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ECE 356/COMPSI 356 

Computer Network Architecture 

 

Link Layer 

Wednesday September 4th, 2019   

Recap  

• Last lecture:  

Network programming  

Physical layer  

 

• Readings for this lecture: PD 2.2 – 2.5 
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Quiz 1 Review  

• Average 8.46/10, median 9/10  

• Questions with most incorrect answers   

Delay-bandwidth product calculations: 

additional practice in the first homework  

 Internet history  
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History of Internet Service Providers 

(1/2) 
• Internet started as a government-supported restricted-use 

tool (ARPANet 1969, NSFNet 1985-1995)  

• 1980s: limited capabilities offered by commercial providers 

 E.g., e-mail  

• First commercial Internet Service Providers (ISPs) appeared 

in 1989 

 Internet available to consumers  

 → Internet as a consumer phenomenon is approximately 30 years old  
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History of Internet Service Providers 

(2/2) 

• 10,000 ISPs by late 

1990s  

• AOL leading provider by 

year 2000 

• Will talk more about 

ISPs in a lecture on 

Inter-domain routing  
5 

Web Browsers 

• Application for accessing information on 

the World Wide Web 

Retrieve information from a web server and 

display it on user’s device  

• Browsers differ in features, latency of 

various tasks 
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History of Web Browsers (1/4) 

• First web browser: 1991   

• First popular web browser: Mosaic 1993 

Hugely influential  

Leader of Mosaic team created Netscape Navigator 
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History of Web Browsers (2/4) 

• Different browsers captured almost the entire 

market at different times  

• https://www.reddit.com/r/dataisbeautiful/commen

ts/cxuah9/usage_share_of_internet_browsers_1

996_2019_oc/ 
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History of Web Browsers (3/4) 
• Netscape dominated the market in 1995  

• Then: Internet Explorer (IE), first available to all Windows 

users, then integrated with Windows  

 Intense competition  

 Netscape: small one-product company, IE part of Microsoft 

ecosystem    

 Many people purchasing computers for the first time: no incentives 

to try non-default browsers   

• Peak market share of Internet Explorer: 96%  
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History of Web Browsers (4/4) 

• Apple effect: IE discontinued on iOS platform → helped 

Safari, an Apple product  

• Dominance of Android devices: Chrome pre-installed on 

Android  

• Arguably, quality is a factor   

• “Chrome won the second browser war”  

 Market share 60% 
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Link Capacity: Shannon-Hartley Theorem 

Example (1/2) 

• C = B*log2(1+S/N) 

 C in bps, B in Hz, S avg. signal power, N avg. noise power  

• SNR in dB = 10*log10(S/N) 

• Example: B = 100,000 Hz, SNR = 3dB. What is the upper 

bound on link capacity?    

• Calculating S/N: 3 = 10*log10(S/N) → 0.3 = log10(S/N) → S/N = 2  

• C = 100,000*log2 (3) = 100,000*1.58 = 158,000 bps  

Link Capacity: Shannon-Hartley 

Theorem Example (2/2) 

• What is the increase in the upper bound of link 

capacity if we double the bandwidth?  

 It doubles (158,000*2 = 316,000 bps)   

• What is the increase in the upper bound of link 

capacity if we double the SNR?  

S/N = 4, B = 100,000 

C = 100,000*log2(5) = 100,000*2.32 = 232,000 
12 



9/8/2019 

7 

Shannon Theorem: Intuition  

• Increase in B: more information can be 

sent  

• Increase in SNR: fewer bit errors, more 

information can be received correctly 
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Lecture Outline 

• Link layer: an introduction  

• Encoding  

• Framing  

• Error detection 

Parity, checksum, CRC 

• Reliability 

FEC, sliding window 
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Link Layer: an Introduction  

15 

Recap: Put Bits on the Wire (1/2) 

• Each node (e.g. a PC) connects 

to a network via a network 

adaptor 

• The adaptor delivers data 

between a node’s memory and 

the network 

• A device driver is the program 

running inside the node that 

manages the above task 
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Recap: Put Bits on the Wire (2/2) 

• At one end, a network adaptor encodes and modulates a 

bit into signals on a physical link 

• At the other end, a network adaptor reads the signals on a 

physical link and converts it back to a bit 

Metrics to Describe a Link 

• Bandwidth 

 Why are some links slow/fast? 

