-participant consistency: For common periodic motions, such as walking and running,

the fm values are relatively consistent among the different participants. The 25th and 75th percentiles

of the participants’ fm values are separated by only 0.15 Hz for walking and by only 0.3 Hz for

running. For less commonly practiced motions (cycling, going upstairs, going downstairs), the

values of fm are less consistent, but are still somewhat similar. This consistency indicates that an

all-purpose harvester designed for human walking or running will work well for a large number of

different people. The next section examines whether harvesters can be tuned to particular human

parameters.

4.3.4 Dependency on Human Height and Weight

We examine the dependency of energy availability on human physiological parameters. We correlate

D, fm, and P obtained for different motions and different participants with their height and weight

data from [111].2 The participants’ height range was 155–182 cm, and their weights range was

44–65 kg. We verified that, in agreement with general human physiology studies, the participants’

height and weight are strongly positively correlated (ρ = 0.7, p < 0.001).

As indicated above, for many activities fm is consistent among different participants. Yet, we

additionally observed fm dependencies on human physiology. For many of the activities we examined,

we determined negative correlations of fm with the participants’ height and weight. When walking,

running, and going upstairs and downstairs, heavier and taller people took fewer steps per time

interval than lighter and shorter people.

2The dataset [111] is also annotated with participants’ age and gender. However, the age range (20 to 23 years)
and the number of females (10 participants) are insufficient for obtaining statistically significant correlations.
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For example, for going upstairs with waist belt sensing unit placement, fm and the participant’s

height are correlated as ρ = −0.34 (p < 0.05, n = 39). When going upstairs, the taller half

of the participants made, on average, 9 fewer steps per minute (0.15 Hz) than the shorter half

(fm = 1.85 and 2.05 Hz, correspondingly). For running, with trouser pocket placement, fm and the

participant’s weight are correlated as ρ = −0.46 (p < 0.01, n = 39). When running, the heavier half

of the participants made, on average, 18 fewer steps per minute (0.3 Hz) than the lighter half. This

suggests that future harvester designs may benefit from targeting harvesters with different fr values

for human groups with different physiological parameters. For example, different harvesters may be

integrated in clothing of different sizes.

Generally, motion energy availability increases as fm increases [61]. However, in human motion,

other dependencies may additionally come into play. In our study, for running with trouser pocket

sensing unit placement, we determined a positive correlation between D and participants’ height

(ρ = 0.35, p < 0.05, n = 38) and a positive correlation between P and participants’ height (ρ = 0.38,

p < 0.01, n = 38). For the taller half of the participants, the average P is 20% higher than

for the shorter half (704 and 582 µW, respectively). Studies with larger number of participants,

wider participant demographics, and wider range of participant parameters will most likely identify

several additional dependencies. This will allow harvester designers to develop harvesters for different

demographics, as well as to provide guarantees on the performance of different harvesters based on

different human parameters.

4.4 Long-term Human Mobility

The results presented in the previous section are based on short motion samples from an activity

recognition dataset. In this section, we present results of our own, longer-term, motion measure-

ments. We describe our set of day-long human mobility measurements and discuss energy budgets

and generation process properties.
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Figure 18: Motion energy characterization for a 3 hour run: (a) the absolute deviation of acceleration,
D, as a function of time, (b) dominant motion frequency, fm, as a function of time, and (c) the
distribution of the corresponding harvested power, P (t).

4.4.1 Prolonged Activities

To study motion energy properties over time, we collected a set of measurements of longer activity

durations (over 20 minutes). We considered long walks, bike rides, runs, and other activities, per-

formed in normal environments (i.e., not on a treadmill or a stationary bike). To the best of our

knowledge, the properties of motion of longer samples have not been analyzed before.

The measurements demonstrate that for prolonged activities, D, fm, and P (t) vary substantially

over time. This variability is related to physiological parameters, such as changes in cadence or

posture over time due to fatigue, and changes in the surrounding environment, such as traffic lights,

terrain changes, or pedestrian traffic. For example, Fig. 18 shows D, fm, and P corresponding to a

3 hour run, calculated for 1-second a(t) intervals. In this trace, the average D changes subtly over

time (Fig. 18(a)), and fm varies continuously in the 2.6–3.4 Hz range (Fig. 18(b)). Correspondingly,

while the mean P (t) is 550 µW, the 10th–90th percentiles of P (t) span the range of 459–710 µW

(Fig. 18(c)).

The variability of P (t) throughout an activity suggests that node energy management policies

are essential even for specifically targeted energy harvesting node applications, such as nodes for

fitness runners or cyclists. In the following sections, we demonstrate even more variability in P (t)

for the regular everyday human mobility patterns.
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Table 5: Energy budgets, variability, and data rates based on collected traces for daily human
routines.
Parti-
cipant

Occupation and
commute

#
Days

Total
dur.(h)

Optimized harvester rd,
avg

P
H4

(µW),
min/avg/max

% ON,
min/avg/max

P (µW),
min/avg/max

Pd (µW),
min/avg/max

(Kb/s)

M1 Undergraduate stu-
dent, living on cam-
pus

5 60.4 6.9 / 13.8
/ 17.3

4.8 / 6.5 /
8.1

1.3 5.0 / 8.5 / 10.9 5.4 / 9.9 / 12.2

M2 Undergraduate stu-
dent, commuting to
campus

3 27.7 23.3 / 29.0
/ 38.2

8.4 / 11.5
/ 17.7

2.3 17.1 / 19.6 / 24.5 13.6 / 16.1 / 18.4

M3 Undergraduate stu-
dent, living on cam-
pus

9 62.0 2.4 / 7.16
/ 13.4

0.6 / 2.02
/ 3.6

0.4 2.0 / 5.8 / 12.2 3.6 / 6.0 /9.95

M4 Graduate student,
commuting to cam-
pus

7 80.1 1.4 / 11.98
/ 25.3

0.6 / 5.6 /
10.7

1.1 1.4 / 11.98 / 25.3 2.8 / 12.7 / 18.1

M5 Software developer,
commuting to office

1 11.0 16.3 7.5 1.5 15.9 11.5
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Figure 19: Kinetic energy for normal daily human routine: (a) acceleration, a(t), recorded over
11 hours for participant M5, and (b) the power harvested, P (t).

4.4.2 Day-Long Human Mobility

To determine the daily energy available to a mobile node with an inertial harvester, we collected

acceleration traces from different participants during their normal daily routines. Our results are

based on over 200 hours of acceleration information we obtained for 5 participants for a total of

25 days. Some information about the participants is provided in Table 5. The participants were

instructed to carry a sensing unit in any convenient way. Thus, the measurements correspond to

the motion that a participant’s keys, a mobile phone, or a wallet would experience.

Fig. 19 shows the a(t) for a day-long trace of participant M5, and the corresponding P (t). For

all the collected traces, the dominant motion frequency, fm, range is 1.92–2.8 Hz, corresponding to
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human walking.

The calculated energy budgets are summarized in Table 5. We calculated P , the average power

a harvester would generate over the length of the trace, as well as Pd, the average power a harvester

would generate over a 24-hour interval. To calculate Pd we assumed that when the sensing unit did

not record data (e.g., before the participants got dressed for school or work), it was stationary and

that a harvester would not generate energy during these intervals. Specifically, for a T hour-long

measurement trace, Pd = P · T/24. For each of the participants, Table 5 summarizes the minimum,

average, and maximum P and Pd over the different measurement days, and the data rate rd that a

node would be able to maintain continuously throughout a day when powered by the harvested P d.

For completeness, for all participants we additionally calculate P
H4

, the average power a particular

harvester, same for all participants (in this case, the harvester calculated based on the traces for the

participant M4), would harvest.

For most participants, an inertial harvester can provide sufficient power to continuously maintain

a data rate of at least 1 Kb/s (i.e., Pd > 5 µW). This is comparable with the data rates estimated

in Section 3.3 for nodes with a similarly sized light harvester in indoor environments (not exposed

to outdoor light).

The majority of inter-participant and inter-day differences seem to relate to the participants’

amount of walking. For example, the participant M2, whose P and Pd values are higher than

the values for the other participants, has a relatively long walk to the office, and walks frequently

between two different offices in the same building. Other factors (e.g., unit placement, amount of

daily activity as perceived by the participants) appear to be only of secondary importance. We note

that the majority of traces that correspond to Pd < 5 µW (and thus rd <1 Kb/s) correspond to

participants working from home. Overall, daily routines that involve a lot of walking correspond to

relatively high levels of energy availability.

4.4.3 Harvesting Process Variability and Properties

The amount of energy that can be harvested varies widely throughout the day. As shown in Sec-

tion 4.3, walking generates substantial amounts of energy, while being stationary generates little.
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Figure 20: Motion energy harvesting process variability for participant M1: (a) the percentage of
the total energy harvested at each of the demonstrated power levels, P (t), and (b) the percentage
of time the power is harvested at each of the demonstrated P (t) (notice that for 0 ≤ P (t) ≤ 15, the
value is 91%).

Physiological studies (e.g., [66]) have shown that people are at rest a majority of the time. Corre-

spondingly, in our measurements, P (t) is low for most of the day and over 95% of the total energy is

collected during only 4–7% of a day. For example, Fig. 20 shows, for participant M1, the percentage

of the total energy that would be harvested over different ranges of P (t) and the percentage of the

time that the harvester would generate these P (t) values. For this participant, the harvester would

generate P (t) < 15 µW 91% of the time, but only 6.1% of the total energy would be harvested

during this time.

Consider anON/OFF representation of the energy harvesting process, Ponoff(t), where Ponoff(t)←

1 (“ON”) if P (t) > THR, and Ponoff(t) ← 0 (“OFF”) otherwise. For the analysis below, we em-

pirically set THR = 10 µW. The results are similar for 10 ≤ THR ≤ 40 µW. For all participants,

it can be seen that the process is ON for less than 20% of the time (Table 5). Note that the par-

ticipants do not lead sedentary lifestyles; their activity patterns are well in line with general health

guidelines. However, the recommend 30 minutes of physical activity per day correspond to only

9% of an 11 hour measurement trace. Additionally, the typical duration of ON intervals is short

– on the order of seconds. While some of the ON intervals are long (over 200 seconds), the vast

majority of the ON intervals (78.5–89.0%) are shorter than 30 seconds; the median ON intervals

are 5–9.5 seconds. The longer ON intervals correspond to commuting (e.g., walking from a subway

station to a campus building), and represent only 1–3% of the ON intervals.
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In summary, P (t) is low for the majority of the time, and when it does become high, it stays

high for only a brief period of time. This emphasizes the need for energy management policies for

communicating wireless nodes powered by this energy.

4.5 Conclusions and Future Work

In this chapter, we considered kinetic (motion) energy for ultra-low-power energy harvesting nodes.

Based on our measurements, we provide observations regarding the energy of object motion. We also

thoroughly study the energy associated with human motion. To characterize human motion energy

availability, we use the results of our measurement campaign that include 200 hours of acceleration

traces from day-long human activities. Moreover, we use a dataset of 7 common human motions

performed by over 40 participants [111]. With regards to object motion, our study demonstrates

relatively low energy availability levels for most object motions. In particular, the study highlights

the need for periodic motion which is common in human motion but is uncommon for many objects.

For human motion, we demonstrate the importance of different human parameters. For example, we

show that the taller half of the participants can harvest on average 20% more power than the shorter

half. Additionally, we show that the energy availability from normal human routines is compatible to

energy availability from indoor lights in enclosed environments. Moreover, we demonstrate that the

power generation process associated with human motion is highly variable, with only brief intervals

of high power levels.

As part of future work, we plan to make publicly available (e.g., publish via CRAWDAD) the

developed modeling code and the motion dataset we assembled. To the best of our knowledge,

this will be the first publicly available long-term human motion acceleration dataset. Additional

future work may include joint measurements of motion and light energy availability. Such studies

would be particularly important for designing energy harvesting nodes relying on emerging combined

(multi-source) energy harvesters, such as [4].
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Chapter 5

Resource Allocation Algorithms

for Energy Harvesting Nodes

In this chapter, we formulate and examine resource allocation problems for energy harvesting nodes.

As demonstrated in Chapters 3 and 4, the energy available to energy harvesting nodes varies in

time. Inspired by the needs of tracking and monitoring applications (such as some of the applica-

tions proposed for EnHANTs), to avoid node outages and to gain control over node and network

behavior, we aim to allocate energy harvesting nodes’ resources in a uniform way with respect to

time. That is, we aim to obtain “smooth” resource allocations which ensure that the nodes and the

networks maintain a certain level of performance at all times despite the variations in the energy

availability.1 To formulate the resource allocation problems, we use the utility maximization and the

lexicographic maximization frameworks. These frameworks are typically applied to achieve fairness

among nodes [7, 19, 48, 55, 67]. We apply them to achieve time-fair resource allocations.

We mainly consider deterministic energy profile and stochastic environmental energy models (see

Section 1.2), and focus on single node and link scenarios. For the deterministic energy profile model,

we formulate optimization problems and introduce algorithms for solving the formulated problems.

We used the algorithms to obtain numerical results for various cases, using, as energy inputs, light

1The need for policies that enable such “smooth” behavior in energy harvesting devices has been noted by many
researchers [19, 46, 64, 102].
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energy traces we presented in Chapter 3. We also examine a range of simple policies, for which we

provide performance guarantees. For the stochastic energy model, we consider the case in which the

energy inputs are i.i.d. random variables. We formulate resource allocation problems as average cost

Markov Decision Process (MDP) problems. We study the uniform discretization of the problem,

for which we obtain a bound on the performance degradation due to discretization. We introduce

algorithms for solving the problem, and provide performance guarantees for a set of simple policies.

Additionally, we briefly consider model-free approaches, for which we examine the performance

of a set of simple online policies with the kinetic energy traces we presented in Chapter 4.

Several contributions of this chapter are based on joint work with A. Wallwater or A. Bernstein.

A. Wallwater contributed to problem formulations and analysis of some of the algorithms for the

deterministic profile energy model. A. Bernstein contributed to problem formulations and analysis

of some of the algorithms for the stochastic energy model.

In this chapter, we first present the model and the frameworks (Section 5.1). Then, we present

the formulated problems and the solution algorithms for the deterministic profile energy model (Sec-

tion 5.2) and the stochastic energy model (Section 5.3). Finally, we briefly examine the performance

of online policies with kinetic energy traces (Section 5.4).

We previously presented some of the results that appear in this chapter in [21, 30, 31].

5.1 Model

We focus on discrete-time models, where the time axis is separated into K slots, and a decision is

made at the beginning of a slot i (i = {0, 1, ...,K − 1}). We denote the energy storage capacity by

C and the amount of energy stored by B(i) (0 ≤ B(i) ≤ C). We denote the initial and the final

energy levels by B0 and BK , respectively. Most policies we consider aim to ensure energy neutrality

– full spending, yet not over-spending, of the environmental energy, i.e., BK = B0 [19,46]. For most

evaluations, we use B0 = BK = C/2.

Table 6 summarizes the notation used in this chapter.

We focus on the deterministic profile and stochastic environmental energy models, introduced in

Section 1.2. We let D(i) denote the environmental energy exposure rate for a node in a time slot
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Table 6: Nomenclature.
i, K Time slot index, and number of time slots
C Energy storage capacity (J)
B(i), B0, BK Energy storage state, initial, and final levels (J)
D(i) Environmental energy exposure rate (W)
Q(i) Energy harvesting rate (W)
s Energy spending rate (J/slot)

Q̂ Total energy to be allocated (J)
∆ Quantization resolution (J)
r Data rate (bits/s)
ctx, crx Energetic costs to transmit and to receive (J/bit)
U(·) Utility function
Z Objective function value
T , TL Node downtime, link downtime

i. The energy profile is a vector {D(0), D(1), ..., D(K − 1)} that corresponds to the environmental

energy exposure rates at different time slots. For the stochastic energy models, the environmental

energy exposure rate is a stochastic process {D(i)}. For simplicity, we assume that {D(i)} are

independent identically distributed (i.i.d.) random variables2, and useD to denote the representative

variable for D(i), with pD being its probability density function (pdf).

The energy a node harvests from the environment in a time slot i is denoted by Q(i). Q(i) is a

function of D(i), and may also depend on B(i). Specifically, for a battery-based device, Q(i) = D(i).

For a capacitor -based device, Q(i) = q(D(i), B(i)), where q(D(i), B(i)) is a non-linear function

of D(i). We refer to energy storage where Q(i) is linear in D(i) as linear energy storage, and to

energy storage where Q(i) is nonlinear in D(i) as nonlinear, or general energy storage. Functions

q(D(i), B(i)) for a capacitor, derived from capacitors’ electric properties, were previously shown in

Fig. 3. To derive numerical results for nonlinear energy storage, we use q(D(i), B(i)) = D(i)−D(i) ·

(B(i)−C/2)2/(βnonlin · (C/2)2), where βnonlin is the energy storage nonlinearity parameter.3 These

functions have properties similar to the capacitor-based energy harvesting system’s q(D(i), B(i))

functions previously shown in Fig. 3.

The node energy spending rate is denoted by s(i). The energy storage evolution of an energy

harvesting device can be expressed as:

B(i) = min{B(i− 1) +Q(i− 1)− s(i− 1), C}. (1)

2In [22], consider D(i) with other properties.
3We note that Q(i) = D(i) for βnonlin → ∞.
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We denote the total amount of energy the device is allocating by Q̂, where Q̂ =
∑

i Q(i)+(B0−BK).

For simplicity, some of the developed energy allocation algorithms use quantized B(i) andQ(i) values.

We denote the quantization resolution by ∆.

We consider the behavior of single nodes and node pairs (links). We denote the endpoints of a

link by u and v, and use these as subscripts for link endpoints’ energy variables (e.g., Cu and B0,u

correspond, respectively, to node u’s energy storage capacity and initial storage state). We denote

the data rates of u and v by ru(i) and rv(i), respectively.

