
9/8/2019

1

ECE 356/COMPSI 356

Computer Network Architecture

Link Layer

Wednesday September 4th, 2019

Recap

• Last lecture:

Network programming

Physical layer

• Readings for this lecture: PD 2.2 – 2.5

2

9/8/2019

2

Quiz 1 Review

• Average 8.46/10, median 9/10

• Questions with most incorrect answers

Delay-bandwidth product calculations:

additional practice in the first homework

 Internet history

3

History of Internet Service Providers

(1/2)
• Internet started as a government-supported restricted-use

tool (ARPANet 1969, NSFNet 1985-1995)

• 1980s: limited capabilities offered by commercial providers

 E.g., e-mail

• First commercial Internet Service Providers (ISPs) appeared

in 1989

 Internet available to consumers

 → Internet as a consumer phenomenon is approximately 30 years old

4

9/8/2019

3

History of Internet Service Providers

(2/2)

• 10,000 ISPs by late

1990s

• AOL leading provider by

year 2000

• Will talk more about

ISPs in a lecture on

Inter-domain routing
5

Web Browsers

• Application for accessing information on

the World Wide Web

Retrieve information from a web server and

display it on user’s device

• Browsers differ in features, latency of

various tasks

6

9/8/2019

4

History of Web Browsers (1/4)

• First web browser: 1991

• First popular web browser: Mosaic 1993

Hugely influential

Leader of Mosaic team created Netscape Navigator

7

History of Web Browsers (2/4)

• Different browsers captured almost the entire

market at different times

• https://www.reddit.com/r/dataisbeautiful/commen

ts/cxuah9/usage_share_of_internet_browsers_1

996_2019_oc/

8

9/8/2019

5

History of Web Browsers (3/4)
• Netscape dominated the market in 1995

• Then: Internet Explorer (IE), first available to all Windows

users, then integrated with Windows

 Intense competition

 Netscape: small one-product company, IE part of Microsoft

ecosystem

 Many people purchasing computers for the first time: no incentives

to try non-default browsers

• Peak market share of Internet Explorer: 96%

9

History of Web Browsers (4/4)

• Apple effect: IE discontinued on iOS platform → helped

Safari, an Apple product

• Dominance of Android devices: Chrome pre-installed on

Android

• Arguably, quality is a factor

• “Chrome won the second browser war”

 Market share 60%

10

9/8/2019

6

Link Capacity: Shannon-Hartley Theorem

Example (1/2)

• C = B*log2(1+S/N)

 C in bps, B in Hz, S avg. signal power, N avg. noise power

• SNR in dB = 10*log10(S/N)

• Example: B = 100,000 Hz, SNR = 3dB. What is the upper

bound on link capacity?

• Calculating S/N: 3 = 10*log10(S/N) → 0.3 = log10(S/N) → S/N = 2

• C = 100,000*log2 (3) = 100,000*1.58 = 158,000 bps

Link Capacity: Shannon-Hartley

Theorem Example (2/2)

• What is the increase in the upper bound of link

capacity if we double the bandwidth?

 It doubles (158,000*2 = 316,000 bps)

• What is the increase in the upper bound of link

capacity if we double the SNR?

S/N = 4, B = 100,000

C = 100,000*log2(5) = 100,000*2.32 = 232,000
12

9/8/2019

7

Shannon Theorem: Intuition

• Increase in B: more information can be

sent

• Increase in SNR: fewer bit errors, more

information can be received correctly

13

Lecture Outline

• Link layer: an introduction

• Encoding

• Framing

• Error detection

Parity, checksum, CRC

• Reliability

FEC, sliding window

 14

9/8/2019

8

Link Layer: an Introduction

15

Recap: Put Bits on the Wire (1/2)

• Each node (e.g. a PC) connects

to a network via a network

adaptor

• The adaptor delivers data

between a node’s memory and

the network

• A device driver is the program

running inside the node that

manages the above task

9/8/2019

9

Recap: Put Bits on the Wire (2/2)

• At one end, a network adaptor encodes and modulates a

bit into signals on a physical link

• At the other end, a network adaptor reads the signals on a

physical link and converts it back to a bit

Metrics to Describe a Link

• Bandwidth

 Why are some links slow/fast?