• Latency/delay 

• Transmission delay (serialization) 

 Store and forward 

• Delay-bandwidth product 

• Throughput 

 How long does it take to send a file? 
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Link Layer Functions 

• Encoding 

• Framing 

• Error detection 

• Reliable transmission 

• Managing multiple access (next week)  

Lecture Outline 

• Link layer: an introduction  

• Encoding: NRZ, NRZI, Manchester coding, 4B/5B 

• Framing  

• Error detection 

 Parity, checksum, CRC 

• Reliability 

 FEC, sliding window 

 
20 
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Encoding 

• Implemented in hardware 

• High and low signals, ignore modulation 

• Simplest one: 1 to high, 0 to low 

Non-return to Zero (NRZ) 
• 1 to high, 0 to low 

 

 

 

 

• Not good for decoding 

Baseline wander for long sequences of 1s or 0s 

Clock recovery difficulties  
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Non-return to Zero Inverted (NRZI)  
• A transition from current signal encodes 1 

• No transition encodes 0 

• Does it solve all problems? 

 Not for consecutive 0s 

 

Manchester Encoding 

• Transmit XOR of NRZ data and the clock  

1: high  low; 0: low  high 
XOR truth table 
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Manchester Encoding Drawback 

• Doubles the rate at which signals are sent 

• Baud rate: signal change rate 

• For Manchester encoding:  
 Bit rate is half of baud rate → only 50% efficient  

 If the receiver was able to keep up with the faster baud rate, 

NRZ and NRZI could have been able to transmit twice as 

many bits in the same time period  

 

4B/5B 
• Key idea: insert extra bits to break up long sequences of 0s 

or 1s 

• 4-bit of data (“4B”) are encoded in a 5-bit code word (“5B”) 

 16 data symbols, 32 code words 

 At most one leading 0, at most two trailing 0s 

 When sent back to back: no more than three consecutive 0s 

• 5-bit codes are sent using NRZI 

 NRZI: transition encodes a 1, no transition encodes 0  

 Solves NRZI’s problem of consecutive zeroes  

• 80% efficient  
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• Exercise: 

 00101101 

• What’s the high/low signal sequence? 

4-bit data 

symbol 

5-bit code 

0000 11110 

0001 01001 

0010 10100 

0011 10101 

0100 01010 

0101 01011 

0110 01110 

0111 01111 

1000 10010 

1001 10011 

4-bit data 

symbol 

5-bit code 

1010 10110 

1011 10111 

1100 11010 

1101 11011 

1110 11100 

1111 11101 

Lecture Outline 

• Link layer: an introduction  

• Encoding  

• Framing  

• Error detection 

Parity, checksum, CRC 

• Reliability 

FEC, sliding window 

 28 
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Framing 
• Now we’ve seen how to 

encode bitstreams 

• But nodes send blocks of 

data (frames)  

 A’s memory  adaptor  

adaptor  B’s memory 

• An adaptor must determine 

the boundary of frames 

Block of data 

Variety of Framing Protocols 

• Byte-oriented protocols 

 Sentinel approach 

 Byte-counting approach 

 Binary Synchronous Communication (BISYNC), Point-to-

Point Protocol (PPP), DDCMP 

• Bit-oriented protocols 

• Clock-based framing 
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Convention: Illustrating Frame and Packet 

Formats 

31 

Fields  
Field lengths in 

bits 

• Transmitted from the leftmost bit 
 Displayed start to end  

 

• Frame: a collection of bytes (characters) 

Sentinel (n)  

• Oxford dictionary: A soldier or guard whose job 

is to stand and keep watch  

32 
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Byte-oriented Protocols:  

Sentinel Approach (1/2) 

• Sentinel characters 

 Synchronization: SYN 

 Start of header: SOH   

 Start of text: STX, end of text: ETX 

• Binary Synchronous Communication (BISYNC) by IBM in late 60s 
 

• Cyclic redundancy 

check (CRC): will 

discuss later  

Byte-oriented Protocols:  

Sentinel Approach (2/2) 

• What if special characters appear in a data stream?  

 “Escape character”: DLE (data-link escape) preceding ETX when it 

appears in text  

 DLE preceded with another DLE  

 Character stuffing 

• Size of what goes on the wire is content-dependent  
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Point-to-Point Protocol (PPP) 

• Commonly run over Internet links  

• Sentinel approach: special start of text character denoted as Flag 

 0 1 1 1 1 1 1 0 

• Address, control : default numbers 

• Protocol for demux : IP / IPX 

• Payload : negotiated (1500 bytes) 

Byte-oriented Protocols: Byte Counting 

Approach 

• A byte count field: specify how long the frame is  

• The corruption of the count field: framing error  
 Will count what is received up to the faulty count value as frame 

bits  

 The sentinel approach: corrupted ETX  

• Digital Data Communication Message Protocol (DDCMP) by DECNET  
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Bit-oriented Protocols: HLDC 