For a single node we optimize the energy spending rates s(i), which can provide inputs for

determining transmission power, duty cycle, sensing rate, or communication rate. For a link, we

optimize the communication rates ru(i) and rv(i). We assume that the link endpoints are ‘saturated’,

that is, always have information to send to each other. We denote the costs to transmit and receive

a bit by ctx and crx. The constraints relating energy spending rates and data rates for a link (u,v)

at time slot i are:

ctxru(i) + crxrv(i) ≤ su(i), ctxrv(i) + crxru(i) ≤ sv(i). (2)

Often the incoming energy varies throughout the day or among different days. We aim to

allocate the energy or the data rates as much as possible in a uniform way with respect to time.

We achieve this objective by using the lexicographic maximization and utility maximization frame-

works. These frameworks are typically applied to achieve fairness among nodes [7, 19, 48, 55, 67].

In this work we apply them to achieve time-fair resource allocation. In the lexicographic max-

imization framework we lexicographically maximize the vector {s(0), . . . , s(K − 1)} (for a node),

or the vector {ru(0), . . . , ru(K − 1), rv(0), . . . , rv(K − 1)} (for a link). In utility maximization

framework we maximize the objective function, Z, Z =
∑K−1

i=0 U (s (i)) (for a single node) or Z =
∑K−1

i=0 [U (ru (i)) + U (rv (i))] (for a link), where U(·) are concave non-decreasing twice-differentiable

continuous functions (e.g., U(·) = log(·), U(·) =
√
(·), U(·) = (·)1−α/(1 − α), α > 1).4 In general,

the solutions obtained by applying the two frameworks are not the same. The solutions are identical

in certain cases, such as those we examine in Lemma 1 and in Observation 3.

We evaluate the energy harvesting adaptive policies in terms of the objective function values, Z.

To derive numerical results, we use U(·) = log(·) or U(·) = log(1+(·)), where the “(·)” is s(i) in node

4We note that the utility maximization framework achieves proportional fairness for U (·) = log (·) and max-min
fairness for U(·) = (·)1−α/(1− α) with α → ∞ [62].
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scenarios, and r(i) in link scenarios. We use superscripts to indicate the policy under which Z was

obtained (e.g., Zopt for the optimal policy, Zcr for the constant rate policy). We additionally consider

the downtimes of nodes and links, namely, the fraction of slots the node or the link do not have energy

expenditure allocated. We denote the downtime of a node u by Tu, where Tu = |{i|su(i) = 0}|/K,

and the downtime of a link (u, v) by TL(u,v), where TL(u,v) = |{i|ru(i) = 0, rv(i) = 0}|/K. Additional

performance metrics used with the model-free approaches in Section 5.4 are introduced in the section

itself.

5.2 Deterministic Energy Profile

In this section, we consider the deterministic profile energy model, which is similar to the models

studied in [19, 46, 65]. We formulate optimization problems that apply to both linear and nonlin-

ear energy storage for a single node (Section 5.2.1) and for a link (Section 5.2.2). We introduce

algorithms of different complexity for different settings, and additionally consider a set of simple

algorithms, for some of which we obtain performance guarantees.

The proofs for Section 5.2.1 appear in Appendix 5.A.1. The proofs for Section 5.2.2 appear in

Appendix 5.A.2.

5.2.1 Single Node: Optimizing Node Energy Spending

To achieve smooth energy spending for a node, we formulate the following problems where we

optimize the node energy allocation vector {s(i)} using the utility maximization and lexicographic

maximization frameworks.
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Time Fair Utility Maximization (TFU) Problem:

max
s(i)

K−1∑

i=0

U(s(i)) (3)

s.t.: s(i) ≤ B(i) ∀ i (4)

B(i) ≤ B(i − 1) +Q(i− 1)− s(i− 1) ∀ i ≥ 1 (5)

B(i) ≤ C ∀ i (6)

B(0) = B0; B(K) ≥BK (7)

B(i), s(i) ≥ 0 ∀ i. (8)

Recall that U(s(i)) is a concave non-decreasing function. Recall, additionally, that for linear energy

storage, Q(i) = D(i), and for nonlinear energy storage, Q(i) = q(D(i), B(i)). Constraint (4) ensures

that a node does not spend more energy than it has stored, (5) and (6) represent the energy storage

evolution dynamics, and (7) sets the initial and final energy storage levels to B0 and BK .

Time Fair Lexicographic Assignment (TFLA) Problem:

Lexicographically maximize: {s(0), ..., s(K − 1)} (9)

s.t.: constraints (4)− (8).

Fig. 21 shows an example of node energy allocation vectors {s(i)} obtained by solving the TFU

and the TFLA problems. Fig. 21(a) shows the energy profile {D(i)} used as an input to these

problems. This energy profile corresponds to the light energy available in an indoor location L-1

(see Table 1). Fig. 21(b) shows the energy allocation vectors {s(i)} obtained by solving the TFLA

problem under the linear energy storage model and by solving the TFU problem under the nonlinear

energy storage model.5

The optimal solution to the TFU Problem is bounded as follows:

Observation 1 Zopt ≤ K · U
((

B0 − BK +
∑K−1

i=0 D(i)
)
/K
)
.

For linear energy storage (q(D(i), B(i)) = D(i), i.e., a battery), we refer to the TFU and the

5The solutions were obtained for the following parameters: C = 0.5 · Q̂, B0 = BK = 0.4 · C, U(s(i)) = log(s(i)),
βnonlin = 1.05.
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Figure 21: (a) Node energy profile {D(i)}, and (b) the corresponding energy allocation vectors {s(i)}
obtained by solving the TFLA problem (for linear energy storage model) and the TFU problem (for
nonlinear energy storage model).

TFLA problems as TFU-LIN and TFLA-LIN problems. For these problems, we obtain the

following Lemma.

Lemma 1 The optimal solutions to the TFU-LIN problem and the TFLA-LIN problem are equal.

Solution Algorithms

For solving the formulated problems, we provide a general algorithm (for linear and nonlinear energy

storage) of a relatively high complexity, a faster algorithm for linear energy storage, and a very fast

algorithm for large linear energy storage.

Assuming energy inputs and energy storage to be quantized, the TFU problem can be solved by

the dynamic programming-based Time Fair Rate Assignment (TFR) algorithm (Algorithm 1).

Algorithm 1 Time Fair Rate Assignment (TFR).

h(i, B)← −∞, s(i)← 0 ∀ i < K, ∀ B;
h(K,B)← −∞ ∀ B < BK ;
h(K,B)← 0 ∀ B ≥ BK ;
for i = K − 1; i ≥ 0; i−−; do
for B = 0;B ≤ C;B ← B +∆; do
for s = 0; s ≤ B; s← s+∆; do
ŝ← s; ĥ← U(ŝ) + h(i + 1,min(B + q(D(i), B) − ŝ, C);

if ĥ > h(i, B) then

h(i, B)← ĥ; s(i)← ŝ;
return h(0, B0), and associated s(i) ∀ i

In the TFR algorithm, for each {i, B(i)} we determine

h(i, B(i)) = max
s(i)≤B(i)

[U(s(i)) + h(i+ 1,min(B(i) +Q(i)− s(i), C))].
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Going backwards from i = K−1, we thus obtain a vector {s(0), ..., s(K−1)} that maximizes h(0, B0);

this is the optimal energy allocation vector. Recall that we denote the energy quantization resolution

by ∆. In the TFR algorithm we calculate h(i, B(i)) for each of the K · (C/∆) tuples {i, B(i)}.

Maximizing an instance of h(i, B(i)) requires considering all s(i) such that s(i) ≤ B(i) ≤ C. Thus,

for each tuple {i, B(i)}, the TFR algorithm performs at most C/∆ operations. The running time of

the TFR algorithm is therefore O(K · [C/∆]2).

For solving the TFLA-LIN and the TFU-LIN problems, we develop the Progressive Filling

(PF) algorithm (Algorithm 2), inspired by the algorithms for max−min fair flow control [7]. The

PF algorithm starts with s(i)← 0 ∀ i, and iterates through the slots, increasing the s(i) value of each

slot by ∆ on every iteration. The algorithm verifies that increasing s(i) does not result in shortage

of energy for other slots, or in the lack of final energy BK . An s(i) value is increased only when it

does not interfere with the spending in slots with smaller s(i) values, thus the resulting solution is

max−min fair. At each step of the PF algorithm, the verification subroutine of complexity O(K)

is executed. Recall that Q̂ =
∑

iQ(i) + (B0 − BK). The algorithm takes Q̂/∆ spending increase

steps, and K additional steps to ‘fix’ the slots. Thus, the PF algorithm runs in O(K · [K + Q̂/∆])

time. Assuming that K is small compared to Q̂/∆, for C and Q̂ that are on the same order, the

PF algorithm is faster than the TFR algorithm.

Algorithm 2 Progressive Filling (PF).

Afix ← ∅; s(i)← 0 ∀ i;
while Afix 6= ∅ do
for i = 0; i ≤ K − 1; i++; do
if i ∈ Afix then
s̃(j)← s(j) ∀ j ∈ [0,K − 1]; s̃(i)← s̃(i) + ∆;
valid← check validity(s̃);
if valid == TRUE then s(i)← s̃(i);
else Afix := Afix ∪ i;

function check validity(s̃):
B(i)← 0 ∀ i; B(0)← B0; valid← TRUE;
for i = 1; i ≤ K; i++; do
B(i)← min(C, B(i − 1) +Q(i− 1)− s̃(i − 1));
if s̃(i) > B(i) then valid← FALSE;

if B(K) < BK then valid← FALSE;
return valid

When the energy storage is large compared to the energy harvested, the TFLA-LIN and TFU-LIN
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problems can be solved easily. Below we define Large Storage (LS) and generalized Large Storage

(LS-gen) Conditions, and demonstrate that when they hold, the optimal policy is a simple one.6

Let s(i) = Q̂/K ∀ i, and let B̃(i) = [
∑i−1

j=0 Q(j)]− (i− 1) · s(i) ∀ i 1 ≤ i ≤ K.

Definition 1 The LS Conditions hold if B0 ≥ | min
1≤i≤K

B̃(i)| and C −B0 ≥ max
1≤i≤K

B̃(i).

Definition 2 The LS-gen Conditions hold if B0 ≥ [
∑

iQ(i)] · (1−1/K) and C−B0 ≥ [
∑

iQ(i)] ·

(1− 1/K).

Lemma 2 When the LS Conditions or the LS-gen Conditions hold, the optimal solution to the

TFLA-LIN problem is s(i) = Q̂/K ∀ i.

Lemma 3 When the LS Conditions or the LS-gen Conditions hold, the optimal solution to the

TFU-LIN problem, for U(s(i)) that are twice differential strictly concave on (0, Q̂], and that satisfy

(I) U ′(·) > 0 on (0, Q̂] and U ′ (0) = 0,

or (II) U ′(·) > 0 on [0, Q̂],

or (III) U ′(·) > 0 on (0, Q̂] and lim
x→0

U (x) = −∞,

is s(i) = Q̂/K ∀ i.

Examples of U(·) that satisfy (I ), (II ), (III ) include: (I ): U(·) = (·)1−α/(1− α) for 0 < α < 1 [62],

(II ): U(·) = log(α + (·)) for α > 0, used, for α = 1, in e.g., [10, 21], (III ): U(·) = log(·), used in

e.g., [55]. Verifying that the LS Conditions (or the LS-gen Conditions) hold and determining the

corresponding optimal policy is computationally inexpensive.

Simple Policies

In addition to solving the formulated problems optimally, we can also use simple policies. We

consider Spend-What-You-Get (SG) policies, where the node aims to spend all the energy harvested

in a slot, that is s(i)← Q(i) ∀ i. Similar policies were proposed in [55]. The SG policies have very

6To determine if the LS Conditions hold, a node needs to know {Q(0), ..., Q(K − 1)}, while determining if the
LS-gen Conditions hold requires only the knowledge of

∑

i Q(i). LS-gen Conditions can be used, for example, if light
energy harvesting nodes characterize their energy availability by the daily irradiation Hd (see Chapter 3) and do not
calculate their energy profiles.
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low complexity. For the deterministic profile energy model, we additionally consider Constant Rate

(CR) policies, where a node spends energy at the same rate in all time slots, that is, s(i)← scr ∀ i.

Similar policies were proposed in [19].

We now provide approximation ratios for the CR and SG policies (Propositions 1 and 2, cor-

respondingly). Proposition 2 applies to the general energy storage model, while Proposition 1 is

restricted to the linear energy storage model.

Proposition 1 Under the CR policy, for BK = B0 (energy neutrality), BK ≤
∑K−1

i=0 Q(i), and

U(s(i)) = log(1 + s(i)),

Zcr ≥ Zopt ·
(
B0/

K−1∑

i=0

Q(i)

)
. (10)

For example, it follows that forB0 = C/2 and
∑K−1

i=0 Q(i) = 3·C/4, the CR policy is a 1.5-approximation

algorithm.

Proposition 2 Under the SG policy, for U(s(i)) = log(M + s(i)) where M is a constant7,

Zsg ≥ Zopt · log(G{Q(i) +M})/ log({Q(i) +M}), (11)

where {·} and G{·} denote, respectively, the arithmetic and the geometric means of a sequence.

For example, consider a {Q(i)} where in L (out of K) slots Q(i) = A (non-zero constant), and

Q(i) = 0 in other slots. Such Q(i) may correspond to the case where the indoor lights are on for a

portion of the day. Using Proposition 2, we can show that for BK = B0 and U(s(i)) = log(1+ s(i)),

the SG policy is a K/L-approximation algorithm.

5.2.2 Link: Optimizing Data Rates

For a link, we formulate the following problems where we optimize data rate allocation vectors

{ru(i), rv(i)}.
7Note that this proposition can be applied to different utility functions, e.g., to U(s(i)) = log(0 + s(i)) and to

U(s(i)) = log(1 + s(i)).



58

Link Time Fair Utility Maximization (LTFU) Problem:

max
ru(i),rv(i)

K−1∑

i=0

[U(ru(i)) + U(rv(i))] (12)

s.t. : ctxru(i) + crxrv(i) ≤ su(i) ∀ i (13)

ctxrv(i) + crxru(i) ≤ sv(i) ∀ i (14)

u, v : constraints (4)− (8).

Link Time Fair Lexicographic Assignment (LTFL) Problem:

Lexicographically maximize:

{ru(0), ..., ru(K − 1), rv(0), ..., rv(K − 1)} (15)

s.t. : (13), (14); u, v : constraints (4)− (8).

Since the optimal solution to the LTFL problem is max−min fair, it assigns the data rates such

that ru(i) = rv(i) ∀ i (since for the max−min fairness objective no increase in one of the rates can

“outweigh” the decrease in the other). Thus, the LTFL problem can be restated as:

Lexicographically maximize: {r(0), ..., r(K − 1)} (16)

s.t. : r(i) · (ctx + crx) ≤ min(su(i), sv(i)) ∀ i (17)

u, v : constraints (4)− (8)

where r(i) = ru(i) = rv(i).

Examples of solutions to the LTFU and LTFL problems are shown in Fig. 22. Fig. 22(a) shows

the energy profiles of nodes u and v. These energy profiles correspond to the light energy available

in indoor locations L-1 and L-2 (see Table 1) on the same day. Fig. 22(b) shows the data rate

allocation vectors {ru(i)} and {rv(i)} obtained by solving the LTFU and the LTFL problems.8

8The solutions were obtained for the following parameters: Cu = Cv = 0.5 ·
∑

i Qu(i), B0,u = B0,v = BK,u =
BK,v = 0.25 · Cu, ctx = 0.1 nJ/bit, crx = 1 nJ/bit, U(r(i)) = log(r(i)), and Q(i) = D(i) (linear energy storage).
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Figure 22: (a) Energy profiles of link endpoints u and v, and (b) the corresponding data rate
allocation vectors {ru(i)} and {rv(i)} obtained by solving the LTFL and the LTFU problems.

We now demonstrate an upper bound on the optimal solution to the LTFU problem (Observa-

tion 2). The observation is restricted to the linear energy storage model.

Observation 2 Let Z̃ denote the solution to

max
ru(i),rv(i)

{U(ru(i)) + U(rv(i))} . (18)

under constraints (13), (14), for su(i)← [B0,u −BK,u +
∑

j Qu(j)]/K and sv(i)← [B0,v −BK,v +

∑
j Qv(j)]/K.9 The optimal solution is bounded as:

Zopt ≤ K · Z̃. (19)

In general, the solutions to the LTFL and LTFU problems are not the same. The following

Observation identifies a case where the solutions are identical.

Observation 3 When ctx = crx, the LTFL problem and the LTFU problem have the same solution.

For quantized energy values, the LTFU problem can be solved with an extension of the TFR

algorithm, referred to as the LTFR algorithm. Over all {ru(i), rv(i)} such that ctxru(i)+ crxrv(i) =

su(i) ≤ Bu(i), ctxrv(i) + crxru(i) = sv(i) ≤ Bv(i), the LTFR algorithm determines, for each

{i, Bu(i), Bv(i)},

h(i, Bu(i), Bv(i)) = max[U(ru(i)) + U(rv(i))

+ h(i+ 1,min(Bu(i) +Qu(i)− su(i), Cu),min(Bv(i) +Qv(i)− sv(i), Cv))].

9For example, for ctx = crx, Z̃ = 2 · U([1/(ctx + crx)] · min
{

[B0,u − BK,u +
∑

i Qu(i)]/K, [B0,v − BK,v +
∑

i Qv(i)]/K
}

).
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Figure 23: Comparison of the optimal (OPT) link policy determination (a), and the Decoupled Rate
Control (DRC) algorithms (b).

