
9/2/2019

1

ECE 356/COMPSI 356

Computer Network Architecture

Lab Introduction & Sockets

Monday September 2nd, 2019

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

2

9/2/2019

2

Lab Overview

• Three labs

An echo server (10 pts, individual)

A simple router (15 pts, group)

Dynamic routing (15 pts, group)

• C/C++

Set up the Lab Environment

1. Download and install VirtualBox

2. Install the provided virtual machine image

 Wireshark

 Mininet

3. Write your code in your favorite editor

4. Compile, debug

 printf is your best friend

9/2/2019

3

Labs and Plagiarism

• Discussions are encouraged

• Code needs to be written by the individual/group

• We use code similarity checkers to detect

plagiarism

 Plagiarized assignments result in a failing grade for

the course

Lab 1 (1/2)

• This lab needs to be done individually

• Reference textbook material: PD 1.4

• Submit via Sakai by 11:59 PM Wednesday

September 11th

• Hints:

Start early

Pay attention to the requirements

9/2/2019

4

Lab 1 (2/2)

• Write an echo server

using TCP sockets

Client/server

architecture

Client is provided

You need to write the

server

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

8

9/2/2019

5

Network Sockets

9

Sockets

• Provide a form of interprocess

communications

• Used to send messages across a network

Most common types of socket applications:

client-server applications

• Originated in ARPANET in 1971

10

9/2/2019

6

Socket

• What is a socket?

An interface between an

application and the network

The point where a local

application process attaches

to the network

• An application creates the

socket

• Sockets are specific

to a node and are not

externally

addressable

Primarily Used in the Transport Layer

(1/2)

Application Layer

Client Server

Data

Transport Layer

Network Layer

(Data) Link Layer

Application Layer

Transport Layer

Network Layer

(Data) Link Layer

9/2/2019

7

Primarily Used in the Transport Layer

(2/2)

• Lower-layer capabilities often keep track of active

socket pairs

Firewalls

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

14

9/2/2019

8

Application Programming Interface

(Sockets)

• Each protocol provides a certain set of services,

and the API provides a syntax by which those

services can be invoked in this particular OS

• Socket Interface was originally provided by the

Berkeley Software Distribution (BSD) of Unix

Now supported in virtually all operating systems

Easier to port applications between different OSs

Socket Interface

• The interface defines operations for

Creating a socket

Attaching a socket to the network

Sending and receiving messages through the socket

Closing the socket

9/2/2019

9

Client

Connection-oriented

Example (TCP)

Sockets

• Socket Family

 PF_INET denotes the Internet family

 PF_UNIX denotes the Unix pipe facility

 PF_PACKET denotes direct access to the network interface (i.e.,

it bypasses the TCP/IP protocol stack)

• Socket Type

 SOCK_STREAM is used to denote a byte stream

 SOCK_DGRAM is an alternative that denotes a message

oriented service, such as that provided by UDP

9/2/2019

10

Creating a Socket (1/2)

int sockfd = socket(address_family, type,
protocol);

• The socket number returned is the socket descriptor for
the newly created socket

Creating a Socket (2/2)

• int sockfd = socket(PF_INET, SOCK_STREAM, 0);

• int sockfd = socket(PF_INET, SOCK_DGRAM, 0);

• The combination of PF_INET and SOCK_STREAM
implies TCP

• The combination of PF_INET and SOCK_DGRAM implies
UDP

9/2/2019

11

Client-Server Model with TCP: Server

• Server: passive open

Prepares to accept connection, does not actually

establish a connection

• Server invokes:

 int bind(int socket, struct sockaddr
*address, int addr_len)

 int listen(int socket, int backlog)
 int accept(int socket, struct sockaddr

*address,int *addr_len)

Client-Server Model with TCP: Bind

• Binds the newly created socket to the specified

address, i.e. the network address of the local

participant (the server)

• Socket address: a combination of an IP address and

a port number

9/2/2019

12

Client-Server Model with TCP: Listen

• Defines how many connections can be pending on the

specified socket

 int listen(int socket, int backlog)

Client-Server Model with TCP: Accept

(1/2)

• Carries out the passive open

• Blocking operation

Does not return until a remote participant has

established a connection

 int accept(int socket, struct sockaddr
*address,int *addr_len)

9/2/2019

13

Client-Server Model with TCP: Accept

(2/2)

• Returns a new socket that corresponds to the new

established connection

The address argument contains the remote

participant’s address

• Original socket still exists, used in future

invocations of accept

Client

Connection-

oriented Example

(TCP): Client

9/2/2019

14

Client: application performs active open

It says who it wants to communicate with

Client invokes
 int connect(int socket, struct sockaddr

*address, int addr_len)