• Frame: a collection of bits 

• Beginning/ending sequence: 0111 1110 

• Transmitted when a link is idle, to help devices synchronize 

clocks:  

 0111 1110 or idle flags 1111 1111 

• Bit-stuffing for data 

• Frames are of variable length, their size content-dependent 

• High-level data link control (HDLC) protocol 

HLDC Bit-stuffing Algorithm 

• Any time five consecutive 1’s have been transmitted 

from the body of the message (i.e. excluding when the 

sender is trying to send the distinguished 0111 1110 

sequence) 

 The sender inserts 0 before transmitting the next bit 
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Clock-based 

Framing 

• Synchronous Optical Network (SONET) 

 Dominant standard for optical networks  

• Each frame is 125 µs long  

 810 bytes for the slowest SONET link  

• Clock synchronization 

 Special pattern repeated enough times 

Lecture Outline 

• Link layer: an introduction  

• Encoding  

• Framing  

• Error detection 

Parity, checksum, CRC 

• Reliability 

FEC, sliding window 

 40 
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Errors on Links  
• Causes:  

  Noise, interference, 

attenuation, fading   

  Bit synchronization problems 

• More frequent when SNR is 

low  

• More frequent on wireless 

links  

• Measure: bit error rate  
41 
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Error Detection 

• Error detection code adds redundancy 

Analogy: sending two copies 

Goal: Maximize the probability of detecting 

errors using only a small number of redundant 

bits  

• Error detection approaches: parity, 

checksum, CRC 
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Two-dimensional Parity (1/2) 

• Even parity bit 

 Make an even number of 1s in 

each row and column 

• 1 extra bit for each byte and 

one extra byte for the frame 

• Detect all 1,2,3-bit errors, and 

most 4-bit errors 

7*6 = 42 

bits of 

payload 

Two-dimensional Parity (2/2) 

• What is the overhead of 

this scheme? 

14 extra bits  

14/42*100 =  33% 

7*6 = 42 

bits of 

payload 
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Internet Checksum Algorithm 

• Used by higher-layer protocols  

• Basic idea:  

 Add all the words transmitted, send the sum  

 Receiver does the same computation and compares the sums 

• IP checksum 

 Adding 16-bit short integers using 1’s complement arithmetic 

 Take 1’s complement of the result 

• Used by lab 2 to detect errors  

1’s Complement Arithmetic (1/2) 

• “-x” is each bit of “x” inverted: +5: 0101, -5: 1010 

• [-(2n-1-1), 2n-1-1] – e.g., n = 3 → [-3, 3]  

What is the range for n=4 bits?  

 [-(23-1), 23-1] = [-7, 7]  
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1’s Complement Arithmetic (2/2) 

• “-x” is each bit of “x” inverted: +5: 0101, -5: 1010 

• If there is a carry bit, add 1 to the sum 

• Example: 4-bit integer 

  -5 + -2 

 +5: 0101; -5: 1010; 

 +2: 0010; -2: 1101; 

 -5 + -2 = 1010+1101 = 0111 + one carrier  bit; 

 1000 = -7   

Verifying the Checksum 

• Adds all 16-bit words together, including 

the checksum 

• 0: correct 

• 1: errors 
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Checksum: Remarks 

• Only 16 redundant bits for message of any 

size  

• Not particularly robust  

Can detect 1 bit errors 

Not all two-bits 

• Why not?  

• Efficient for software implementation 

 

Cyclic Redundancy Check 

• Cyclic error-correcting codes  

• High-level idea: 

Represent an n+1-bit message with an n degree 

polynomial M(x): (1,0,0,1) → 1x3+0x2+0x1+1 

Divide the polynomial by a degree-k divisor 

polynomial C(x) 

 k-bit CRC: remainder 

Send message + CRC that is divisible by C(x) 
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Polynomial Arithmetic Modulo 2 
 
• B(x) can be divided by C(x) if B(x) has higher degree 

• B(x) can be divided once by C(x) if of same degree 

x3 + 1 can be divided by x3 + x2 + 1 

The remainder would be 0* x3 + 1* x2 + 0* x1 + 0* x0 

(obtained by XORing the coefficients of each term) 

 

CRC Algorithm 

1. Multiply M(x) by xk: add k zeros the end of the 

message. Call it T(x) 

2. Divide T(x) by C(x) and find the remainder 

3. Send P(x) = T(x) – remainder 

 Append remainder to T(x) 