Vectors {ru(0), ..., ru(K − 1)} and {rv(0), ..., rv(K − 1)} that maximize h(0, B0,u, B0,v) are the op-

timal. Since this formulation considers all {i, Bu(i), Bv(i)} combinations and examines all feasi-

ble rates ru(i) and rv(i) for each combination, the overall complexity of the LTFR algorithm is

O(K · [Cu/∆]2 · [Cv/∆]2).

For linear energy storage, the LTFL problem can be solved by an extension of the PF algorithm,

referred to as the LPF algorithm. Similarly to the PF algorithm, the LPF algorithm goes through all

slots and increases the slots’ allocation by ∆ when an increase is feasible. Unlike the PF algorithm,

however, the LPF algorithm allocates the energy of both nodes u and v. The running time of the

LPF algorithm is O(K · [K + (Q̂u + Q̂v)/∆]).

Decoupled Rate Control (DRC) Algorithms

Solving the LTFU or the LTFL problems directly may be computationally taxing for small de-

vices with limited capabilities. Instead, the nodes may use the following low complexity heuristic

algorithms, which do not require extensive exchange of information.

Decoupled Rate Control (DRC) algorithms: Initially, nodes u and v determine independently

from each other their energy spending rates su(i) and sv(i) for every slot i (i.e., using the PF algo-

rithm). Then, for each slot i, under constraints (13) and (14), the nodes obtain a solution to

max
ru(i),rv(i)

U(ru(i)) + U(rv(i)) (20)

if the LTFU problem is being solved (LTFU-DRC algorithm), and to

max r(i) (21)
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if the LTFL problem is being solved (LTFL-DRC algorithm). These subproblems (each considers a

single slot i) can be easily solved. For the LTFU-DRC algorithm, a closed-form O(1) solution to the

subproblem can be obtained for each particular function U(s(i)). For example, for U(s(i)) = log(s(i))

with ctx = ρ · crx, ρ > 1, for the case of sv(i) = γsu(i), 0 ≤ γ ≤ 1, the optimal solution is either

{ru(i), rv(i)} = (su(i)/(crx ·(ρ2−1))){ρ−γ, γ ·ρ−1} or {ru(i), rv(i)} = {sv(i)/(2·crx), sv(i)/(2·ctx)}.

For the LTFL-DRC algorithm, due to (17), the subproblem solution is r(i) = min(su(i), sv(i))/(ctx+

crx).

Fig. 23 demonstrates the difference between solving link problems optimally and applying the

DRC algorithms.

For linear energy storage, when the storage is large compared to the energy harvested for both

u and v, solving a single instance of the LTFU-DRC or LTFL-DRC problem obtains the overall

solution. Moreover, as shown in the Lemma below, in this case the DRC solution is optimal. Thus,

in such case the optimal solution can be calculated with little computational complexity.

Lemma 4 If the LS Conditions or the LS-gen Conditions hold for nodes u and v, the LTFL-DRC

algorithm obtains the optimal solution to the LTFL problem.

Lemma 5 If the LS Conditions or the LS-gen Conditions hold for nodes u and v, for U(·) that are

twice differential strictly concave on (0, R] where R = max {Q̂u, Q̂v}/min {ctx, crx}, and that satisfy

(I) U ′(·) > 0 on (0, R] and U ′ (0) = 0,

or (II) U ′(·) > 0 on [0, R],

or (III) U ′(·) > 0 on (0, R] and lim
x→0

U (x) = −∞,

the LTFU-DRC algorithm obtains the optimal solutions to the LTFU problem.

For linear energy storage, even when the LS conditions do not hold, the LTFL-DRC is optimal

under the following criteria.

Proposition 3 The LTFL-DRC policy solves the LTFL problem optimally, if for all slots i, for

su(i) and sv(i) obtained under the OPT policies, su(i) ≤ sv(i).

This implies that the LTFL-DRC policy obtains the optimal solution to the LTFL problem when the

nodes u and v have the same energy parameters Q(i), C,B0, and BK .
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Figure 24: (a) Energy profile {D(i)}, and energy spending rate assignments {s(i)}, obtained by (b)
solving the TFLA-LIN and TFU-LIN problems, and by (c) solving the TFU problem for nonlinear
energy storage.

In the above-examined LTFU-DRC and LTFL-DRC policies, the nodes’ spending rates su(i),

sv(i) are determined according to the OPT node policy. We refer to LTFU-DRC as the node-optimal

DRC, DRC-NOPT. Additionally, we examine several other variants of the DRC: the DRC-SG policy

and the DRC-CR policy, where the nodes’ spending rates are determined according to the SG or

CR policies, correspondingly.

The following observation discusses the downtime under the DRC-SG policy. It applies to the

general energy storage model.

Observation 4 Under the DRC-SG policy, max[Tu, Tv] ≤ TL(u,v) ≤ Tu + Tv.

For example, consider Qu(i) and Qv(i) with L non-zero entries. For (u, v) with Qv(i) = Qu(i) ∀ i,

TL
u,v = (K − L)/K; while for (u, v) with Qv(i) shifted with respect to Qu(i), T

L
u,v can be as high as

2 · (K − L)/K.

5.2.3 Numerical Results

This section provides numerical results demonstrating the use of the algorithms described in Sec-

tions 5.2.1 and 5.2.2. Measurement traces described in Chapter 3 are used as inputs to the algo-

rithms. In a later Section 6.2, we additionally provide performance evaluation results for some of

these policies that we obtained using the EnHANTs testbed.

Fig. 24 shows the optimal energy spending allocation vectors {s(i)} for the TFU and the TFLA

problems, for different values of energy storage capacity C and initial energy storage state B0.
10 The

energy profile {D(i)} used as an input to these algorithms is shown in Fig. 24(a). It corresponds to

10The solutions were obtained for the following parameters: BK = B0 and U(s(i)) = log(s(i)).



63

0 5 10 15 20
0

1000

2000

3000

Hours
D

at
a 

ra
te

, r
 (

bi
t/s

)

 

 

LTFU (nonlin.): r
u
(i)

LTFU (nonlin.): r
v
(i)

(a)

0 5 10 15 20
0

1000

2000

3000

Hours

D
at

a 
ra

te
, r

 (
bi

t/s
)

 

 

LTFU−DRC: r
u
(i)

LTFU−DRC: r
v
(i)

(b)

Figure 25: Communication rates ru(i) and rv(i): (a) obtained by solving the LTFU problem with
nonlinear storage, and (b) obtained by the LTFU-DRC algorithms for linear energy storage.

the average daily energy profile for the indoor location L-3 (see Table 1). Fig. 24(b) demonstrates

the energy spending rate allocations {s(i)} that solve the TFLA-LIN and the TFU-LIN problems

(that is, linear energy storage model). These spending rates were obtained using the PF algorithm.

It can be observed that larger energy storage allows for “smoother” energy allocation. For this

energy profile {D(i)}, the LS Conditions, described in Section 5.2.1, are matched when C = 2 J

and B0 = 1 J. It can be observed that in this case the energy spending rate allocation vector

{s(i)} corresponds to the optimal policy given by Lemmas 2 and 3. Fig. 24(c) shows the optimal

solutions of the TFU problem with nonlinear energy storage (for βnonlin = 1.1) obtained using the

TFR algorithm. Such a system has not been analyzed before.

Fig. 25 shows the numerical results for the link data rate determination problems presented

in Section 5.2.2. The energy profiles of indoor setups L-1 and L-2 (see Fig. 22(a)) were used as

inputs to the algorithms. The optimal solutions to the LTFL and the LTFU problems for linear

energy storage model have been shown in Fig. 22. Fig. 25(a) shows the optimal solution to the

LTFU problem for nonlinear energy storage (for βnonlin = 1.1) obtained using the LTFR algorithm.

Fig. 25(b) shows the communication rate assignment vectors {ru(i)} and {rv(i)} calculated using a

simple LTFU-DRC algorithm for linear energy storage. In this example, the LTFU-DRC algorithm

obtains data rate assignments {ru(i), rv(i)} that are similar to those obtained by optimally solving
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the LTFU-LIN problem.

5.3 Stochastic Energy Models

In this section, we study models in which the amount of energy available in a slot i is an i.i.d.

random process {D(i)}. D may represent, for example, the energy harvested by a mobile device in

a short (seconds or minutes) time slot. For time slots of days, it may represent the daily irradiation

Hd received by a device.

Similarly to the examinations we presented above for the deterministic profile energy model, we

are seeking to allocate the energy in a uniform way with respect to time. In Section 5.3.1 we formulate

the energy allocation problem as an average cost Markov Decision Process (MDP), and propose a

way of computing an approximation to an optimal policy using uniform discretization of the problem.

Our results hold for linear and nonlinear energy storage models. For the discretized problem, we

demonstrate how to calculate discretized policies for node and link scenarios (Section 5.3.2). We

examine a set of simple policies in Section 5.3.3, and provide some numerical results in Section 5.3.4.

The proofs are given in Appendix 5.B.

5.3.1 Optimal Policies and Discretization Bounds

We first formulate the problem of allocating node energy spending as an average cost MDP. The

goal is to find an optimal policy, which maximizes the expected average utility. We denote the

representative variable for D(i) by D and its probability density function (pdf) by pD. We denote

the state and action spaces of the MDP by B = [0, C] and S = [0, C], respectively. For any b ∈ B and

s ∈ S, the state transition density is denoted by p(·|b, s). It determines the next energy storage level

B(i + 1) given that the current energy storage level is B(i) = b and the spending rate is s(i) = s.

This transition density is determined by the energy distribution pD, the function q(·, ·), and (1).

A policy π is a collection of decision rules πi : Bi × Si−1 → Θ(S) which at each time i prescribe

a probability distribution over the actions (Θ(S) denotes the probability simplex over the set S).

In particular, we let11 λπ(b) , limK→∞ Eπ (Z/K) = limK→∞ Eπ

(∑K−1
i=0 U(s(i))/K

)
denote the

11
Eπ denotes the expectation with respect to the probability law induced by the MDP while using policy π, and

{s(i)} are the spending rates under this policy.
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asymptotic expected average utility obtained by starting from state B0 = b and using a given policy

π. The optimal expected average utility is then λ∗(b) , supπ λπ(b). It is well known (e.g., [73])

that under certain ergodicity (or mixing) conditions, λ∗(b) does not depend on b. In our case, we

show that these conditions are satisfied when we impose the following assumption on the energy

distribution. Let Qb , q(D, b) denote the random variable that represents the harvested energy

when the current storage level is b. Consequently, we let pQb
denote the corresponding density

function.

Assumption 1 There exists a finite constant Qmax such that Qb ∈ [0, Qmax] for all b. In addition,

pQb
(y) > 0 for all b and y ∈ [0, Qmax].

We note that Assumption 1 will hold for any practical functions q and any random variable D which

has a positive density function with finite support.

Under the mixing condition, an optimal policy is a deterministic Markov stationary policy π∗ :

B → S and can be found by solving the optimality equation λ + J(b) = T J(b), b ∈ B, where T is

Bellman’s operator, defined for any bounded function J as

T J(b) = max
s∈S

{
U(s) +

∫

B

p(b′|b, s)J(b′)db′
}
.

The solution (λ∗, J∗) of the optimality equation is such that λ∗(b) ≡ λ∗ and an optimal policy

is given by π∗(b) = argmaxs∈S

{
U(s) +

∫
B p(b′|b, s)J∗(b′)db′

}
. However, since our state and action

spaces are infinite, there is no practical algorithm to solve the optimality equation.

To address this, we discretize the state and action spaces uniformly, using a fixed discretization

parameter ∆. We note that for practical energy-harvesting nodes, uniform discretization is a realistic

assumption (e.g., the digital logic that monitors battery levels in the EnHANTs prototypes has a

particular resolution ∆). We denote the obtained finite spaces by B∆ and S∆. In particular, if

b ∈ B∆, it is a multiple of ∆, and similarly for S∆. For the discretized model, we let λ∗
∆ and π∗

∆

denote the solution of the optimality equation and the corresponding optimal policy, respectively.

We now bound the distance between λ∗
∆ in the discretized model and the true optimal expected

average utility λ∗ (Theorem 1). This bound is an application of the results in [12]. It requires
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Figure 26: Optimal energy spending rates, s(i), corresponding to different energy storage levels,
obtained by solving the SPD problem for linear and nonlinear energy storage models.

an additional Assumption 2 shown below. We note that Assumption 2 holds for any representa-

tive random variables D with Lipschitz continuous density function and any Lipschitz continuous

function q(D,B).

Assumption 2 The family {pQb
(y)} is Lipschitz continuous in both b and y. In particular, there

exists a finite constant βQ > 0 such that
∣∣pQb

(y)− pQb′
(y′)
∣∣ ≤ βQ max(|y − y′| , |b− b′|) for all

0 ≤ y, y′ ≤ Qmax and 0 ≤ b, b′ ≤ C.

Theorem 1 Under Assumptions 1 and 2, there exists ∆̄ > 0 and βλ such that for all ∆ ∈ (0, ∆̄], it

holds that |λ∗ − λ∗
∆| ≤ βλ∆.

The policy π∗
∆ may be computed offline. Therefore, the actual choice of the spending rate by a

node can be done by using the precomputed function π∗
∆ : B∆ → S∆.

Remark. The MDP formulation presented above can be extended to a link (u, v) by considering

the energy harvested in slot i by both nodes D(i) , (Du(i), Dv(i)).

5.3.2 Solution Algorithms

For the discretized problem, we can apply traditional problem solving techniques to obtain the energy

allocation policies. We assume that D takes one of M discrete values [d1, ..., dM ] with probability

[p1, ..., pM ].

For the node scenario, the problem can then be formulated as follows.

Spending Policy Determination (SPD) Problem: For a given distribution of D, determine

the energy spending rates s(i) such that:
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Figure 27: Optimal communication rates ru(i) (a) and rv(i) (b), corresponding to different energy
storage states, obtained by solving the LSPD problem.

max
s(i)

lim
K→∞

1

K

K−1∑

i=0

U(s(i)). (22)

This discrete time stochastic control process can be solved with standard MDP solution techniques.

For example, using value iteration approach and applying dynamic programming, we consider a

large number of slots K, and going ‘backwards’ from i = K − 1, for each {i, B(i)}, determine

h(i, B(i)) = max
s(i)≤B(i)

E
D
[U(s(i)) + h(i + 1,min[B(i) + q(D(i), B(i)) − s(i), C])] (23)

= max
s(i)≤B(i)

[U(s(i)) +

M∑

j=1

pdj
· h(i + 1,min[B(i) + q(dj , B(i))− s(i), C])].

Performing this iterative procedure for a large number of slots K, we obtain, for each energy storage

level B(i), a corresponding stationary (same for all values of i) s(i) value that approaches the

optimal [37]. Although such policy calculations are computationally expensive (the running time

of this algorithm is O([C/∆]2 ·M ·K)), a policy needs to be computed only once for a particular

distribution of D. Fig. 26 shows example optimal energy spending policies obtained by solving the

SPD problem for linear and nonlinear energy storage models. The daily irradiation Hd for setup

L-1 (see Fig. 10) is used as the random variable D.12

For a link, we define the following problem.

Link Spending Policy Determination (LSPD) Problem:

max
ru(i),rv(i)

lim
K→∞

1

K

K−1∑

i=0

[U(ru(i)) + U(rv(i))] (24)

12The solutions were obtained for the following parameters: C = 2.7 · E(D(i)), U(s(i)) = log(1 + s(i)), and βnonlin

= 1.3.
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Similarly to the SPD problem, the LSPD problem can be solved with standard approaches to solving

MDPs. For example, using value iteration approach, we determine, for each {i, Bu(i), Bv(i)},

h(i, Bu(i), Bv(i)) =max E
Du,Dv

[U(ru(i)) + U(rv(i)) + h(i+ 1, (25)

min[Bu(i) + q(Du(i), Bu(i))− su(i), Cu],

min[Bv(i) + q(Dv(i), Bv(i))− sv(i), Cv])],

where the maximization is over all {ru(i), rv(i)} such that ctxru(i) + crxrv(i) = su(i) ≤ Bu(i),

ctxrv(i) + crxru(i) = sv(i) ≤ Bv(i). This procedure is computationally complex. Similarly to

the SPD problem, it needs to be solved for a large number of slots K, and has the complexity

O([Cu/∆]2 ·[Cv/∆]2 ·Mu ·Mv ·K). However, it needs to be computed only once. Fig. 27 demonstrates

example optimal link rate assignment policy {ru(i), rv(i)} as a function of {Bu(i), Bv(i)}, obtained

by solving the LSPD problem. The daily irradiation Hd for setup L-1 (see Fig. 10) is used as the

random variable Du and the random variable Dv.
13

5.3.3 Approximate Policies and Heuristics

In this section, we examine low-complexity policies, and compare them to the discretized optimal

policies (OPT). We consider the discretized model with Bh = {0,∆, 2∆, ..., C} and with D that

takes values in the set {0,∆, 2∆, ..., Dmax}, where Dmax ≤ C.

We consider Spend-What-You-Get (SG) policies, where the node aims to spend all the energy

harvested in a slot, that is s(i)← Q(i) ∀ i. Similar policies were proposed in [55]. The SG policies

have very low complexity. We additionally consider: Energy Storage Linear (SL) policies, where

the spending rate is a linear function of the energy storage level B(i), that is, for some 0 ≤ α ≤ 1,

ssl(i)← α ·B(i), and Energy Storage Threshold (THR) policies, where the energy spending rate in a

time slot i, sthr(i), is assigned according to the energy storage level threshold under which the B(i)

falls. Namely, sthr(i)← 0 ∀ B(i) ≤ L1; sthr(i)← s1 ∀ L1 < B(i) ≤ L2; ...; sthr(i)← sT ∀ B(i) > LT .