• Latency/delay

• Transmission delay (serialization)

 Store and forward

• Delay-bandwidth product

• Throughput

 How long does it take to send a file?

9/8/2019

10

Link Layer Functions

• Encoding

• Framing

• Error detection

• Reliable transmission

• Managing multiple access (next week)

Lecture Outline

• Link layer: an introduction

• Encoding: NRZ, NRZI, Manchester coding, 4B/5B

• Framing

• Error detection

 Parity, checksum, CRC

• Reliability

 FEC, sliding window

20

9/8/2019

11

Encoding

• Implemented in hardware

• High and low signals, ignore modulation

• Simplest one: 1 to high, 0 to low

Non-return to Zero (NRZ)
• 1 to high, 0 to low

• Not good for decoding

Baseline wander for long sequences of 1s or 0s

Clock recovery difficulties

9/8/2019

12

Non-return to Zero Inverted (NRZI)
• A transition from current signal encodes 1

• No transition encodes 0

• Does it solve all problems?

 Not for consecutive 0s

Manchester Encoding

• Transmit XOR of NRZ data and the clock

1: high low; 0: low high
XOR truth table

9/8/2019

13

Manchester Encoding Drawback

• Doubles the rate at which signals are sent

• Baud rate: signal change rate

• For Manchester encoding:
 Bit rate is half of baud rate → only 50% efficient

 If the receiver was able to keep up with the faster baud rate,

NRZ and NRZI could have been able to transmit twice as

many bits in the same time period

4B/5B
• Key idea: insert extra bits to break up long sequences of 0s

or 1s

• 4-bit of data (“4B”) are encoded in a 5-bit code word (“5B”)

 16 data symbols, 32 code words

 At most one leading 0, at most two trailing 0s

 When sent back to back: no more than three consecutive 0s

• 5-bit codes are sent using NRZI

 NRZI: transition encodes a 1, no transition encodes 0

 Solves NRZI’s problem of consecutive zeroes

• 80% efficient

9/8/2019

14

• Exercise:

 00101101

• What’s the high/low signal sequence?

4-bit data

symbol

5-bit code

0000 11110

0001 01001

0010 10100

0011 10101

0100 01010

0101 01011

0110 01110

0111 01111

1000 10010

1001 10011

4-bit data

symbol

5-bit code

1010 10110

1011 10111

1100 11010

1101 11011

1110 11100

1111 11101

Lecture Outline

• Link layer: an introduction

• Encoding

• Framing

• Error detection

Parity, checksum, CRC

• Reliability

FEC, sliding window

 28

9/8/2019

15

Framing
• Now we’ve seen how to

encode bitstreams

• But nodes send blocks of

data (frames)

 A’s memory adaptor

adaptor B’s memory

• An adaptor must determine

the boundary of frames

Block of data

Variety of Framing Protocols

• Byte-oriented protocols

 Sentinel approach

 Byte-counting approach

 Binary Synchronous Communication (BISYNC), Point-to-

Point Protocol (PPP), DDCMP

• Bit-oriented protocols

• Clock-based framing

9/8/2019

16

Convention: Illustrating Frame and Packet

Formats

31

Fields
Field lengths in

bits

• Transmitted from the leftmost bit
 Displayed start to end

• Frame: a collection of bytes (characters)

Sentinel (n)

• Oxford dictionary: A soldier or guard whose job

is to stand and keep watch

32

9/8/2019

17

Byte-oriented Protocols:

Sentinel Approach (1/2)

• Sentinel characters

 Synchronization: SYN

 Start of header: SOH

 Start of text: STX, end of text: ETX

• Binary Synchronous Communication (BISYNC) by IBM in late 60s

• Cyclic redundancy

check (CRC): will

discuss later

Byte-oriented Protocols:

Sentinel Approach (2/2)

• What if special characters appear in a data stream?