Client-Server Model with TCP: Client

• Does not return until TCP has successfully

established a connection at which application is

free to begin sending data

• Address contains remote machine’s address

Client-Server Model with TCP: Connect

9/2/2019

15

• The client usually specifies only remote

participant’s address and lets the system fill in

the local information

• A server usually listens for messages on a well-

known port

• A client does not care which port it uses for itself,

the OS simply selects an unused one

Client-Server Model with TCP: In practice

Once a connection is established, the application

process invokes two operations:

 int send(int socket, char *msg, int
msg_len, int flags)

 int recv(int socket, char *buff, int
buff_len, int flags)

Client-Server Model with TCP: Sending
and Receiving

9/2/2019

16

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

31

A Simple Talk Program

• Display at the server

what is transmitted by

the client

9/2/2019

17

Example Application: Client
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_LINE 256

int main(int argc, char * argv[])

{

 FILE *fp;

 struct hostent *hp;

 struct sockaddr_in sin;

 char *host;

 char buf[MAX_LINE];

 int s;

 int len;

 if (argc==2) {

 host = argv[1];

 }

 else {

 fprintf(stderr, "usage: simplex-talk
host\n");

 exit(1);

 }

1/4 2/4

 /* translate host name into peer’s IP
address */

 hp = gethostbyname(host);

 if (!hp) {

 fprintf(stderr, "simplex-talk:
unknown host: %s\n", host);

 exit(1);

 }

 /* build address data structure */

 bzero((char *)&sin, sizeof(sin));

 sin.sin_family = AF_INET;

 bcopy(hp->h_addr, (char
*)&sin.sin_addr, hp->h_length);

 sin.sin_port = htons(SERVER_PORT);

}

Example Application: Client
 /* active open */
 if ((s = socket(PF_INET, SOCK_STREAM,

0)) < 0) {
 perror("simplex-talk: socket");
 exit(1);
 }
 if (connect(s, (struct sockaddr *)&sin,

sizeof(sin)) < 0) {
 perror("simplex-talk: connect");
 close(s);
 exit(1);
 }
 /* main loop: get and send lines of text

*/
 while (fgets(buf, sizeof(buf), stdin)) {
 buf[MAX_LINE-1] = ’\0’;
 len = strlen(buf) + 1;
 send(s, buf, len, 0);
 }
} 3/4 4/4

9/2/2019

18

Example Application: Server
 /* build address data structure */

 bzero((char *)&sin, sizeof(sin));

 sin.sin_family = AF_INET;

 sin.sin_addr.s_addr = INADDR_ANY;

 sin.sin_port = htons(SERVER_PORT);

 /* setup passive open */

 if ((s = socket(PF_INET, SOCK_STREAM, 0)) <
0) {

 perror("simplex-talk: socket");

 exit(1);

 }

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_PENDING 5

#define MAX_LINE 256

int main()
{
 struct sockaddr_in sin;
 char buf[MAX_LINE];
 int len;
 int s, new_s;

1/4 2/4

Example Application: Server
 if ((bind(s, (struct sockaddr *)&sin,

sizeof(sin))) < 0) {

 perror("simplex-talk: bind");

 exit(1);

 }

 listen(s, MAX_PENDING);

 /* wait for connection, then receive and
print text */

 while(1) {

 if ((new_s = accept(s, (struct sockaddr
*)&sin, &len)) < 0) {

 perror("simplex-talk: accept");

 exit(1);

 }

 while (len = recv(new_s, buf,
sizeof(buf), 0))

 fputs(buf, stdout);

 close(new_s);

 }

}

4/4 3/4

9/2/2019

19

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

37

Socket Address Structs
• Internet-specific socket address

 #include <netinit/in.h>

struct sockaddr_in {
 unsigned short sin_family; /* address family (always AF_INET)*/
 unsigned short sin_port; /* port num in network byte order */
 struct in_addr sin_addr /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
};

9/2/2019

20

• Describe the order in which a sequence of bytes is

stored in memory

Big and Little Endian (1/2)

• Big Endian Byte Order

The most significant byte (the "big

end") of the data is placed first

 IBM mainframes, some

microcontrollers

Network byte order in TCP/IP

• Little Endian Byte Order

The least significant byte (the

"little end") of the data is placed

first

Most modern computers

Host byte order is usually

different from network byte order

Big and Little Endian (2/2)

9/2/2019

21

Converting Between Host and

Network Byte Orders

• uint32_t htonl(uint32_t hostlong);

• uint16_t htons(uint16_t hostshort);

• uint32_t ntohl(uint32_t netlong);

• uint16_t ntohs(uint16_t netshort);

Lecture Summary

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

42