Similar policies were proposed in [47].

We let π∗
∆ denote an optimal policy, πsg

∆ denote an SG policy, and recall that Eπ denotes the

13The solutions were obtained for the following parameters: C = 2.1 · E(D(i)), ctx = 1nJ/bit, crx = 2nJ/bit,
U(s(i)) = log(1 + s(i)), and Q(i) = D(i) (linear energy storage).
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expectation operator induced by policy π and the MDP model.

We first provide insights into the behavior of the discretized OPT policy (Observation 5) and

the SG policy (Observation 6).

Observation 5 Under the OPT policy, it holds that λ∗
∆ , limK→∞ Eπ∗ (Z/K) ≤ U(E(D)).

Observation 6 Under the SG policy, it holds that λsg
∆ , limK→∞ Eπsg (Z/K) = E(U(Q)).

The performance of the SL and THR policies depends on the policy parameters. In the general

case, the best policy parameters can be selected via “brute-force” algorithms. In special cases, the

parameters may be selected using lower-complexity techniques, as we demonstrate next. Consider

the set of SL policies which is identified with the set of possible values for the SL policy parameter.

For a given parameter 0 ≤ α ≤ 1, the corresponding SL policy specifies the spending rate at slot i by

s(i) = πα
sl(B(i)) = bα ·B(i)c. We next refer to an SL policy that maximizes the utility over all SL

policies as an optimal SL policy. In a general scenario, the optimal parameter α can be computed

by determining, for all feasible values of α, the state transition probabilities and the corresponding

stationary state probabilities under the SL policy with the chosen α, and choosing the α that

maximizes Zsl. Focusing on the uniform energy distribution, namely pd = P{D = d} = 1/(Dmax+1)

for all d = 0,∆, ..., Dmax, and on the linear energy storage model, we have the following:

Theorem 2 The optimal SL policy is given by π∗
sl(b) = bDmax · (b/C)c .

For example, suppose that C = 6, Dmax = 3, and ∆ = 1. Then, the optimal SL policy is obtained

with α = 3/6 = 0.5. We note that in this case the SL policy coincides with the discretized optimal

policy (computed numerically). The proof of Theorem 2 is provided in [22].

For link scenarios, similarly to the deterministic profile energy model, we can also use the DRC

policies. In this case, the DRC policies are calculated using the marginal pdfs of Du and Dv (rather

than the joint pdf), and thus do not account for the possible dependency between Du and Dv.

5.3.4 Numerical Results

We evaluate the performance of the OPT, THR, and SL policies via simulations.
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Figure 28: Node scenarios with stochastic energy model: (a) objective function value, and (b) %
node downtime.

The SL policies perform similarly to the OPT policies, and substantially outperform the THR policies,

particularly when C is small. For example, Fig. 28 shows the performance of the THR1 (THR with

one threshold), SL, and OPT policies. The policies were evaluated using, as an energy input, an

empirical pdf of the diurnal energy recorded in L-1. Fig. 28(a) shows the upper bound on Z derived

in Observation 5; the bound is tight when C is large. In these evaluations, the Z values under the

SL and OPT policies are nearly identical. While under the SL and the OPT policies the downtimes

are negligible, under the THR1 policy the nodes experience 1.8% –11.4% downtimes.

We additionally observe that in certain cases, the SL and the OPT policies coincide. For example,

when C = 6, D = [0, 1, 2, 3], and pD = [0.25, 0.25, 0.25, 0.25], the OPT and the SL policies are

identical.

Our study of the bounds on performance degradation due to quantization is motivated by the

presence of such quantization in digital circuitry. In the EnHANTs prototypes, ∆ = 8.6 mJ (due to

finite precision in the Coulomb counter that keeps track of the battery level, as we will explain in

more detail in Section 6.1.1 in Chapter 6). It can be easily verified that for such ∆, in order for the

results of Theorem 1 to apply, the maximum value of D should be at least 0.52 J (assuming uniform

distribution of D). The typical D in our settings would require ∆ ≤ 0.3 mJ. Obtaining bounds that

apply to quantization parameters typically encountered in current energy harvesting devices (i.e., ∆

that is same as, or larger, than the EnHANTs prototype ∆) is subject for future work.
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5.4 Evaluating Model-free Approaches with Kinetic Energy

Traces

In this section, we examine numerically the performance of a set of simple policies with kinetic

energy traces we presented in Chapter 4. As we will demonstrate, kinetic energy traces are not well

modeled by simple stochastic processes. Hence, rather than examining policies for stochastic energy

models, we consider online policies (i.e., model-free approaches).

The long-term kinetic energy traces we use in this section are summarized in Table 5. In this

section, we refer to trace identifiers M1, M2 listed in Table 5. Recall that we denote the power

harvested by an inertial harvester by P (t). Using time slot length Tint = 1 second, we obtain a

time-slotted process Pmeas(i) by calculating the average value of the P (t) for each Tint. We then

calculate energy harvested, Q(i), as Q(i) ← η · Pmeas(i) · Tint, where η is the conversion efficiency

(assumed to be 20% [116]).

For the day-scale kinetic energy traces we collected, Pmeas is clearly not i.i.d. or Markov. For

example, for the Pmeas for participant M1 and for THR = 10 µW, p(Pmeas(i) > THR|Pmeas(i−1) >

THR,Pmeas(i − 2) > THR) = 0.91, while p(Pmeas(i) > THR|Pmeas(i − 1) > THR, Pmeas(i − 2) <

THR) = 0.54.

We use the following low-complexity online policies.

• Spend-what-you-get (SG): s(i)← Q(i).

• Storage-linear (SL): s(i)← 2 · Q̃(i) · B(i)/C, where Q̃(i) is the running average of Q(i), that

is, Q̃(i)←
∑i−1

j=0 Q(j)/i.

• Scheme-LB: s(i) ← (1 − ε) · Q̃(i) if B(i) + Q(i) ≥ (1 − ε) · Q̃(i), and s(i) ← B(i) + Q(i)

otherwise, where ε is a small constant (we use ε = 0.01). The Scheme-LB policies were proposed

and examined (for infinite C) in [11].

Examples of realizations of the SG, SL, and Scheme-LB policies with a kinetic energy trace

are shown in Fig. 29. These realizations use the Pmeas values for participant M5, whose P (t) was

previously shown in Fig. 19(b). For these realizations, we use C = 0.5 ·∑i Pmeas(i). Fig. 29(a)

shows the instantaneous data rates, r,14 while Fig. 29(b) shows the battery levels, B. The average

14For ease of visualization, Fig. 29(a) only shows r values in the 0–40 Kb/s range. This represents the full range of
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Figure 29: Examples of realizations of the SG, SL, and Scheme-LB policies for participant M5: (a)
data rates, r, and (b) battery levels, B.

data rate, r, is 3.27 Kb/s under the SG policy, 2.95 Kb/s under the SL policy, and 3.07 Kb/s under

the Scheme-LB policy.

We compare Z values for each policy to the maximal possible objective function value, Zmax =

log[1 + (
∑

i e(i)/ctx)/K]. As a measure of policies’ energy neutrality, we consider the percentage

of energy misused, Emd, which we define as Emd = 100(
∑

i s(i)/
∑

i Q(i) − 1). A positive Emd

represents overspending of the available energy and using some of the energy originally stored in the

battery, and a negative Emd represents underspending of the energy. We also consider the node ON

times. For these evaluations, for a time slot i, a node is ON if r(i) > 500 b/s and OFF otherwise.15

Policy Performance with Kinetic Energy Traces

The SL and the Scheme-LB policies perform well with the kinetic energy traces, particularly for large

C values. For example, Fig. 30 shows the performance under the Scheme-LB, SL, and SG policies

for a trace of participant M2. Fig. 30(a-d) show r, Z (as a fraction of Zmax), ON time percentages,

and Emd, respectively. These performance metrics are evaluated for different values of C, which

are shown as a percentage of the total daily energy harvested, Ed. Each data point in Fig. 30(a-d)

corresponds to a full policy realization, such as those shown in Fig. 29.

For relatively large C values (e.g. C > 0.7Ed), the SL and Scheme-LB policies perform well – r

r values under the SL and Scheme-LB policies. Under the SG policies, instantaneous r values reach up to 180 Kb/s.
15For the evaluations with the kinetic energy traces, we use these performance metrics, rather than the node

downtimes considered in the previous sections, because the processed kinetic energy values are often low, but are
rarely exactly 0.
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Figure 30: Performance of the Scheme-LB, SL, and SG policies for participant M2: (a) data rates, r,
(b) objective function values, Z, (c) node ON time percentages, and (d) energy misuse percentages,
Emd.

is high (Fig. 30(a)), Z is close to Zmax (Fig. 30(b)), and ON times reach 100% (Fig. 30(c)). Both

the SL and Scheme-LB policies slightly overspend the harvested energy (Fig. 30(d)), but the overuse

does not exceed 5% of Ed.

Both the SL and the Scheme-LB policies dramatically outperform the SG policy. The SG policy

achieves high r (Fig. 30(a)) and fully uses the harvested energy (Fig. 30(d)), but performs poorly

in terms of both objective function values and node ON times. Specifically, under the SG policy,

Z/Zmax values are up to 2 times smaller than under the SL and the Scheme-LB policies (Fig. 30(b)),

and the ON times are up to 4 times smaller (Fig. 30(c)). The poor performance under the SG policy

emphasizes the need for energy management policies that consider motion energy variability and do

not base spending rates directly on harvesting rates.

While the SL and Scheme-LB policies perform well, the performance differs from trace to trace.

For example, Fig. 31 shows the performance of the SL policy with traces for participants M1, M2,

and M5. Fig. 31(a,b) show the ON times and Emd values, correspondingly. It can be seen that in

terms of both metrics, the SL policy performs better for M2 than for M1 and M5.
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Figure 31: SL policy performance with traces for participants M1, M2, and M5: (a) ON times, and
(b) misused energy percentages, Emd.
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Figure 32: Scheme-LB policy performance using energy traces (Pmeas) for participant M1 and using
the corresponding ON/OFF (Ponoff), Markov (Pmarkov), and i.i.d. (Piid) processes: (a) average data
rates, r, and (b) node ON times.

Policy Performance with I.i.d. and Markov Processes

To assess the difference in performance between policies evaluated using real traces and i.i.d. and

Markov processes, we use a different representation of the same energy harvesting process. Specif-

ically, for a process Pmeas calculated from our measurements, we generate an i.i.d. process, Piid,

by randomly permuting the values of Pmeas. Recall that we defined an ON/OFF process Ponoff

to be Ponoff(i) ← 1 (“ON”) if P (i) > THR, and Ponoff(i) ← 0 (“OFF”) otherwise (see Section

4.4.3 for more details). To generate a Markov process, Pmarkov, we first calculate the empirical

state transition probabilities of the Ponoff process, p0,1 = p(Ponoff(i) = 0|Ponoff(i − 1) = 1) and

p1,0 = p(Ponoff(i) = 1|Ponoff(i− 1) = 0). Then, we generate a Markov process with states {0, 1} and

transition probabilities p0,1, p1,0. We set the Pmarkov values for states 0 and 1 to the average values

of Pmeas(i) for which Ponoff(i) = 0, and for which Ponoff(i) = 1, respectively. This ensures that the

processes have the same first-order statistics.

The policy performance evaluated using i.i.d. and Markov processes differs dramatically from the
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policy performance using the traces. For example, Fig. 32 shows r and ON times obtained under

the Scheme-LB policy for different processes based on a trace of participant M2. Using the process

Ponoff, the performance is similar to the performance obtained using Pmeas – the r values differ by at

most 17% (0.23 Kb/s), and the ON times differ by at most 7%. However, the performance evaluated

using Pmarkov and Piid differs greatly from the performance using Pmeas. The differences in r values

reach over 105% (1.35 Kb/s), and the differences in ON times reach 63%.

Moreover, using Markov and i.i.d. processes results in different performance trends. Using

Pmeas(i), the performance strongly depends on C, with r for the different values of C differing

by over 2.3 times, and with the ON percentages differing by over 45%. However, using Piid and

Pmarkov, both r and ON times are nearly independent of C. Additionally, evaluating policy perfor-

mance using Pmeas demonstrates than ON times are an important metric – they can be relatively

low for small values of C (Fig. 32(b)). However, when evaluating using Piid and Pmarkov, the ON

times are nearly 100% for all values of C, including values as low as 15% of the Ed. These results

emphasize the need to evaluate energy harvesting-adaptive policies for wireless nodes equipped with

an inertial harvester using real traces.

5.5 Conclusions and Future Work

In this chapter, we formulate resource allocation problems for energy harvesting nodes, aiming

to allocate nodes’ resources in a uniform way with respect to time. For the deterministic profile

energy model and for the stochastic energy model, we formulate optimization problems and presents

algorithms that determine energy and data rate allocation policies for single node and link scenarios.

We also examine a set of simple policies, for some of which we obtain performance guarantees.

For the deterministic profile energy model, we demonstrate a set of algorithms of different com-

plexities for different cases. That is, while for the most general settings the algorithms are rela-

tively complex, in many settings we examined, optimal policies can be calculated with relatively

low-complexity algorithms. For example, for node scenarios, we demonstrate relatively complex

algorithms for general (non-linear) energy storage, simpler algorithms for the cases where energy

storage is linear, and algorithms of very low complexity for the cases where energy storage is both

large and linear. We used the algorithms to obtain numerical results for various cases, using, as
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energy inputs, light energy traces we described in Chapter 3. Additionally, for both deterministic

profile and stochastic energy models, in many cases simple policies perform similarly to the optimal.

For example, for deterministic profile energy model in link scenarios, the DRC algorithms perform

well in many cases. For the stationary stochastic energy model, in the node scenarios the SL policies

perform similarly to the optimal policies, and in certain cases coincide with the optimal.

Additionally, using kinetic energy traces we described in Chapter 4, we evaluate a set of simple

online policies (i.e., model-free approach). Our evaluations demonstrate that in many cases simple

policies perform well and emphasize the need to evaluate policies with real energy traces.

Future work may focus on addressing additional “working points” in the energy harvesting adap-

tive algorithm design space. In particular, energy harvesting adaptive algorithms for partially pre-

dictable environments and for energy harvesting networks may be subjects of future investigations.

In Chapter 6, we evaluate some of the policies we have developed with energy harvesting hardware

and light energy inputs based on the light energy traces.

5.A Proofs: Deterministic Energy Profile Environmental En-

ergy Model

5.A.1 Single Node

Throughout this appendix, we define Q̂ to be Q̂ ,
∑K−1

i=0 Q(i), i.e., the total amount of energy

harvested. We let Qmax = B0−BK + Q̂ denote the maximum amount of energy a node can allocate.

Proof of Lemma 1

Recall that functions U(s) used in the TFU problem are concave and non-decreasing (see Sec-

tion 5.1). First notice the following facts.

Fact 1 The constraint sets of the TFU-LIN problem and the TFLA-LIN problem are the same, thus

a vector that is a feasible solution to one problem is also a feasible solution to the other.

Fact 2 The nature of the constraint set and the utility functions implies that any ε−decrease to one

of the components of a solution to the TFU-LIN problem or a solution to the TFLA-LIN problem

yields at most total ε−increase to the other components.
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Fact 3 Let y ≤ x and let f be a twice continuously differentiable concave function. Then for every

ε > 0, f (x+ ε) + f (y − ε) ≤ f (x) + f (y).16

Let s̄ be the optimal solution to the TFLA-LIN problem. We want to show that it is also the

optimal solution to the TFU-LIN problem. Assume not, that is, there exists a vector ŝ, ŝ 6= s̄, which

is the optimal solution for the TFU-LIN problem. For simplicity, assume that the two vectors differ

by only two components (the following arguments also apply if they differ by more components).

By Fact 2, there exist j, k and ε > 0, such that ŝ (j) = s̄ (j) + ε and ŝ (k) = s̄ (k) − ε. Note that

s̄ (j) ≥ s̄ (k), otherwise we would get a contradiction for s̄ being the solution to the TFLA-LIN

problem. Therefore, from the uniqueness of the solution, U (s̄ (j)) +U (s̄ (k)) < U (ŝ (j)) +U (ŝ (k))

≤ U (s̄ (j))+U (s̄ (k)) , where the second inequality is obtained by applying Fact 3. This contradicts

the assumption that ŝ 6= s̄, and shows that the unique solution to the TFLA-LIN problem is also

the solution to the TFU-LIN problem. Notice that this also shows the converse, that is, if ŝ is the

(unique) solution to the TFU-LIN problem, it also the solution to the TFLA-LIN problem. Indeed,

any ε−increase in one of ŝ components can only come at the expense of ‘weaker’ components, which

is exactly the characteristics of the optimal (lexicographically maximal) solution to the TFLA-LIN

problem. �

Proof of Lemma 2

Let s∗ denote the energy allocation policy s (i) = s∗ = Q̂/K ∀ i. First we show that the s∗-policy

is feasible under the LS Conditions and the LS-gen Conditions. Then we show that, when feasible,

the policy is the optimal solution to the TLFA-LIN problem.

We define B̃ (i) = [
∑i−1

n=0 Q(n)]− s∗ · (i− 1) for 1 ≤ i ≤ K.

Proposition 4 When B0 ≥ | min
1≤i≤K

B̃(i)| and C−B0 ≥ max
1≤i≤K

B̃(i) (the LS Conditions), the s∗-policy

is feasible.

Proof: Assume the energy storage capacity is sufficiently large. The storage state at the beginning of

the ith slot under the s∗-policy is B(i) = B0+[
∑i−1

n=0 Q(n)]− s∗ · (i− 1) = B0+ B̃(i). Thus, to avoid

running out of energy, B0 ≥ | min
1≤i≤K

B̃(i)| is needed. In addition, in each time slot i, C −B(i) ≥ 0 is

required. Plugging in the expression for B(i), the condition C −B0 ≥ max
1≤i≤K

B̃(i) is obtained.