 “Escape character”: DLE (data-link escape) preceding ETX when it

appears in text

 DLE preceded with another DLE

 Character stuffing

• Size of what goes on the wire is content-dependent

9/8/2019

18

Point-to-Point Protocol (PPP)

• Commonly run over Internet links

• Sentinel approach: special start of text character denoted as Flag

 0 1 1 1 1 1 1 0

• Address, control : default numbers

• Protocol for demux : IP / IPX

• Payload : negotiated (1500 bytes)

Byte-oriented Protocols: Byte Counting

Approach

• A byte count field: specify how long the frame is

• The corruption of the count field: framing error
 Will count what is received up to the faulty count value as frame

bits

 The sentinel approach: corrupted ETX

• Digital Data Communication Message Protocol (DDCMP) by DECNET

9/8/2019

19

Bit-oriented Protocols: HLDC

• Frame: a collection of bits

• Beginning/ending sequence: 0111 1110

• Transmitted when a link is idle, to help devices synchronize

clocks:

 0111 1110 or idle flags 1111 1111

• Bit-stuffing for data

• Frames are of variable length, their size content-dependent

• High-level data link control (HDLC) protocol

HLDC Bit-stuffing Algorithm

• Any time five consecutive 1’s have been transmitted

from the body of the message (i.e. excluding when the

sender is trying to send the distinguished 0111 1110

sequence)

 The sender inserts 0 before transmitting the next bit

9/8/2019

20

Clock-based

Framing

• Synchronous Optical Network (SONET)

 Dominant standard for optical networks

• Each frame is 125 µs long

 810 bytes for the slowest SONET link

• Clock synchronization

 Special pattern repeated enough times

Lecture Outline

• Link layer: an introduction

• Encoding

• Framing

• Error detection

Parity, checksum, CRC

• Reliability

FEC, sliding window

 40

9/8/2019

21

Errors on Links
• Causes:

 Noise, interference,

attenuation, fading

 Bit synchronization problems

• More frequent when SNR is

low

• More frequent on wireless

links

• Measure: bit error rate
41

10 20 30 40

SNR(dB)

B
E

R

10-1

10-2

10-3

10-5

10-6

10-7

10-4

Error Detection

• Error detection code adds redundancy

Analogy: sending two copies

Goal: Maximize the probability of detecting

errors using only a small number of redundant

bits

• Error detection approaches: parity,

checksum, CRC

9/8/2019

22

Two-dimensional Parity (1/2)

• Even parity bit

 Make an even number of 1s in

each row and column

• 1 extra bit for each byte and

one extra byte for the frame

• Detect all 1,2,3-bit errors, and

most 4-bit errors

7*6 = 42

bits of

payload

Two-dimensional Parity (2/2)

• What is the overhead of

this scheme?

14 extra bits

14/42*100 = 33%

7*6 = 42

bits of

payload

9/8/2019

23

Internet Checksum Algorithm

• Used by higher-layer protocols

• Basic idea:

 Add all the words transmitted, send the sum

 Receiver does the same computation and compares the sums

• IP checksum

 Adding 16-bit short integers using 1’s complement arithmetic

 Take 1’s complement of the result

• Used by lab 2 to detect errors

1’s Complement Arithmetic (1/2)

• “-x” is each bit of “x” inverted: +5: 0101, -5: 1010

• [-(2n-1-1), 2n-1-1] – e.g., n = 3 → [-3, 3]

What is the range for n=4 bits?

 [-(23-1), 23-1] = [-7, 7]

9/8/2019

24

1’s Complement Arithmetic (2/2)

• “-x” is each bit of “x” inverted: +5: 0101, -5: 1010

• If there is a carry bit, add 1 to the sum

• Example: 4-bit integer

 -5 + -2

 +5: 0101; -5: 1010;

 +2: 0010; -2: 1101;

 -5 + -2 = 1010+1101 = 0111 + one carrier bit;

 1000 = -7

Verifying the Checksum

• Adds all 16-bit words together, including

the checksum

• 0: correct

• 1: errors

9/8/2019

25

Checksum: Remarks

• Only 16 redundant bits for message of any

size

• Not particularly robust

Can detect 1 bit errors

Not all two-bits

• Why not?

