
9/2/2019

1

ECE 356/COMPSI 356

Computer Network Architecture

Lab Introduction & Sockets

Monday September 2nd, 2019

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

2

9/2/2019

2

Lab Overview

• Three labs

An echo server (10 pts, individual)

A simple router (15 pts, group)

Dynamic routing (15 pts, group)

• C/C++

Set up the Lab Environment

1. Download and install VirtualBox

2. Install the provided virtual machine image

 Wireshark

 Mininet

3. Write your code in your favorite editor

4. Compile, debug

 printf is your best friend

9/2/2019

3

Labs and Plagiarism

• Discussions are encouraged

• Code needs to be written by the individual/group

• We use code similarity checkers to detect

plagiarism

 Plagiarized assignments result in a failing grade for

the course

Lab 1 (1/2)

• This lab needs to be done individually

• Reference textbook material: PD 1.4

• Submit via Sakai by 11:59 PM Wednesday

September 11th

• Hints:

Start early

Pay attention to the requirements

9/2/2019

4

Lab 1 (2/2)

• Write an echo server

using TCP sockets

Client/server

architecture

Client is provided

You need to write the

server

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

8

9/2/2019

5

Network Sockets

9

Sockets

• Provide a form of interprocess

communications

• Used to send messages across a network

Most common types of socket applications:

client-server applications

• Originated in ARPANET in 1971

10

9/2/2019

6

Socket

• What is a socket?

An interface between an

application and the network

The point where a local

application process attaches

to the network

• An application creates the

socket

• Sockets are specific

to a node and are not

externally

addressable

Primarily Used in the Transport Layer

(1/2)

Application Layer

Client Server

Data

Transport Layer

Network Layer

(Data) Link Layer

Application Layer

Transport Layer

Network Layer

(Data) Link Layer

9/2/2019

7

Primarily Used in the Transport Layer

(2/2)

• Lower-layer capabilities often keep track of active

socket pairs

Firewalls

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

14

9/2/2019

8

Application Programming Interface

(Sockets)

• Each protocol provides a certain set of services,

and the API provides a syntax by which those

services can be invoked in this particular OS

• Socket Interface was originally provided by the

Berkeley Software Distribution (BSD) of Unix

Now supported in virtually all operating systems

Easier to port applications between different OSs

Socket Interface

• The interface defines operations for

Creating a socket

Attaching a socket to the network

Sending and receiving messages through the socket

Closing the socket

9/2/2019

9

Client

Connection-oriented

Example (TCP)

Sockets

• Socket Family

 PF_INET denotes the Internet family

 PF_UNIX denotes the Unix pipe facility

 PF_PACKET denotes direct access to the network interface (i.e.,

it bypasses the TCP/IP protocol stack)

• Socket Type

 SOCK_STREAM is used to denote a byte stream

 SOCK_DGRAM is an alternative that denotes a message

oriented service, such as that provided by UDP

9/2/2019

10

Creating a Socket (1/2)

int sockfd = socket(address_family, type,
protocol);

• The socket number returned is the socket descriptor for
the newly created socket

Creating a Socket (2/2)

• int sockfd = socket(PF_INET, SOCK_STREAM, 0);

• int sockfd = socket(PF_INET, SOCK_DGRAM, 0);

• The combination of PF_INET and SOCK_STREAM
implies TCP

• The combination of PF_INET and SOCK_DGRAM implies
UDP

9/2/2019

11

Client-Server Model with TCP: Server

• Server: passive open

Prepares to accept connection, does not actually

establish a connection

• Server invokes:

 int bind(int socket, struct sockaddr
*address, int addr_len)

 int listen(int socket, int backlog)
 int accept(int socket, struct sockaddr

*address,int *addr_len)

Client-Server Model with TCP: Bind

• Binds the newly created socket to the specified

address, i.e. the network address of the local

participant (the server)

• Socket address: a combination of an IP address and

a port number

9/2/2019

12

Client-Server Model with TCP: Listen

• Defines how many connections can be pending on the

specified socket

 int listen(int socket, int backlog)

Client-Server Model with TCP: Accept

(1/2)

• Carries out the passive open

• Blocking operation

Does not return until a remote participant has

established a connection

 int accept(int socket, struct sockaddr
*address,int *addr_len)

9/2/2019

13

Client-Server Model with TCP: Accept

(2/2)

• Returns a new socket that corresponds to the new

established connection

The address argument contains the remote

participant’s address

• Original socket still exists, used in future

invocations of accept

Client

Connection-

oriented Example

(TCP): Client

9/2/2019

14

Client: application performs active open

It says who it wants to communicate with

Client invokes
 int connect(int socket, struct sockaddr

*address, int addr_len)