16Since f is concave and twice differentiable, f ′ is a decreasing function, and f ′′ < 0. Hence, using Taylor expansion,
f (x+ ε) + f (y − ε) = f (x) + f ′ (x) ε+ f (y) + f ′ (y) (−ε) + o

(

ε2
)

≤ f (x) + f (y) + ε (f ′ (x)− f ′ (y)) ≤ f (x) + f (y) .
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Proposition 5 When B0 ≥ [
∑

i Q (i)] (1− 1/K) and C − B0 ≥ [
∑

i Q (i)] (1− 1/K) (the LS-gen

Conditions), the s∗-policy is feasible.

Proof: For any {Q(i)} with a given
∑

iQ(i) = H∗, when the LS-gen Conditions hold, LS Conditions

hold. This is easy to see by considering the vectors that obtain, over all {Q(i)} with∑i Q(i) = H∗,

min
{Q(i)}

B̃ and max
{Q(i)}

B̃. The min
{Q(i)}

B̃ is obtained for the {Q(i)} such that Q(i) = 0 ∀ i < K − 1, Q(K −

1) = H∗:

min
{Q(i)}

B̃ = −
∑

i

Q(i) · K − 1

K
= −

∑

i

Q(i) ·
(
1− 1

K

)
.

The max
{Q(i)}

B̃ is obtained for the {Q(i)} such that Q(0) = H∗, Q(i) = 0 ∀ i > 0:

max
{Q(i)}

B̃ = H∗ −
∑

i

Q(i) · 1
K

=
∑

i

Q(i) ·
(
1− 1

K

)
.

Combining these two bounds with the LS Conditions, we obtain the LS-gen Conditions. Thus, when

the LS-gen Conditions hold, the LS Conditions hold, and the s∗-policy is feasible by Proposition 1.

�

We now demonstrate that, when feasible, the s∗-policy is the optimal solution to the TFLA-LIN

problem. Together, (5) and (7) imply that any other vector {s(i)} in the feasible domain has at

least one i such that s(i) ≤ s∗. Thus the s∗-policy is lexicographically maximal, and therefore it is

the optimal solution to the TFLA-LIN problem.

Proof of Lemma 3

Let s∗ denote the energy allocation policy s(i) = s∗ = Q̂/K ∀ i. The feasibility of the s∗-policy

under the LS Conditions and the LS-gen Conditions is demonstrated in Appendix 5.A.1. When the

s∗-policy is feasible, the TFU problem reduces to the following simple problem:

max
{s(i)}

Ū =

K−1∑

i=0

U(s(i)) (26)

s.t. :

K−1∑

i=0

s(i) ≤ Q̂ (27)

s(i) ≥ 0 ∀ i. (28)
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Below, we demonstrate that the s∗-policy solves this problem optimally for functions U(s(i)) satis-

fying conditions (I ), (II ), and (III ) in Lemma 3.

U(s(i)) satisfying (I): since ∇Ū 6= 0 on the interior of the domain, the maximum is attained on the

boundary. Since Ū is symmetric with respect to s(i), it suffices to look at the boundaries of the form

Ωn =
{
s ∈ R

K :
∑n

i=0 s (i) = Q̂, s (i) ≥ 0, s (j) = 0 for j > n
}

for n = 1, . . . ,K − 1. Applying the

Lagrange multipliers method for Ωn, we obtain U ′(s(i)) = λ, i = 0, . . . , n, which, due to the strict

concavity of U(s(i)), implies local maximum of Ū of the form s(i) = Q̂/n, i ≤ n, s(i) = 0, i > n.

From the concavity of U(s(i)), we may further conclude that the global maximum of Ū is attained

on ΩK−1 at the point s(i) = Q̂/K = s∗ ∀ i.

U(s(i)) satisfying (II): The above analysis for U(s(i)) satisfying (I ) can be applied here. This time

we get only one point, s (i) = s∗ ∀ i, which is the global maximum.

U(s(i)) satisfying (III): Since the utility is being maximized, and since U(s(i))→ −∞ as s(i)→ 0,

it is sufficient to solve (26) over a smaller region, that is, subject to (27) and to s(i) ≥ ε for some

ε > 0 small. Following the method outlined above, the maximum is obtained at s(i) = s∗ ∀ i. �

Proof of Observation 1

When the energy storage is sufficiently large, the optimal allocation is s(i) = Qmax/K ∀ i (as

demonstrated in [31]). The corresponding ZK is Z̃K =
∑

i U(s(i)) = K · U(Qmax/K). When the

energy storage is smaller, the total energy available to a node is at most Qmax, and it is allocated less

uniformly. Thus, due to the concavity of U , the ZK for smaller storage conditions will be smaller,

and therefore the above-stated Z̃K is an upper bound. The result then follows by the monotonicity

of U since
∑

iQ(i) ≤∑iD(i). �

Proof of Proposition 1

Denote Q̂/K by A, and let f = B0/Q̂ (hence 0 < f < 1, and B0/K = f ·A). From Observation 1,

Zopt
K ≤ K ·U(A). Since Q̂ > B0 = BK , there exists scr ≥ B0/K such that if s(i) ≡ scr, a node spends

(at least) B0 units of energy and has sufficient BK in storage at the end of the K slots. Hence, Zcr
K ≥

K ·U(B0/K) = K ·U(f ·A), and Zopt
K /Zcr

K ≤ (K ·U(A))/(K ·U(f ·A)) = (log(1+A))/(log(1+f ·A)).

For f = 1, log(1 +A)/ log(1 + f ·A) = 1. For 0 < f < 1, this expression is a decreasing function of
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A, with its maximum achieved for A→ 0. Using l’Hôpital’s rule, the following holds:

lim
A→0

(
log(1 +A)

log(1 + f · A)

)
= lim

A→0

(
1/(1 +A)

f/(1 + fA)

)
= lim

A→0

(
1

1 +A
· 1 + fA

f

)
= lim

A→0

(
1 + fA

f + fA

)
=

1

f

Hence, Zopt
K /Zcr

K ≤ 1/f = Q̂/B0, and thus Zcr
K ≥ Zopt

K · [B0/Q̂]. �

Proof of Proposition 2

For s(i) = Q(i), Zsg
K =

∑
i log(M + Q(i)) =

∑
i log(Q

′(i)). G(Q′), the geometric mean of a se-

quence, can be transformed asG(Q′) , K
√
Q′(0) ·Q′(1) · ... ·Q′(K − 1) = exp((1/K)·∑i log(Q

′(i)) =

exp((1/K)·Zsg
K ). Thus Zsg

K = K·log(G(Q′)). From Observation 1 we know that Zopt
K ≤ KU(

∑
i Q(i)/K) =

K · log(Q′). Therefore, Zsg
K /Zopt

K ≥ [K · log(G(Q′))]/[K · log(Q′)], and consequently Zsg
K ≥ Zopt

K ·

log(G(Q′))/ log(Q′). �

5.A.2 Link

Proof of Observation 2

Consider the case where the energy storage is unlimited. Then (4)-(8) reduce to
∑

i su(i) ≤

[B0,u − BK,u +
∑

i Qu(i)],
∑

i sv(i) ≤ [B0,v − BK,v +
∑

iQv(i)]. Since the objective function is

concave and non-decreasing, and since the problem is symmetric for all slots i, the optimal solution

will be obtained when each node assigns the same data rate to each slot. The same data rate for

each slot will be obtained when each node assigns the same amount of energy to each slot, that is,

su(i) = [B0,u − BK,u +
∑

i Qu(i)]/K ∀ i, sv(i) = [B0,v − BK,v +
∑

iQv(i)]/K ∀ i, and hence the

overall solution will be K · Z̃K . This value is an upper-bound since for constrained energy storage

conditions, the same amounts of energy will be assigned under additional constraints. �

Proof of Observation 3

Notice that, similarly to Lemma 1, the constraint sets are the same for both the LTFL problem

and the LTFU problem. When ctx = crx = c̃, constraints (13), (14) are reduced to c̃ ·(ru(i)+rv(i)) ≤

su(i) and c̃ · (ru(i) + rv(i)) ≤ sv(i); combining them, we obtain ru(i) + rv(i) ≤ min(su(i), sv(i))/c̃.

Given the concavity of U(s(i)) in the LTFU problem, the utility is maximized when ru(i) = rv(i) =

r̃(i) = 1
2 min(su(i), sv(i))/c̃. The optimal solution to the LTFL problem is max-min fair, thus it also

assigns data rates as ru(i) = rv(i) = r̃(i). Thus, the objective function of the LTFU problem can be
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stated as max
∑

i U(r̃(i)), and the objective function of the LTFL problem can be stated as

Lexicographically maximize [r̃(0), ..., r̃(K − 1)].

The equality of the optimal solutions to these problems under the same constraint sets follows from

the proof of Lemma 1. �

Proof of Lemma 4

When the LS or the LS-gen Conditions hold, constraints (4) – (8) for nodes u and v reduce to

simple constraints on the sum of the energy spending rates:
∑K−1

i=0 su(i) ≤
∑

Q̂u,
∑K−1

i=0 sv(i) ≤
∑

Q̂v. Therefore, solving, independently from each other, the TFLA problem, nodes u and v

calculate their energy spending allocations {su(i)}, {sv(i)} as su(i) = s∗u ∀ i, sv(i) = s∗v ∀ i, where

s∗u and s∗v are determined according to the node s∗-policy definition given in Lemma 2. Due to

(17), the link data rates are assigned as ru(i) = rv(i) = r∗ = min {s∗v, s∗u} / (ctx + crx) for each

time slot i. Notice that any other vector {rv (i) , ru(i)} in the feasible domain has at least one i0

such that ru(i0) < r∗ or rv(i0) < r∗. Thus the vector obtained by the LTFL-DRC algorithm is

lexicographically maximal, i.e., the optimal solution to the LTFL problem. �

Proof of Lemma 5

Similarly to the single node case (see Appendix 5.A.1), when LS or LS-gen Conditions hold,

constraint sets (4) – (8) for nodes u and v reduce to simple constraints on the sum of the energy

spending rates:
∑K−1

i=0 su(i) ≤
∑

Q̂u,
∑K−1

i=0 sv(i) ≤
∑

Q̂v. Thus, by solving the TFU-LIN problem,

the node energy spending rate vectors {su(i)} and {sv(i)} are assigned as su(i) = s∗u ∀ i and

sv(i) = s∗v ∀ i, where s∗u and s∗v are determined according to the node s∗-policy definition given in

Lemma 3. Thus, in each slot i, the sub-problem we solve is the same, max
ru(i),rv(i)

U(ru(i)) + U(rv(i))

such that ctxru(i) + crxrv(i) ≤ s∗u, ctxrv(i) + crxru(i) ≤ s∗v, and the obtained data rate assignments

are ru(i) = r∗u, rv(i) = r∗v ∀ i. The optimality of these data rates for the LTFU problem follows

directly from the arguments of the optimality of the s∗-policy in the proof of Lemma 3. �

Proof of Proposition 3

The optimal solution to the LTFL is max−min fair, and thus, for each i, ru(i) = rv(i) = r(i),

and (13), can be reduced to r(i) ≤ (min(su(i), sv(i))/[ctx + crx]. Thus, the data rate in each slot
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i is fully determined by the minimum of {su(i), sv(i)}. For su(i) ≤ sv(i) ∀i, the data rates are

fully determined by the allocation of su(i). The LTFL-DRC slot energy spending assignments su(i)

are lexicographically fair – a spending su(i1) cannot be increased without a decrease in some s(i2)

that is already smaller. Thus, the energy allocation cannot be improved, and thus the LTFL-DRC

solution is optimal. �

Proof of Observation 4

Due to constraints (13), the data rates assigned by a DRC policy to a slot i will be zero if

su(i) = 0 or sv(i) = 0, thus TL(u,v) is not smaller than max[Tu, Tv]. If both su(i) and sv(i) are

non-zero, then the r(i) values maximizing (18) will also be non-zero, thus TL(u,v) is not larger than

Tu + Tv.

5.B Proofs: Stochastic Environmental Energy Model

Proof of Observation 5 The energy received in a slot i does not exceed D(i), and the overall

expected amount does not exceed K · E(D). The concave objective function U is maximized when

the energy is spent uniformly, thus for the total expected energy K · E(D), the utility is maximized

for energy spending rate s(i) = [K ·E(D)]/K = E(D) ∀ i. Hence, E(Zopt) is bounded as K · (1/K) ·

U(E(D)) = U(E(D)). �

Proof of Observation 6 E(Zsg) = lim
K→∞

1
K

∑
i U(Q(i)) = E(U(Q)). �
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Chapter 6

EnHANT Prototypes Testbed for

Energy Harvesting Adaptive Policy

Evaluations

In this chapter, we describe the design and development of Energy Harvesting Active Networked Tags

(EnHANTs) prototypes and the EnHANTs prototypes testbed. The prototypes and the testbed were

developed over the past 4 years in 6 integration phases. At the end of each phase, we presented the

prototypes and the testbed in a conference demonstration session [26,28,57,80,85,119]. The current

prototypes (Fig. 33(a)), are larger than the envisioned EnHANTs (show previously in Fig. 4). Yet,

the prototypes already harvest indoor light energy using custom-designed organic solar cells which

can be made flexible, and communicate wirelessly using ultra-low-power Ultra-wideband Impulse-

Radio (UWB-IR) transceivers. The developed EnHANTs testbed enables controllable and repeatable

experiments with communications and networking algorithms for energy harvesting nodes. The

testbed allows observing the states of the prototypes in real time. It also includes a software-based

light control system (Fig. 33(b)) that can expose the prototypes to controllable light conditions based

on real-world light energy traces. For instance, it can “replay” the indoor light energy traces we

presented in Chapter 3.
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(a) (b)

Figure 33: Current EnHANTs prototype testbed: (a) current EnHANT prototype, and (b) a
software-based light control system, along with 4 EnHANT prototypes.

The prototypes form small networks and adapt their communications and networking patterns

to energy harvesting states. We implemented energy harvesting adaptive optimal and approximate

policies we examined analytically in Chapter 5. We evaluated some of these policies with the

help of the developed testbed functionalities. We also implemented energy harvesting adaptive

network algorithms (e.g., flow control, topology adaptations) in the prototypes. We demonstrate

the performance of simple policies for flow control and collection tree adaptations. To the best of

our knowledge, this work is the first attempt to evaluate energy harvesting adaptive policies in a

controllable experimental environment.

The design and development of the EnHANTs are a joint effort of several research groups. Our

contributions are in the design and development of energy harvesting adaptive algorithms, energy

harvesting module interface design and integration, overall prototype integration, and the design

and integration of the testbed control systems’ interfaces. Major design contributions were also

made by Ph.D. candidates J. Sarik and B. Vigraham (hardware) and Ph.D. candidate R. Margolies

(medium access control, transceiver integration, prototype integration). Versions of different pro-

totype and testbed components were designed as part of undergraduate and M.S. student projects

(see Appendix A), as acknowledged via authorship in [26, 28, 57, 80, 85, 119]. Projects of G. Stanje,

E. Katz, D. Roggensinger, and H. Huang contributed to the energy harvesting adaptive networking

functionalities of the EnHANTs prototypes.

In this chapter, we first overview the EnHANTs prototypes and testbed functionalities and

design (Section 6.1). We then present the results of evaluations of some of the policies we analyzed

in Chapter 5 (Section 6.2). Finally, we present evaluation results for energy harvesting adaptive
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Figure 34: A block diagram of the EnHANT prototype, and its interactions with the testbed.

EnHANTs networking policies (Section 6.3). A brief summary of the functionalities implemented in

the different EnHANTs prototype integration phases is provided in Appendix 6.A.

We previously described the high-level EnHANTs design in [23,32] and presented the EnHANT

prototype and testbed design and development in [25].

6.1 EnHANT Prototypes and Prototype Testbed

In this section, we overview the EnHANT prototypes and the prototype testbed we developed. We

focus on the prototype and testbed functionalities that are essential for energy harvesting adaptive

policy evaluations. The other prototype and testbed features are described in more detail in [24,25].

6.1.1 EnHANT Prototype

The EnHANT prototype is shown in Fig. 33(a). Each prototype includes an Energy Harvesting

Module interfaced with a solar cell, a UWB-IR Communication Module, and a Control Module.

The prototype block diagram, including the different modules and their interactions, is shown in

Fig. 34.

• Energy Harvesting Module (EHM) – The EHM, described in detail below, contains a

rechargeable battery (used to store the energy harvested by a solar cell) and energy monitoring

circuitry, and provides real time energy harvesting awareness.

• Communication Module – The prototypes communicate with each other wirelessly using
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Figure 36: Solar cells integrated with EnHANT prototypes: (a) an amorphous silicon (a-Si) solar
cell, and (b) a custom-fabricated organic photovoltaic (OPV).

ultra-low-power UWB-IR Communication Modules, based on UWB-IR transmitter and re-

ceiver chips previously described in [15]. The custom chips are mounted onto a printed circuit

board that interfaces with the other prototype components. A Complex Programmable Logic

Device is used to realize the “glue logic” between the radio chipset and the rest of the prototype.

• Control Module – Based on a legacy off-the-shelf MICA2 mote, the Control Module runs

TinyOS with an added Fennec Fox software framework [87]. The Control Module is integrated

with the Communication Module such that packets originating in the TinyOS application layer

are sent wirelessly via the UWB-IR transceiver. The control module implements the medium

access control and forwarding protocols tailored for the UWB-IR transceivers. More detailed

description of the UWB-IR protocols we employ is available in [24, 25].

The prototypes adapt their networking and communication patterns based on the energy states,

which are monitored by the EHM. A block diagram and a photo of the EHM are shown in Fig. 35.