• Efficient for software implementation

Cyclic Redundancy Check

• Cyclic error-correcting codes

• High-level idea:

Represent an n+1-bit message with an n degree

polynomial M(x): (1,0,0,1) → 1x3+0x2+0x1+1

Divide the polynomial by a degree-k divisor

polynomial C(x)

 k-bit CRC: remainder

Send message + CRC that is divisible by C(x)

9/8/2019

26

Polynomial Arithmetic Modulo 2

• B(x) can be divided by C(x) if B(x) has higher degree

• B(x) can be divided once by C(x) if of same degree

x3 + 1 can be divided by x3 + x2 + 1

The remainder would be 0* x3 + 1* x2 + 0* x1 + 0* x0

(obtained by XORing the coefficients of each term)

CRC Algorithm

1. Multiply M(x) by xk: add k zeros the end of the

message. Call it T(x)

2. Divide T(x) by C(x) and find the remainder

3. Send P(x) = T(x) – remainder

 Append remainder to T(x)

• P(x) divisible by C(x)

9/8/2019

27

An Example

• 8-bit message

10011010

• Divisor (3 bit CRC)

1101

Message sent: 10011010101

How to Choose a Divisor

• Arithmetic of a finite field

• Intuition: unlikely to be divided evenly by an error

• Corrupted message is P(x) + E(x)

• If E(x) is single bit, then E(x) = xi

• If C(x) has the first and last term nonzero, then detects all

single bit errors

• Find C(x) by looking it up in a book

9/8/2019

28

International Standards

• CRC-8 = x8+x2+x+1

• CRC-10 = x10+x9+x5+x4+x+1

• CRC-12 = x12+x11+x3+x2+x+1

• CRC-16 = x16+x15+x2+1

• CRC-CCITT = x16+x12+x5+1

• CRC-32 =

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

 Used by Ethernet

Lecture Outline

• Link layer: an introduction

• Encoding

• Framing

• Error detection

Parity, checksum, CRC

• Reliable transmission

FEC, sliding window

 56

9/8/2019

29

Reliable Transmission

• What to do if a receiver detects bit errors?

• Two high-level approaches

Forward error correction (FEC)

 Retransmission

Forward Error Correction

• Uses error-correcting codes

• Incurs fixed overhead for all transmissions

As opposed to retransmissions when errors have

happened

• Used where retransmissions are costly or

impossible

One-way communication links

Multicast
58

9/8/2019

30

Reliable Transmission:

Retransmissions

• Acknowledgements

ACK: A short sequence send back to the sender

Can be “piggybacked” on data packets

• Timeouts: waiting for a reasonable time

• Also called Automatic Repeat reQuest (ARQ)

Reminder: Convention: Illustrating Frame

and Packet Formats

60

Fields
Field lengths in

bits

9/8/2019

31

Convention: Illustrating

Protocol Behavior

Stop-and-Wait

• Send one frame, wait for

an ACK, and send the

next

• Retransmit if times out

• Note in the last figure

(d), there might be

confusion: a new frame,

or a duplicate?

9/8/2019

32

Sequence Number

• Add a sequence

number to each frame

to avoid the ambiguity

• Keep sequence

numbers small to

reduce overhead

Stop and Wait Protocol Drawback

• The sender has only one outstanding frame on

the link at a time

This may be far below the link’s capacity

9/8/2019

33

Stop and Wait Protocol Drawback: An

Example
• Consider a 1.5 Mbps link with a 45 ms RTT

 The link has a delay bandwidth product of 67.5 Kb or

approximately 8 KB

 Since the sender can send only one frame per RTT and assuming a

frame size of 1 KB

 Maximum sending rate

• Bits per frame Time per frame = 1024 8 0.045 = 182 Kbps

 Or about one-eighth of the link’s capacity

 To use the link fully, then sender should transmit up to eight frames

before having to wait for an acknowledgement

Sliding Window

• Key idea: allowing

multiple outstanding

(un-acked) frames to

“keep the pipe full”