Client-Server Model with TCP: Client

• Does not return until TCP has successfully

established a connection at which application is

free to begin sending data

• Address contains remote machine’s address

Client-Server Model with TCP: Connect

9/2/2019

15

• The client usually specifies only remote

participant’s address and lets the system fill in

the local information

• A server usually listens for messages on a well-

known port

• A client does not care which port it uses for itself,

the OS simply selects an unused one

Client-Server Model with TCP: In practice

Once a connection is established, the application

process invokes two operations:

 int send(int socket, char *msg, int
msg_len, int flags)

 int recv(int socket, char *buff, int
buff_len, int flags)

Client-Server Model with TCP: Sending
and Receiving

9/2/2019

16

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

31

A Simple Talk Program

• Display at the server

what is transmitted by

the client

9/2/2019

17

Example Application: Client
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_LINE 256

int main(int argc, char * argv[])

{

 FILE *fp;

 struct hostent *hp;

 struct sockaddr_in sin;

 char *host;

 char buf[MAX_LINE];

 int s;

 int len;

 if (argc==2) {

 host = argv[1];

 }

 else {

 fprintf(stderr, "usage: simplex-talk
host\n");

 exit(1);

 }

1/4 2/4

 /* translate host name into peer’s IP
address */

 hp = gethostbyname(host);

 if (!hp) {

 fprintf(stderr, "simplex-talk:
unknown host: %s\n", host);

 exit(1);

 }

 /* build address data structure */

 bzero((char *)&sin, sizeof(sin));

 sin.sin_family = AF_INET;

 bcopy(hp->h_addr, (char
*)&sin.sin_addr, hp->h_length);

 sin.sin_port = htons(SERVER_PORT);

}

Example Application: Client
 /* active open */
 if ((s = socket(PF_INET, SOCK_STREAM,

0)) < 0) {
 perror("simplex-talk: socket");
 exit(1);
 }
 if (connect(s, (struct sockaddr *)&sin,

sizeof(sin)) < 0) {
 perror("simplex-talk: connect");
 close(s);
 exit(1);
 }
 /* main loop: get and send lines of text

*/
 while (fgets(buf, sizeof(buf), stdin)) {
 buf[MAX_LINE-1] = ’\0’;
 len = strlen(buf) + 1;
 send(s, buf, len, 0);
 }
} 3/4 4/4

9/2/2019

18

Example Application: Server
 /* build address data structure */

 bzero((char *)&sin, sizeof(sin));

 sin.sin_family = AF_INET;

 sin.sin_addr.s_addr = INADDR_ANY;

 sin.sin_port = htons(SERVER_PORT);

 /* setup passive open */

 if ((s = socket(PF_INET, SOCK_STREAM, 0)) <
0) {

 perror("simplex-talk: socket");

 exit(1);

 }

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_PENDING 5

#define MAX_LINE 256

int main()
{
 struct sockaddr_in sin;
 char buf[MAX_LINE];
 int len;
 int s, new_s;

1/4 2/4

Example Application: Server
 if ((bind(s, (struct sockaddr *)&sin,

sizeof(sin))) < 0) {

 perror("simplex-talk: bind");

 exit(1);

 }

 listen(s, MAX_PENDING);

 /* wait for connection, then receive and
print text */

 while(1) {

 if ((new_s = accept(s, (struct sockaddr
*)&sin, &len)) < 0) {

 perror("simplex-talk: accept");

 exit(1);

 }

 while (len = recv(new_s, buf,
sizeof(buf), 0))

 fputs(buf, stdout);

 close(new_s);

 }

}

4/4 3/4

9/2/2019

19

Lecture Outline

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

37

Socket Address Structs
• Internet-specific socket address

 #include <netinit/in.h>

struct sockaddr_in {
 unsigned short sin_family; /* address family (always AF_INET)*/
 unsigned short sin_port; /* port num in network byte order */
 struct in_addr sin_addr /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
};

9/2/2019

20

• Describe the order in which a sequence of bytes is

stored in memory

Big and Little Endian (1/2)

• Big Endian Byte Order

The most significant byte (the "big

end") of the data is placed first

 IBM mainframes, some

microcontrollers

Network byte order in TCP/IP

• Little Endian Byte Order

The least significant byte (the

"little end") of the data is placed

first

Most modern computers

Host byte order is usually

different from network byte order

Big and Little Endian (2/2)

9/2/2019

21

Converting Between Host and

Network Byte Orders

• uint32_t htonl(uint32_t hostlong);

• uint16_t htons(uint16_t hostshort);

• uint32_t ntohl(uint32_t netlong);

• uint16_t ntohs(uint16_t netshort);

Lecture Summary

• Labs: an introduction

• Introduction to sockets

• Socket interface

• Example client-server application

• Host and network byte orders

42