The EHM monitors the battery level, B(i), and the energy harvesting rate, e(i), and reports them to

the Control Module. To track B(i), the EHM’s energy monitoring circuitry uses a Coulomb counter,
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which measures the bidirectional current across RSENSE2. To track e(i), the EHM uses a high side

current sense amplifier, which measures the instantaneous current across RSENSE1. The Coulomb

counter updates the battery level every 0.875 seconds; the resolution in B(i) is under 5 mC. This

allows for tracking the energy storage level in nearly real time.

The EHM does not supply energy to the other EnHANT prototype components. Rather, as shown

schematically in Fig. 34, the EHM implements controlled energy spending functionality. Specifically,

in correspondence with transceiver energy spending on transmitting and receiving packets, the Con-

trol Module signals to the EHM to activate a small load, which spends energy at a requested rate s(i).

Releasing the constraint of running the prototype using harvested energy allows us to experiment

with various hardware and protocol configurations. In the EHM, the energy is spent by discharging

the battery through the load resistor RLOAD (see Fig. 35) for τ ms. Each load activation reduces the

battery by ∆B = τ · VBAT/(RLOAD +RSENSE1) = 208.68 µC. To verify the precision of the EHM’s

controllable energy spending, we compared the energy spending rates calculated according to this

formula and the energy spending rates we experimentally obtained, for a set of EHM load activation

rates. For up to 12 load activations per second, the discrepancy was under 2.1%.

For energy storage, the EHM uses a 2.4 V NiMH battery with 150 mAh (1,296 J) capacity. The

EHM battery is intentionally oversized. This allows us to conduct experiments with different values

of battery capacity C by restricting (in software) the battery operating range.

We equipped EnHANT prototypes with custom-designed organic photovoltaics (OPVs) and with

commercially available amorphous silicon (a-Si) solar cells that are commonly used for indoor light

energy harvesting applications [100,115]. The custom OPVs and the commercial a-Si solar cells are

shown in Fig. 36. The a-Si cells are the Sanyo AM-1815 cells with a 5.61x4.52 cm2 active area. A

description of the process we followed to fabricate the OPVs can be found in [98]. The OPVs area is

5.0x5.0 cm2. The two types of photovoltaics can be easily interchanged, as can be seen in Fig. 33(a).

6.1.2 EnHANT Prototype Testbed

The small-scale EnHANTs testbed includes a control and monitoring system and a software-based

light control system. The testbed is shown schematically in Fig. 37. The current testbed can include

up to 6 EnHANT prototypes.
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Figure 37: A schematic diagram of the EnHANTs testbed.

Figure 38: A screenshot of the EnHANTs testbed monitoring system.

Prototype Control and Monitoring System – For control and monitoring, the prototypes

are placed on MIB600 programming boards and accessed from a PC via Ethernet. On the PC,

a Java-based graphical monitoring system records and shows in real time data rates, r, energy

harvested, e, and battery levels, B, of each of the prototypes, and the individual packets transmitted

(they are shown as flashing “arrows”). A screenshot of the monitoring system is shown in Fig. 38.

Software-based Light Control System – The software-based light control system allows exposing

individual prototypes to repeatable light energy conditions based on real-world irradiance traces.

The system was previously shown in Fig. 33(b). To ensure full control over light conditions, the

prototypes’ solar cells are placed inside custom-designed dark box enclosures, as shown in Fig. 39.

The light sources are component cool white Light-Emitting Diodes, mounted on heat sinks and

attached to the enclosures. A LabVIEW script on a PC controls the irradiance inside each enclosure

by controlling the current supplied to the Light-Emitting Diodes from a DC power supply. The

irradiance produced by the system was calibrated using a NIST-traceable photodiode (Newport

UV-818). The system can produce over 3,000 distinct irradiance levels between 0 and 14 mW/cm2
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Figure 39: A dark box enclosure used in the EnHANTs testbed software-based light control system.
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Figure 40: Energy harvesting for a prototype with an a-Si solar cell and with an organic photovoltaic
(OPV): (a) generated power as a function of irradiance, (b) time-varying irradiance based on a light
energy trace, and (c) power harvested by an a-Si solar cell and an OPV exposed to this irradiance.

(an effective resolution of less than 5 µW/cm2); the irradiance levels can be changed with time steps

of under 0.1 second.

With the software-based light control setup, we extensively use the indoor irradiance traces we

presented in Chapter 3, exposing the prototypes to the light conditions based on the traces. We refer

to the traces by their identifiers, L-1, L-2, ... (see Table 1 in Chapter 3).

The software-based light control system allows replicating real-world irradiance traces with re-

markable repeatability (e.g., the energy harvesting rates over multiple repetitions of light energy

traces are shown in Fig. 42(a), 43(a), 47(a), 48(a)). This ensures that experimental evaluations of

energy harvesting adaptive policies are based on the same energy inputs. To be able to conduct

many experiments with trace inputs in a reasonable amount of time, we “compress” (downsample)

day-long traces. To capture the corresponding dynamics in the energy storage behavior, we also

scale the light levels (by a factor indicated).
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While primarily designed for evaluating energy harvesting adaptive communications and net-

working policies, the software-based light control system can also be used for other evaluations. For

example, using this system, we demonstrated that different types of solar cells perform differently

under the same light conditions. Fig. 40 demonstrates an example of evaluations of different solar

cells, an OPV and an a-Si cell. The harvesting efficiency of the OPVs is 1%, while the harvesting

efficiency of a-Si cells varies between 1% and 3% depending on the irradiance (see the measurement

results in Fig. 40(a)). Correspondingly, as shown in Fig. 40(c), when we expose the two solar cells

to irradiance levels based on a light energy trace recorded over a day in location L-1 (Fig. 40(b)),

the “curves” of the power generated by the two solar cells have different shapes. We note that these

effects are difficult to capture in simulations, which simply assume that the energy harvested by a

solar cell is a linear function of the irradiance (e.g., [19, 40]).

6.2 Evaluating Energy Harvesting Adaptive Policies

In this section, we evaluate experimentally the policies we examined analytically for the determin-

istic profile energy model in Chapter 5. We present evaluation results for energy harvesting nodes

(Sections 6.2.1) and links (Section 6.2.2). In Section 6.2.3 we additionally briefly comment on the

evaluation of policies we examined analytically for node and link scenarios for the stochastic energy

model. We describe policies we have implemented and examined for networks of energy harvesting

nodes in a subsequent Section 6.3.

We conducted extensive experiments with different policies, providing nodes, equipped with

either an a-Si solar cell or an OPV, a dynamic light energy input based on the indoor light energy

traces summarized in Chapter 3. Each EnHANT prototype monitors its energy harvesting rate, Q,

battery level, B, and energy spending rate, s. The prototypes exchange these values via wireless

communications, and adapt their data rates, r, according to the policies implemented. We report B

in either Coulombs or Joules.1 We record the prototype parameters via EnHANTs testbed control

and monitoring functionality. For the prototypes, the energy cost to transmit is ctx = 35.5 nJ/bit,

1In general, battery levels and battery capacities are often reported in various different units, units of charge
(Coulombs, Ampere-hours), and units of energy (Joules). Since 1 C = 1 A·1 second, the conversion between Coulombs
and Ampere-hours is straightforward. To calculate the energy, the charge is multiplied by the voltage of the battery,
VBAT. In our system, VBAT = 2.4 V, thus the charge of 1 C (or, equivalently, 278 µAh) corresponds to 2.4 J of energy.
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Figure 41: Sample EnHANT prototype policy realizations: (a) OPT, SG, and CR policies for a
node scenario with a deterministic profile energy model, and (b) OPT, DRC-NOPT, DRC-SG, and
DRC-CR policies for a link scenario with a deterministic profile energy model.

and the energy cost to receive is crx = 384.5 nJ/bit [24, 25].

This section uses the notation, model, and policies we introduced in Chapter 5. Similarly

to Chapter 5, we denote the time slot index by i. The prototypes create their energy profiles

{Q(1), ..., Q(K)}, used in most policies we examine for the deterministic profile energy model, by

determining their expected harvesting rates, Q(i), for the different time intervals. In node scenar-

ios, we evaluate the Optimal (OPT), Constant Rate (CR), and Spend-what-you-get (SG) policies,

introduced in Section 5.2.1. Sample EnHANT prototype realizations of these policies are shown in

Fig. 41(a).2 In link scenarios, we evaluate the OPT policies and several variants of the Decoupled

Rate Control (DRC) policies, introduced in Section 5.2.2. Specifically, we examine Node-optimal

DRC (DRC-NOPT), Constant Rate DRC (DRC-CR), and Spend-what-you-get DRC (DRC-SG)

policies. Fig. 41(b) demonstrates the (overlapping) ru(i) and rv(i) values for a set of example

EnHANT prototype realizations of these policies.3

Recall that in Chapter 5 we considered linear and general energy storage types, corresponding to

batteries and capacitors. EnHANT prototypes store the energy in a battery. The experiments pre-

sented in this section thus correspond to the linear energy storage. As battery-based and capacitor-

based systems use different circuitry [120], non-trivial circuitry redesign effort would be required to

adapt the prototypes to use capacitors.

2These realizations were obtained for C = 0.069 J and with the light energy input corresponding to a day in L-3,
scaled by 22x.

3These realizations were obtained for Cu = Cv = 0.069 J, and with the light energy input corresponding to a day
in L-1 and L-2, scaled by 104x.



92

100 200 300
0

0.5

1

1.5

2

2.5

Q
 (

m
W

)

Time (s)

(a)

100 200 300
0

0.5

1

1.5

2

2.5

Time (s)

s 
(m

W
)

 

 C
1
, sim.

C
1
, exp.

C
2
, sim.

C
2
, exp.

(b)

100 200 300
0

0.05

0.1

0.15

0.2

Time (s)

B
 (

J)

 

 C
1
, sim.

C
1
, exp.

C
2
, sim.

C
2
, exp.

(c)

20 40 60 80 100

2

4

6

Capacity C, % of Σ
i
Q(i)

Z
 

 

Up. bound
OPT, sim.
OPT, exp.
CR, sim.
CR, exp.

(d)

Figure 42: Node scenarios with a deterministic profile energy model: (a) energy harvesting rates,
(b) energy spending rates and (c) battery levels, experimental and obtained via simulations, and (d)
objective function values under the OPT and CR policies.

6.2.1 Evaluating Optimal and Approximate Node Policies

As mentioned above, in node scenarios, we evaluate the OPT, CR, and SG policies.

Prior to the testbed implementations and evaluations, we have extensively evaluated our policies

via MATLAB-based simulations. In nodes scenarios we examined, the results obtained experimen-

tally and via MATLAB-based simulations correspond closely. For example, Fig. 42(b) and Fig. 42(c)

show the s(i) and B(i) obtained under the OPT policies, for two different values of C, C1 = 0.14 J

and C2 = 0.09 J. For these experiments, we provided the prototype with a light input based on

the light energy trace recorded over a day in L-3 (scaled by 22x). The energy harvesting rates Q(i)

are shown in Fig. 42(a); the errorbars demonstrate the variations in Q(i) in different experiments.

The s(i) “curves” (Fig. 42(b)) differ, in the simulations and in the experiments, only by a short

delay, caused by the inexact correspondence of time slots in the simulations and in the experimental

results. The B(i) “curves” (Fig. 42(c)) correspond closely, with only small discrepancies arising,

due to the difference in B(i) update intervals, when B(i) is close to the energy storage capacity C.
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This precise correspondence confirms the reliability and precision of the energy state monitoring and

controlled energy spending functionalities of the EHM.

The performance of the CR policies depends on the energy storage capacity C. When C is small,

the OPT policies outperform the CR policies. When C is large, the performance of the OPT and

CR policies is similar (as we described in Chapter 5, under certain conditions the OPT and CR

policies coincide). This can be seen, for example, in Fig. 42(d) which shows the objective function

values, Z, under different policies for different values of C, for the Q(i) shown in Fig. 42(a). Each

data point in Fig. 42(d) corresponds to a separate experiment, repeated 3 times.

The CR policies outperform the SG policies. In the experiments described above, for example,

the Zsg for all values of C is only 86.0% of the Zcr obtained with the smallest C we considered.

Additionally, under the SG policies, the nodes experience substantial downtimes. For example, for

L-1 – L-4, the node downtimes under the SG policies are 22 – 52%. Finally, the upper bound on Z,

demonstrated in Observation 1 in Section 5.2.1, is tight when C is large, as can be seen, for example,

in Fig. 42(d).

6.2.2 Evaluating Optimal and Approximate Link Policies

As mentioned above, we evaluate the OPT policies and several variants of the DRC policies:

DRC-NOPT, DRC-CR, and DRC-SG. For the evaluations, we use light energy traces concur-

rently recorded in nearby locations. In the link scenarios, the experimentally obtained data rates are

slightly lower than the simulated data rates (as can be seen, for example, in Fig. 43(c,d)). This is

due to packet errors that are not reflected in our simulations, and are the result of packet collisions,

system computational overloads, and noise-induced bit errors.

The performance of the DRC-NOPT policies is similar to the performance of the OPT poli-

cies, the performance of the DRC-CR policies is dependent on C, and the DRC-SG policies are

outperformed by the other policies.

Example evaluation results are shown in Fig. 43. We provided the prototypes with light inputs

corresponding to the light energy traces recorded over a day in L-1 (for node u) and L-2 (for node

v), scaled by 110x. The nodes’ Q(i) values in these experiments are shown in Fig. 43(a) (with

the errorbars corresponding to the variations in Q(i) between the different repetitions). The Z
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Figure 43: Link scenarios with a deterministic profile energy model: (a) energy harvesting rates, (b)
objective function values, (c) average data rates under the DRC-CR policies, and (d) average data
rates under the DRC-NOPT policies.

values under the different policies are shown in Fig. 43(b). The r values are shown in Fig. 43(c,d).

Each data point in Fig. 43(b-d) corresponds to a separate experiment, repeated 5 times. In these

experiments, for all values of C, the Zdrc−nopt is at least 99.1% of the Zopt. Additionally, the upper

bound on Z, derived in Observation 2 in Section 5.2.2, is tight when C is large (see, for example,

Fig. 43(b)).

The DRC-SG policies result in substantial downtimes (while under the other policies no link

downtimes are experienced). For example, for a link with nodes’ energy inputs corresponding to

(L-1, L-2), TL(u,v) = 57%, and for (L-2, L-3), TL(u,v) = 64%. These downtimes are close to the lower

bound on TL(u,v) derived in Observation 4 in Section 5.2.2.

6.2.3 Policy Implementations for the Stochastic Energy Model

The experimental results presented in this work are restricted to the deterministic profile environ-

mental energy model. For the stochastic energy model, we implemented the OPT, Storage-state-

linear (SL), and Threshold-based (THR) policies in the EnHANTs prototypes. Sample EnHANT
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Figure 45: Small-scale multihop network topologies: (a) a 3-node line network, and (b) a 4-node
diamond network.

prototype realizations of these policies are demonstrated in Fig. 44, for example (these realizations

were obtained for C = 0.4313 J; we use light energy input that corresponds to the pdf of the diurnal

energy in L-2).

Due to the relatively slow prototype energy storage state changes when charging and discharg-

ing, for these policies, the full experimental evaluations (which require a large number of samples)

are subject for future work. The close correspondence between the simulations and the testbed

experiments for the policies with deterministic energy inputs (e.g., Fig. 42(b,c)) suggests that these

evaluations will closely correspond to the simulations as well.

6.3 Energy Harvesting Adaptive EnHANT Networking

In this section, we evaluate, using a small multihop network of EnHANT prototypes, policies for

networks of energy harvesting nodes. We focus on data collection scenarios (e.g., ID collection),

corresponding to the tracking applications we envision for the EnHANTs. Fig. 45 shows the consid-

ered network topologies: a 3-node line network and a 4-node diamond network. In these topologies,
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Figure 46: Node energy allocation policies used as building blocks for network policies: (a) energy
harvesting rates, (b) energy spending rates under the EX, EP-1, and EP-12 policies, and (c) battery
levels, experimentally measured and simulated, under the EX and EP-1 policies.

the prototypes u, v, and w generate messages, and send them, via multihop collection trees, to a

prototype that serves as a Collection Coordinator (CC). We note that most algorithms proposed

for networks of energy harvesting nodes [10,40,55] are too complex for implementation in ultra-low-

power indoor environments, as they require multiple local [10] or global [55] iterations, or complex

calculations [40]. We thus focus on simple policies.

As building blocks for wider-scale (i.e., network) energy harvesting adaptive policies, we use the

following node energy adaptive policies that closely match node energy spending rates, s(i), to node

energy harvesting rates, e(i).

• Exponential policies (EX) – The desired energy spending rate s(i) is set to the exponential

average of the energy harvesting rate: s(i) ← ê(i) = α · ê(i − 1) + (1 − α) · e(i), 0 ≤ α ≤ 1.

Similar policies were evaluated, via simulations, in [55].

• Energy Profile-based policies (EP-K) – In the EP-K policies (K corresponds to the

number of time intervals), the node’s desired energy spending rates are set to the expected

energy harvesting rates: s(i) ← e(i) ∀i ∈ K. For example, the EP-1 policy (examined, via

simulations, in [19]), corresponds to a node spending energy at its average expected harvesting

rate over the entire planning horizon (for large C, EP-1 and CR policies coincide).

Examples of energy spending rates, recorded in EnHANT prototypes running these policies, are

shown in Fig. 46(b). They are obtained for node energy harvesting rates illustrated in Fig. 46(a)

(where errorbars represent variations in energy harvesting rates in different experiments).4 The EX

4We provided the prototype with a light input corresponding to the light energy recorded over a day in L-3,
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Figure 47: FLEX flow control policies: (a) energy harvesting rates, (b) data rates under the EX and
EP-1 node energy allocation policies, and (c) average data rates, under the EX policy, for different
values of rc.

and EP-K policies effectively ensure energy neutrality (see Section 5.1), that is, effectively match

energy spending to energy harvesting. For example, in all our experiments with the EX and EP-K

policies corresponding to node energy harvesting rates shown in Fig. 46(a), the node used 95%–96%

of the harvested energy.