9/8/2019

34

Sliding Window on Sender

• Assign a sequence number (SeqNum) to each

frame

• Maintains three variables

Send Window Size (SWS)

Last ACK Received (LAR)

Last Frame Sent (LFS)

• Invariant: LFS – LAR ≤ SWS

• Sender actions

When an ACK arrives, moves LAR to the right,

opening the window to allow the sender to send more

frames

 If a frame times out before an ACK arrives, retransmit

• Frames are buffered

Slide window this way when an ACK arrives

9/8/2019

35

Sliding Window on Receiver

• Maintains three window variables

Receive Window Size (RWS)

Largest Acceptable Frame (LAF)

Last Frame Received (LFR)

• Invariant

LAF – LFR ≤ RWS

• A frame with SeqNum arrives...

• Discards it if out of window: SeqNum ≤ LFR or SeqNum > LAF

• If in window, accept, decide on what to ACK

 Cumulative ACK

 SeqNumToAck : largest sequence number not yet acknowledged

 Ack SeqNumToAck

 Sets LFR = SeqNumToAck-1, LAF = LFR + RWS

 Updates SeqNumToAck

9/8/2019

36

Sliding Window on Receiver: An

Example

• Ex: LFR = 5; RWS = 4

 Implies LAF = 9

• Frames 7, 8, 6 arrive

Finite Sequence Numbers

• Sequence number fields are short

They wrap around

• Number of possible sequence numbers must be

larger than the maximum number of outstanding

frames

E.g., stop-and-wait: 1 outstanding frame, 2 sequence

numbers

9/8/2019

37

Finite Sequence Numbers: An Example

• Things may go wrong when SWS=RWS, SWS too large

• Example:

 3-bit sequence number [0, … 7], SWS=RWS=7

 Sender sends 0, …, 6; receiver ACKs, expects (7,0, …, 5), but all

ACKs lost

 Sender retransmits 0,…,6; receiver thinks they are new

• (0, … , 5) are in receiver’s window size and will be recorded

as parts of a new frame

Finite Sequence Numbers: Window

Size Limits

• SWS < (MaxSeqNum+1)/2

 Alternates between first half and second half of sequence

number space

 Just as stop-and-wait alternates between 0 and 1

9/8/2019

38

Multiple Functions of the Sliding

Window Algorithm

• Perhaps one of the best-known algorithms in computer

networking

• Multiple functions

 Reliable delivery of frames over a link

 In-order delivery to upper layer protocol

 Flow control

• Not to over-run a slow receiver

 Congestion control (later)

• Not to congest the network

Other ACK Mechanisms

• NACK: negative ACKs for packets not received

 Unnecessary, as sender timeouts would catch this information

• SACK: selective ACK the received frames

 Refinement to cumulative ACKs: specify exactly what has been

received

 + No need to send duplicate packets

 - more complicated to implement

 Newer version of TCP has SACK

9/8/2019

39

Concurrent Logical Channels

• A link has multiple logical channels

• Each logical channel runs an independent stop-

and-wait protocol

• + keeps the pipe full

• - no relationship among the frames sent in

different channels: wildly out-of-order

Exercise

• Delay: 100ms; Bandwidth: 1Mbps; Packet Size:

1000 Bytes; ACK: 40 Bytes

• Q: the smallest window size to keep the pipe

full?

9/8/2019

40

• Window size = largest amount of unacked data

• How long does it take to ACK a packet?

 RTT = 100 ms * 2 + transmission delay of a packet (1000 B) +

transmission delay of an ACK (40 B) ~=208ms

• How many packets can the sender send in an RTT?

 1 Mbps * 208 ms / 8000 bits = 26

• Roughly 13 packets in the pipe from sender to receiver,

and 13 ACKs from receiver to sender

100ms

1Mbps

Lecture Summary

• Link layer: an introduction

• Encoding

• Framing

• Error detection

Parity, checksum, CRC

• Reliability

FEC, sliding window

 80

9/8/2019

41

Next Lecture

• Wireless

communications

• Link layer: Ethernet

• Link layer: Multiple

access

81