6.3.1 Flow Control Policies

Our experiments with networks of energy harvesting nodes strongly indicate the need for flow con-

trol policies. When nodes set their data rates without considering other nodes (i.e., by setting

r(i)← s(i)/ctx), networked nodes overspend energy dramatically. In the UWB-IR-based EnHANT

prototypes, this is particularly pronounced since, due to the ctx/crx ratio, a prototype spends ap-

proximately 10 times more energy on receiving and forwarding a packet for another prototype than

on transmitting its own packet.

We implemented and evaluated flow control policies to which we refer to as FLEX, that are

based on the DLEX node data rate assignment algorithm proposed in [19]. FLEX, running on the

CC, assigns fair (lexicographically maximal [19]) data rates to the network nodes.5 Under FLEX,

the prototypes independently determine their desired energy spending rates, s(i), using the EX or

EP-K node energy allocation policies, and send them to the CC. The CC allocates data rates such

that the total energy spending rates of the nodes do not exceed s(i), and the assigned data rates are

compressed to 321 seconds and scaled by 2.1x. The prototype was equipped with an a-Si solar cell. In the experiments
conducted, the variability in total energy harvested was under 1.9%.

5The DLEX data rate allocation algorithm developed in [19] is implicitly tied to a particular, EP-based, node
energy allocation policy. In FLEX, we combine the data rate allocation algorithm of [19] with different node policies.
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Algorithm 3 FLEX policy running on the CC, for the 3-node line multihop network topology
shown in Fig. 45(a).

Input: su(i), sv(i), scc(i);
if su(i) > sv(i) · (2 + crx/ctx) then
ŝv(i)← sv(i); ŝu(i)← su(i)− sv(i) · (1 + crx/ctx);

else
{ŝu(i), ŝv(i)} ← su(i)/(2 + crx/ctx);

if (su(i)/ctx) > (scc(i)/crx) then
RT ← scc(i)/crx; Rcurr ← [ŝu(i) + ŝv(i)]/ctx;
if Rcurr > RT then
ŝu(i)← ŝu(i) ·RT /Rcurr; ŝv(i)← ŝv(i) ·RT /Rcurr;

Return: ru(i)← max[ŝu(i)/ctx, rmin];
rv(i)← max[ŝv(i)/ctx, rmin];

fair. The FLEX policy for the 3-node line network topology (Fig. 45(a)) is shown in Algorithm 3.

The algorithm first computes lexicographically maximal data rates that the forwarding node u can

support, then checks whether the CC can support these rates, and, if necessary, scales the rates

proportionally. To maintain network connectivity, nodes communicate at a rate of at least rmin.

We conducted extensive experiments with the FLEX policy using a variety of light inputs.

Fig. 47(b), for example, demonstrates data rates assigned by FLEX, in combination with the EX and

EP-1 policies, for a network with node energy harvesting rates shown in Fig. 47(a) (where errorbars

represent variations in energy harvesting rates in different experiments).6

The FLEX policy, in combination with the EP-1, ensures energy neutrality. In combination with

EX and with EP-K for K 6= 1, FLEX may underspend or overspend the energy of the nodes. For

example, in the evaluation scenarios shown in Fig. 47, combined with EP-1, FLEX spends 96.4% of

the energy harvested by node u; combined with EX, it spends 125%. To achieve energy neutrality,

FLEX needs to take into account energy spending on control messages, transmitted by the CC

at a fixed rate rc. For example, prior to calculating node data rates according to Algorithm 3,

nodes’ s(i) values need to be reduced as scc(i) ← scc(i) − rc · ctx, su(i) ← su(i) − rc · [crx + ctx],

sv(i)← sv(i)− rc · crx. The rc values directly affect nodes’ data rates, as can be seen, for example,

in Fig. 47(c), where each data point corresponds to a complete 11.6 minute (700 second) testbed

6We provided the prototypes with light inputs corresponding to the light energy recorded over a day in L-2, com-
pressed to 720 seconds (12 minutes) and scaled by 60.4x. The prototypes were equipped with OPVs. In 8 experiments,
the variability in the total energy harvested was under 4.1% for the CC, and under 1% for nodes u and v. We provided
nodes with nearly identical light inputs, yet harvesting rates, shown in Fig. 47(a), differed by more than 1.8x. This is
due to different efficiencies of the OPVs integrated with different prototypes.
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Figure 48: Topology adaptation policies: (a) energy harvesting rates, and (b) percentage of harvested
energy used by the nodes.

Table 7: Data rates r under different collection tree adaptation policies.
Policy Tree A Tree B RR-T , T = 10 RR-T , T = 50 L-B′, B′ = 7 L-B′, B′ = 18

r, % of MX 82.4 95.1 92.6 97.8 88.2 92.8

experiment with the energy harvesting rates shown in Fig. 47(a).

6.3.2 Collection Tree Adaptation Policies

We implemented and examined a number of collection tree adaptation policies in a diamond network

topology, shown in Fig. 45(b). In this topology, nodes u and v send messages to the CC directly,

while node w sends its messages via a forwarder, u (tree A) or v (tree B). A collection tree is chosen

by the CC based on one of the heuristics outlined below. Once a tree is selected, node data rates are

assigned using the FLEX flow control policies, in combination with the EX node energy allocation

policies.

We compare the performance of the following policies to the performance in networks where the

collection trees are fixed, and to an EP-1-based MX policy , that calculates the best collection tree

offline.

• Round Robin (RR-T ) – Trees A and B alternate every T seconds. We consider the RR-T

policies with T = 10 seconds and T = 50 seconds.

• Battery Level-based (L-B′) – The collection tree is changed if the battery level of the

forwarder in the current tree is B′ mC lower than the battery level of the other forwarder.

We consider the L-B′ policy with B′ = 7 mC and B′ = 18 mC. We note that tree selection
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based on node battery levels is commonly used in traditional (non-energy-harvesting) sensor

networks [109].

Policy evaluation results presented below correspond to the node energy harvesting rates shown

in Fig. 48(a), where errorbars represent variations in harvesting rates in different experiments.7

Table 7 shows the average data rates obtained under different policies, as a percentage of data rates

obtained under the MX policy. Note that using Trees A and B results in different data rates (due

to the difference in the energy harvested by u and v). Fig. 48(b) shows the percentage of harvested

energy used by the nodes.

All collection tree adaptation policies resulted in data rate improvements over the fixed Tree A.

This emphasizes the need for topology adaptation policies for networks of energy harvesting nodes.

The use of the L-B′ policies did not result in data rate improvements over the fixed Tree B. Due

to FLEX and EX not taking battery levels into account, L-B′ only changes energy use patterns in

nodes u and v (as can be seen in Fig. 48(b)).

6.4 Conclusions

In this chapter, we present the design considerations for EnHANTs prototypes and prototypes

testbed. The prototypes communicate with each other via custom-developed UWB-IR transceivers

and harvest indoor light energy using custom-designed organic solar cells. They form small multihop

networks and adapt to the energy harvesting states in real time. The developed EnHANTs prototype

testbed is the first system that allows exposing energy harvesting nodes to repeatable light energy

conditions based on real-world irradiance (light energy) traces.

We used the testbed to evaluate energy harvesting adaptive algorithms we designed for energy

harvesting nodes and links (i.e., the contributions we describe in Chapter 5) with light energy traces

we collected (i.e., the contributions we describe in Chapter 3). Additionally, using the testbed,

we evaluated a set of heuristic policies for networks of energy harvesting adaptive nodes. To the

best of our knowledge, our work is the first attempt to evaluate energy harvesting adaptive policies

in a controllable experimental environment. Our evaluations demonstrate a close agreement of the

7We provided the prototypes with light inputs corresponding to the light energy recorded over a day in L-1 and L-2
(nearby locations in the same office), compressed to 400 seconds (6.6 minutes) and scaled by 20.0x. The prototypes
were equipped with OPVs. In 8 experiments, the variability in total energy harvested was under 3% for all nodes.
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experimental results with the simulations, confirm that in many cases simple node and link poli-

cies perform well, and demonstrate experimentally the tightness of some of the bounds on policy

performance we derived in Chapter 5. The evaluations also highlight the need for flow control and

topology control policies for networks of energy harvesting nodes.

6.A Phased Prototype and Testbed Development

We have developed the EnHANTs prototypes and testbed in a set of 6 “evolutionary” phases over

4 years, as shown schematically in Fig. 49. At the end of each phase, a fully functional EnHANTs

prototypes testbed was showcased at a major conference demonstration session [26,28,57,80,85,119].

The photos of the testbed in Phases I-V are shown in Fig. 50.

The EnHANTs were first prototyped using commercial off-the-shelf sensor network motes [110]

and were later iteratively integrated with the custom-designed hardware. The EnHANTs testbed
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was originally a simple data logger with a bare-bones visualization interface. Later, the testbed was

iteratively upgraded to provide real time energy harvesting parameter monitoring and software-based

light control functionality.

Below, we present a brief summary of the evolutionary EnHANTs prototypes functionality de-

velopment:

• Energy harvesting – Initially, we designed the EnHANTs prototypes to sense, but not harvest,

the available environmental energy (Phase I). Next we integrated commercial solar cells with the

prototypes and implemented real-time energy harvesting state monitoring (Phases II and III). We

then integrated the custom-designed solar cells (Phase IV). In the latest phase, we integrated the

prototypes with mechanically flexible solar cells and mechanically flexible batteries (Phase VI).

• Ultra-Wideband Impulse-Radio (UWB-IR) wireless communications – Prior to the

integration of the custom-designed UWB-IR communication modules in Phase III, we substan-

tially modified the mote operating system (which did not support custom transceivers). The

integration additionally required the implementation of a custom medium access control module,

since the UWB-IR transceiver characteristics differ greatly from the properties of the conven-

tional transceivers (e.g., the clear channel assessment functionality, which is taken “for granted”

in conventional transceivers, is not straightforward with UWR-IR).

• Energy-harvesting-aware algorithms – The algorithms were first designed and developed for

simple single node scenarios, and were later implemented for network scenarios. Following the

integration of the UWB-IR transceivers in Phase III, we re-implemented the algorithms to take

the UWB-IR characteristics into account.

• Testbed functionality – The EnHANTs testbed first consisted of a data logger with a sim-

ple visualization interface, which we replaced with a custom-designed real-time monitoring and

control system. We additionally developed several light energy control systems, from relatively

simple manual setups (Phases III and IV) to a software-based light control system that exposes

the prototypes to real-world trace-based light energy conditions (Phase V). Subsequently, we

additionally redesigned the software-based light control system to be compact and user-friendly

(Phase VI).
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Chapter 7

Conclusions

In this thesis, we consider energy harvesting networked nodes. We make contributions to energy

source characterization and algorithm design for ultra-low-power energy harvesting nodes. In addi-

tion, we contribute to node design and prototyping and to project-based engineering education.

We characterized light energy and kinetic (motion) energy for ultra-low-power energy harvesting

nodes. Our characterizations are based on a diverse set of light and motion measurements that we

conducted. The characterizations provide important insights into light and motion energy availabil-

ity and properties (e.g., variability, predictability, influencing factors). The insights are useful for

designing energy harvesting nodes and energy harvesting adaptive algorithms. We also formulated

and studied resource allocation problems for energy harvesting networked nodes. Inspired by the

needs of tracking and monitoring Internet of Things applications of networked nodes, we aimed to

allocate nodes’ varying energy in a uniform way with respect to time. For the deterministic energy

profile and stochastic environmental energy models, for node and link scenarios, we formulated op-

timization problems and introduced algorithms for solving them. We also examined many simple

policies, for many of which we provided performance guarantees. Additionally, we designed a new

type of ultra-low-power wireless nodes – Energy Harvesting Active Networked Tags (EnHANTs).

We prototyped the EnHANTs and designed and developed an EnHANTs prototypes testbed. We

used the testbed to evaluate experimentally the energy harvesting adaptive policies we developed
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with the light energy traces we collected. The design and performance evaluation insights we ob-

tained apply beyond EnHANTs to networks of different energy harvesting nodes. Finally, we also

explored new approaches to engaging students in large-scale interdisciplinary research efforts and

demonstrated the effectiveness of our approaches.
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[70] J. Peckham, P. Stephenson, J. Hervé, R. Hutt, and M. Encarnação, “Increasing student re-
tention in computer science through research programs for undergraduates,” ACM SIGCSE
Bull., vol. 39, no. 1, pp. 124–128, 2007.

[71] P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photode-
tectors and solar cells,” J. Appl. Phys., vol. 93, p. 3693, 2003.

[72] J. Polack-Wahl and K. Anewalt, “Learning strategies and undergraduate research,” ACM
SIGCSE Bull., vol. 38, no. 1, pp. 209–213, 2006.

[73] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, 1994.

[74] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations
for solar energy harvesting wireless embedded systems,” in Proc. IEEE IPSN’05, Apr. 2005.

[75] D. Raicu and J. Furst, “Enhancing undergraduate education: A REU model for interdisci-
plinary research,” ACM SIGCSE Bull., vol. 41, no. 1, pp. 468–472, 2009.

[76] M. Raju, “Energy harvesting. ULP meets energy harvesting: a game-changing combination for
design engineers,” Texas Instruments, http://focus.ti.com/lit/wp/slyy018/slyy018.pdf, 2008.

[77] J. Randall, Designing Indoor Solar Products, 1st ed. Wiley, 2005.

[78] R. Rao, S. Vrudhula, and D. Rakhmatov, “Battery modeling for energy aware system design,”
IEEE Computer, vol. 36, no. 12, pp. 77–87, 2003.

[79] S. Russel, The Architecture of Light. Conceptnine, 2008.



110

[80] J. Sarik, L. Pena, M. Wang, K. Kim, H. Wang, F. Duque, G. Burrow, R. Margolies, M. Gor-
latova, B. Vigraham, P. Kinget, I. Kymissis, and G. Zussman, “Demo: An adaptive testbed
of energy harvesting active networked tags (EnHANTs) prototypes,” in IDTechEx Energy
Harvesting and Storage USA’12, Nov. 2012.

[81] S. Schocken, “Taming complexity in large-scale system projects,” in Proc. ACM SIGCSE’12,
Feb. 2012.

[82] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy, “Cloudy computing: leveraging weather
forecasts in energy harvesting sensor systems,” in Proc. IEEE SECON’10, June 2010.

[83] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy management policies for
energy harvesting sensor nodes,” IEEE Trans. Wireless Comm., vol. 9, no. 4, pp. 1326–1336,
2010.

[84] S. Solda, M. Caruso, A. Bevilacqua, A. Gerosa, D. Vogrig, and A. Neviani, “A 5 Mb/s UWB-
IR transceiver front-end for wireless sensor networks in 0.13 CMOS,” IEEE J. Solid-State
Circuits, vol. 46, no. 7, pp. 1636–1647, July 2011.

[85] G. Stanje, P. Miller, J. Zhu, A. Smith, O. Winn, R. Margolies, M. Gorlatova, J. Sarik, M. Szc-
zodrak, B. Vigraham, L. Carloni, P. Kinget, I. Kymissis, and G. Zussman, “Demo: Organic
solar cell-based EnHANT prototypes.” in Proc. ACM SenSys’11, Nov. 2011.

[86] T. Starner, “Human-powered wearable computing,” IBM systems Journal, vol. 35, no. 3, pp.
618–629, 1996.

[87] M. Szczodrak and L. Carloni, “Demo: A complete framework for programming event-driven,
self-reconfigurable low power wireless networks,” in Proc. ACM SenSys’11, Nov. 2011.

[88] J. Taneja, J. Jeong, and D. Culler, “Design, modeling, and capacity planning for micro-solar
power sensor networks,” in Proc. IEEE IPSN’08, Apr. 2008.

[89] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy
harvesting nodes,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1180–1189, Mar. 2012.

[90] “Cymbet EnerChips,” http://www.cymbet.com/content/products.asp.

[91] “EnOcean Energy Harvesting Wireless Sensor Solutions and Networks,” http://www.enocean.
com/.

[92] “GreenPeak Technologies,” http://www.greenpeak.com/.

[93] “Infinite power solutions evaluation kits,” http://www.infinitepowersolutions.com/products/
evalkits.html.

[94] “Intel Lab data,” http://db.csail.mit.edu/labdata/labdata.html.

[95] “Measurement and Instrumentation Data Center, National Renewable Energy Laboratory
(NREL), US DOE,” http://www.nrel.gov/midc/.

[96] “nPower Personal Energy Generator,” http://www.npowerpeg.com/.

[97] “Powercast development kits,” http://www.powercastco.com/products/development-kits/.



111

[98] “Preparing the Plexcore PV 1000 Ink System,” http://www.sigmaaldrich.com/
technical-documents/protocols/materials-science/preparing-the-plexcore.html.

[99] “TAOS TSL230rd programmable light-to-frequency converter,” http://www.taosinc.com/.

[100] “Texas Instruments MSP430 Solar Energy Harvesting Development Tool,” http://focus.ti.
com/docs/toolsw/folders/print/ez430-rf2500-seh.html.

[101] “Weather UndergroundWeather History and Data Archive,” http://www.wunderground.com/
history/.

[102] C. Vigorito, D. Ganesan, and A. Barto, “Adaptive control of duty cycling in energy-harvesting
wireless sensor networks,” in Proc. IEEE SECON’07, June 2007.

[103] T. Von Buren, P. Mitcheson, T. Green, E. Yeatman, A. Holmes, and G. Troster, “Optimization
of inertial micropower generators for human walking motion,” IEEE Sensors J., vol. 6, no. 1,
pp. 28–38, 2006.

[104] R. Vullers, R. Van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, “Micropower energy
harvesting,” Solid-State Electronics, vol. 53, no. 7, pp. 684–693, Apr. 2009.

[105] Z. Wang, A. Tajer, and X. Wang, “Communication of energy harvesting tags,” IEEE Trans.
Commun., vol. 60, no. 4, pp. 1159–1166, Apr. 2012.

[106] B. Warneke, M. Last, B. Liebowitz, and K. Pister, “Smart dust: communicating with a cubic-
millimeter computer,” IEEE Computer, vol. 34, no. 1, pp. 44–51, Jan 2001.

[107] E. Wenderholm, “Challenges and the elements of success in undergraduate research,” ACM
SIGCSE Bull., vol. 36, no. 4, pp. 73–75, 2004.

[108] D. Wentzloff, F. Lee, D. Daly, M. Bhardwaj, P. Mercier, and A. Chandrakasan, “Energy
efficient pulsed-UWB CMOS circuits and systems,” in Proc. IEEE ICUWB’07, Sept. 2007.

[109] Y. Wu, Z. Mao, S. Fahmy, and N. Shroff, “Constructing maximum-lifetime data gathering
forests in sensor networks,” IEEE/ACM Trans. Netw., vol. 18, no. 5, pp. 1571–1584, 2010.

[110] N. Xu, “A survey of sensor network applications,” IEEE Commun. Mag., vol. 40, no. 8, pp.
102–114, 2002.

[111] Y. Xue and L. Jin, “A naturalistic 3D acceleration-based activity dataset and benchmark
evaluations,” in Proc. IEEE SMC’10, Oct. 2010.

[112] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with a battery limited energy harvesting
rechargeable transmitter,” in Proc. IEEE WiOpt’11, May 2011.

[113] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting communication
system,” IEEE Trans. Commun., vol. 60, no. 1, pp. 220–230, Jan. 2012.

[114] Y. Yang, L. Wang, D. K. Noh, H. K. Le, and T. F. Abdelzaher, “SolarStore: Enhancing data
reliability in solar-powered storage-centric sensor networks,” in Proc. ACM MobiSys’09, June
2009.

[115] L. Yerva, A. Bansal, B. Campbell, T. Schmid, and P. Dutta, “Grafting energy-harvesting
leaves onto the sensornet tree,” in Proc. IEEE IPSN’12, Apr. 2012.



112

[116] J. Yun, S. Patel, M. Reynolds, and G. Abowd, “Design and performance of an optimal inertial
power harvester for human-powered devices,” IEEE Trans. Mobile Comput., vol. 10, no. 5, pp.
669–683, May 2011.

[117] M. Zafer and E. Modiano, “A calculus approach to energy-efficient data transmission with
quality-of-service constraints,” IEEE/ACM Trans. Netw., vol. 17, no. 3, pp. 898–911, 2009.

[118] D. Zhu and S. Beeby, Energy Harvesting Systems: Principles, Modeling, and Applications,
1st ed. Springer, 2011.

[119] J. Zhu, G. Stanje, R. Margolies, M. Gorlatova, J. Sarik, Z. Noorbhaiwala, P. Miller, M. Szczo-
drak, B. Vigraham, L. Carloni, P. Kinget, I. Kymissis, and G. Zussman, “Demo: Prototyping
UWB-enabled EnHANTs,” in Proc. ACM MobiSys’11 Demo Session, June 2011.

[120] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z.-L. Zhang, “Leakage-Aware Energy Synchronization
for Wireless Sensor Networks,” in Proc. ACM MobiSys’09, June 2009.



113

Appendix A

Project-based Learning within the

EnHANTs Project

In this appendix, we describe our experiences with engaging a large and diverse group of students

in project-based learning within the EnHANTs prototype and testbed design and development “um-

brella project”. While project-based learning is actively used to help students build professional

skills [41, 52], typically it is only applied to small teams and small efforts. We, on the other hand,

involved a diverse population of over 50 students on over 100 semester-long projects in our effort.

To the best of our knowledge, our experience with organizing multiple student projects to contribute

to a large-scale effort is unique. The results are based on joint work with J. Sarik. R. Margolies

contributed to many of the organizational approaches discussed in this appendix.

We first describe the student projects (Section A.1) and our approaches to organizing them (Sec-

tion A.2). We then summarize some of the lessons learned (Section A.3) and present the evaluation

results (Section A.4).

We previously presented the results that appear in this appendix in [27].
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Figure 51: Student projects completed in different semesters.

(a) Academic level. (b) Academic affiliation.

Figure 52: Students involved in the EnHANTs project.

A.1 Student Projects

Under the EnHANTs umbrella project, over 11 semesters, 52 students completed 115 projects. The

number of student projects completed in each semester is shown in Fig. 51. Student demographics

are presented in Fig. 52 and 53. Out of 51 students, 6% were high school students we engaged via

Harlem Children Society. 31% were undergraduates, 50% were M.S. students (of which all but one

were in non-thesis terminal M.S. programs), and 13% were Ph.D. students. 75% of students were

enrolled in academic programs in Columbia University, while the other 25% were visiting students,

i.e., Research Experience for Undergraduate (REU) students, students from local colleges without

advanced research facilities, or visiting international students. Out of 115 student projects, 51% were

full-time projects (summer research internships, REU projects, M.S. thesis research semesters). The

other 49% were semester-long research project courses to which students typically dedicated 8-15

hours per week. 70% of the projects were completed by male students and 30% by female students.

The main focus areas for the student projects were networking (52%), circuits and systems (25%),

electronics and applied physics (15%), and operating systems (8%).

The student projects within the EnHANTs project were collaborative and multidisciplinary. A

project typically focused on one disciplinary area (e.g., algorithm design, operating systems devel-

opment, solar cell design), but required interaction with at least two other areas. These projects



115

(a) Gender. (b) Main focus area.

Figure 53: Students semesters.

challenged students by requiring them to gain understanding of concepts outside of their comfort

zone. Additionally, students improved their communication and teamwork skills because the projects

required them to independently and proactively seek out relevant expertise throughout the research

groups involved in the EnHANTs project. Finally, the projects exposed the students to all aspects

of networking, from the physical-layer pulses generated by the UWB-IR transceivers to the adaptive

flow control and routing protocols. Students thus gained an in-depth fundamental understanding of

networking concepts. A few representative student projects are described below.

• Real-time monitoring and control system, completed by an undergraduate Computer Science

student A. Skolnik: The student developed a Java-based system to monitor and control the

EnHANTs prototypes. The project involved designing the necessary data structures to enable

communication between the prototypes and the computer running the monitoring system. The

student designed the system to support both a text-based interface and a “visual demo” in-

terface that shows the activity of the prototypes in an easy-to-understand way. This project,

implemented using TinyOS and Java, required knowledge of sensor networking, wireline com-

munication, and software design. The student extensively interacted with students who were

modifying the prototype operating system and developing energy-harvesting-aware algorithms.

• EnHANTs prototype UWB-IR communication module, completed by a M.S. Electrical Engineer-

ing student J. Zhu: The student developed and tested the UWB-IR communication module. The

student integrated a custom-designed UWB-IR transmitter and receiver chipset onto a single

printed circuit board and programmed a complex programmable logic device to perform data

serialization and deserialization, preamble detection, and byte synchronization. The student also

developed a UWB-IR radio driver using TinyOS. Primarily focused on circuit design, this project
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required the student to develop expertise in networking, operating systems, and software design.

• Energy-harvesting-adaptive EnHANTs network, completed by an undergraduate Computer Engi-

neering student D. Roggensinger: The student implemented network layer protocols that handled

the EnHANTs packet routing. The student first tested the network functionality using commer-

cial transceivers, and then extensively evaluated network’s performance with custom UWB-IR

transceivers. The student also implemented energy harvesting adaptive network layer algorithms,

which were adapting packet routing paths based on the environmental energy availability. The

student extensively tested these algorithms with the custom energy harvesting modules. While

primarily focused on networking, the project required the student to gain an in-depth knowledge

of the UWR-IR communications and energy harvesting.

A.2 Project Organization

Organizing multiple student projects to contribute to a large-scale effort is challenging. We present

some of our approaches to organizing projects, motivating students, and facilitating learning.

Real-world system integration deadlines: EnHANTs prototype and testbed design, develop-

ment, and integration proceeded in a series of phases (see Fig. 49 and 50). At the end of each

phase, the fully integrated EnHANTs prototype and testbed were presented at a major confer-

ence [26, 28, 57, 80, 85, 119]. We used the conference timelines as the “real-world” deadlines for the

integration of different student projects. The benefits of this approach are multi-fold. First of all, it

motivates students. Providing short-term deadlines for student projects, rather than abstract long-

term goals, energizes and motivates the students. Students are additionally motivated by seeing

their work integrated with the work of others, used in a conference presentation, and subsequently

extended. It also encourages cross-disciplinary collaboration, as under short-term system integra-

tion deadlines, the students work, individually and jointly, to quickly solve problems as they arise.

Finally, it reduces the impact of unsuccessful projects. By constantly updating the software and the

hardware components throughout the system integration deadlines, we restrict the negative impact

of the projects that are technologically flawed.

Frequent cross-group meetings: We conducted regular (weekly or bi-weekly) meetings where

students presented their work to the faculty and students from the different research groups. This
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challenged students to present their work so that it could be understood by people with different

backgrounds. Additionally, students reported that observing how faculty members solved problems

during these meetings improved their own problem solving skills.

Ph.D. student mentorship: The faculty members involved in the EnHANTs project were heav-

ily engaged in the student projects. However, faculty members delegated many of the day-to-day

student supervision tasks to their Ph.D. students. The Ph.D. students provided technical support

and guidance to the students, tested and verified student projects before integration with EnHANT

prototypes and testbed, and ensured continuity among the different student projects. While some-

what time-consuming, these tasks provided the Ph.D. students with important opportunities to

demonstrate and improve their mentorship, leadership, and project management skills.

Frequent system demonstrations: Functional (“live”) EnHANT prototypes and testbed were

frequently demonstrated in different on-site and off-site presentations.1 Frequent demonstrations,

particularly those conducted off-site, encouraged students to design and develop robust software,

hardware, and algorithms and to extensively verify and test their work. This improved students’

technical skills, and provides them with an understanding of the quality standards required from

technology in “real-world” applications. Additionally, the testbed demonstrations gave students

opportunities to present their work to vastly different audiences.

A.3 Lessons Learned

Throughout the 4-year course of the EnHANT project we learned many important lessons. Our

experiences highlight and reinforce the need to foster opportunities for close and continuous cross-

group interactions.

The students work in different labs, focus on different disciplines, and have different technical

skills, priorities, work styles, and expectations. Early on we discovered that the gaps between the

knowledge of the students with different expertise areas are much wider than anticipated. For ex-

ample, Electrical Engineering students are oftentimes unfamiliar with good software development

1Inspired by agile software development practices, we ensured that a version of the EnHANT prototypes and
testbed was always ready to be demonstrated. We did not integrate new software or hardware without extensive
testing and design for backward compatibility. This further reduced the impact of unsuccessful student projects.
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practices, while many Computer Science students may not understand how to properly handle ex-

perimental electronics. Additionally, many students that are not majoring in Electrical Engineering

do not understand the concepts of frequency-domain signal processing that are essential to the un-

derstanding of wireless networking. These knowledge gaps often lead to both technological and

interpersonal issues. Cross-group problem solving requires students to trust each other’s expertise,

but these gaps in knowledge can make the trust difficult to establish. When working with students

we highlight that such gaps are normal and should be treated as a learning opportunity. Ultimately

these issues can only be addressed by establishing, maintaining, and nurturing the connections be-

tween the groups and between the different students. Specifically, we have learned the importance of

the following:

• Extensive use of collaborative tools : As the project has progressed, we have expanded our use

of collaborative tools. The EnHANTs project has an internal wiki and an external website that

are kept up to date with shared technical information and documentation. We use less formal

Google docs to keep the students “on the same page” with regards to project timelines and tasks.

• Carefully defined interfaces between student projects : Some of the most challenging problems

arise when a student interfaces his or her project with another project. The difficulty of solving

these interface problems can in certain cases lead to interpersonal tensions. Designing the inter-

faces between different technologies (e.g., solar cells and the energy harvesting module, UWB-IR

communication module and the control module) has been a challenging task that often required

faculty members’ involvement.

• Formalized knowledge transfer process : A large-scale, long-term project necessitates knowledge

transfer between the students. In our experience, while knowledge transfer needs to be carefully

monitored and emphasized, most students embrace it when they see first-hand that the docu-

mentation they create is used by their peers. Similarly, most students embrace the opportunity

to introduce peers to their work and to teach them.

• Showcase of individual student contributions : With many student projects integrated into the

prototypes, the contributions of some students may not be as visible as the contributions of others.

To address this, we conduct workshops where the students present their projects individually.

We also separately showcase each student project on the EnHANTs project website.
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Figure 54: Project survey results.

A.4 Experiences and Feedback

In October 2012 we conducted a survey amongst all 45 high school, undergraduate, and M.S. students

that had participated in the project. The survey contained multiple-choice questions and optional

open-ended questions. The survey response rate was 75.5%. In the survey’s optional open-ended

questions, students shared many observations, comments, and suggestions about the EnHANTs

project organization. Fig. 54 and 55 show some of the results.

Overall, the students’ experiences were overwhelmingly positive. Over 90% of the students

believed their project experience to be rewarding and enriching. Over 85% of the students indicated

that working on this project improved their ability to function on multidisciplinary teams and

to communicate effectively, made them a better computer scientist or a better engineer, and was a

valuable part of their education. 70% of the students indicated that working on the project improved

their ability to function on multidisciplinary teamsmore than any other activity. Additionally, 50% of

the students indicated that working on the project improved their ability to communicate effectively

more than any other activity, and over 40% of the students indicated that this project increased

their knowledge of computer networking more than any other activity.

The students’ impressions of the project organization features provided additional insights into

the features’ effectiveness:

• Multidisciplinary projects: Most students enjoyed the multidisciplinary nature of their projects.

When specifying what they liked most about the project, over 50% of the students commented on

one of its multidisciplinary aspects. One student enjoyed her project being “about both hardware
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Figure 55: Project survey results: EnHANTs projects compared with other activities.

and software”, and said it was “innovative and challenging to integrate many different aspects in

one”. One student’s favorite thing about his project was the “integration of my work with other

parts of the system – felt like a cohesive project that mattered more”.

• Ph.D. student mentorship: The majority of students appreciated the support provided by

their Ph.D. student mentors. Over 80% of the students said that their mentor was approachable

and accessible, and provided appropriate guidance.

• Frequent cross-group meetings: Most students appreciated the opportunities for problem-

solving and work presentations provided by the regular cross-group meetings. One student noted

that “the meetings are an excellent way for putting everything in the big picture.” Yet several

students also commented that the meetings were unnecessarily long, and suggested that a better

meeting structure should be considered for the future projects. To improve the quality of the

meeting presentations we encourage students to discuss their presentation with their Ph.D. men-

tors. We are also considering joint presentations for students from the same research group.

• Frequent system demonstrations: Over 95% of the students indicated that presenting their

work was a rewarding and enriching experience. Several students specifically mentioned the

presentation skills amongst the skills they acquired or improved while working on the EnHANTs

project. One student noted that “the opportunity to present to others was invaluable. Plus it

was a lot of fun!”

The majority of the negative feedback focused on insufficient knowledge transfer, and the need for

further facilitation of cross-group communications. Several students commented on the insufficient

technical introduction to their project. One student stated that “In the beginning I felt I didn’t have
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enough support to ask very basic things”, and another student noted that “a lot of work goes to waste

if you are unable to successfully pass it on to the next person”. Students noted that “getting everyone

on same page was difficult at times”, and said that “not being able to know exactly what others are

doing” was an impediment to achieving some of their project goals. Based on this feedback, we

have increased our efforts to ensure that students create high-quality, up-to-date documentation,

and have been additionally encouraging the students to independently collaborate with each other.

As of April 2013, 55% of the students have graduated (the other 45% are continuing their studies).

Of the students who have already graduated, 30% continued to higher-level academic programs.

Many students have been accepted to Ph.D. programs in leading universities such as University of

Illinois at Urbana Champaign (UIUC), Princeton, Harvard, and Carnegie Mellon. The other 70%

of the graduates joined different technology companies, including Microsoft, OPNET, and Oracle.

Several students have indicated that working on the EnHANTs project prepared them for some of the

challenges they face in their careers. For example, one student noted that the “experience presenting

my work has been really helpful in my current job profile”, and another highlighted that “being held

accountable for deadlines and project completeness helped prepare me for work environment”.

A.5 Conclusions

While the modern computing landscape increasingly requires large-scale system engineering skills,

such skills are rarely acquired in a typical engineering program. To address this, over the last 4

years, we have been engaging a diverse group of students in research projects within a large-scale

interdisciplinary EnHANTs project. As of April 2013, 115 projects have been completed within the

EnHANTs “umbrella” project. The projects challenge students’ knowledge and organizational and

communication skills. Some of the approaches we have taken to facilitate student learning are the

“real-world” system development constraints and regular cross-group meetings. Students find the

projects rewarding and gain valuable skills. Of the students who completed a survey we developed

to evaluate student learning, over 90% indicated the project was rewarding and enriching, and 70%

indicated that working on this project improved their ability to function on multidisciplinary teams

more than any other activity in their academic career.

Our experience demonstrates the feasibility of engaging diverse groups of students on large-scale
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interdisciplinary research efforts, sheds light on some potential pitfalls of such efforts (e.g., inadequate

cross-group communication and knowledge transfer), and suggests best practices to overcome these

challenges.