• P(x) divisible by C(x) 
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An Example 

• 8-bit message 

10011010 

 

• Divisor (3 bit CRC) 

1101 

Message sent: 10011010101  

How to Choose a Divisor 

• Arithmetic of a finite field 

• Intuition: unlikely to be divided evenly by an error 

• Corrupted message is P(x) + E(x) 

• If E(x) is single bit, then E(x) = xi 

• If C(x) has the first and last term nonzero, then detects all 

single bit errors 

• Find C(x) by looking it up in a book 
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International Standards 

• CRC-8 = x8+x2+x+1 

• CRC-10 = x10+x9+x5+x4+x+1 

• CRC-12 = x12+x11+x3+x2+x+1 

• CRC-16 = x16+x15+x2+1 

• CRC-CCITT = x16+x12+x5+1 

• CRC-32 = 

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1 

 Used by Ethernet  

Lecture Outline 

• Link layer: an introduction  

• Encoding  

• Framing  

• Error detection 

Parity, checksum, CRC 

• Reliable transmission 

FEC, sliding window 

 56 
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Reliable Transmission 

• What to do if a receiver detects bit errors? 

• Two high-level approaches 

Forward error correction (FEC) 

 Retransmission 

Forward Error Correction 

• Uses error-correcting codes  

• Incurs fixed overhead for all transmissions  

As opposed to retransmissions when errors have 

happened  

• Used where retransmissions are costly or 

impossible  

One-way communication links  

Multicast 
58 
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Reliable Transmission: 

Retransmissions 

• Acknowledgements 

ACK: A short sequence send back to the sender 

Can be “piggybacked” on data packets 

• Timeouts: waiting for a reasonable time 

• Also called Automatic Repeat reQuest (ARQ) 

Reminder: Convention: Illustrating Frame 

and Packet Formats 

60 

Fields  
Field lengths in 

bits 
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Convention: Illustrating 

Protocol Behavior 

 

Stop-and-Wait 

• Send one frame, wait for 

an ACK, and send the 

next 

• Retransmit if times out 

• Note in the last figure 

(d), there might be 

confusion: a new frame, 

or a duplicate? 
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Sequence Number 

• Add a sequence 

number to each frame 

to avoid the ambiguity 

• Keep sequence 

numbers small to 

reduce overhead  

Stop and Wait Protocol Drawback 

• The sender has only one outstanding frame on 

the link at a time 

This may be far below the link’s capacity 
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Stop and Wait Protocol Drawback: An 

Example 
• Consider a 1.5 Mbps link with a 45 ms RTT 

 The link has a delay  bandwidth product of 67.5 Kb or 

approximately 8 KB 

 Since the sender can send only one frame per RTT and assuming a 

frame size of 1 KB 

 Maximum sending rate 

• Bits per frame  Time per frame = 1024  8  0.045 = 182 Kbps 

 Or about one-eighth of the link’s capacity 

 To use the link fully, then sender should transmit up to eight frames 

before having to wait for an acknowledgement 

 

Sliding Window  

• Key idea: allowing 

multiple outstanding 

(un-acked) frames to 

“keep the pipe full” 
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Sliding Window on Sender 

• Assign a sequence number (SeqNum) to each 

frame 

• Maintains three variables 

Send Window Size (SWS)  

Last ACK Received (LAR)  

Last Frame Sent (LFS)  

• Invariant: LFS – LAR ≤ SWS 

 

• Sender actions 

When an ACK arrives, moves LAR to the right, 

opening the window to allow the sender to send more 

frames 

 If a frame times out before an ACK arrives, retransmit 

• Frames are buffered  

Slide window this way when an ACK arrives 
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Sliding Window on Receiver 

• Maintains three window variables 

Receive Window Size (RWS)  

Largest Acceptable Frame (LAF)  

Last Frame Received (LFR)  

• Invariant 

LAF – LFR ≤ RWS 

 

• A frame with SeqNum arrives...  

• Discards it if out of window: SeqNum ≤ LFR or SeqNum > LAF 

• If in window, accept, decide on what to ACK 

 Cumulative ACK  

 SeqNumToAck : largest sequence number not yet acknowledged 

 Ack SeqNumToAck 

 Sets LFR = SeqNumToAck-1, LAF = LFR + RWS 

 Updates SeqNumToAck 
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Sliding Window on Receiver: An 

Example 

• Ex: LFR = 5; RWS = 4 

 Implies LAF = 9  

• Frames 7, 8, 6 arrive 
 

Finite Sequence Numbers 

• Sequence number fields are short  

They wrap around  

• Number of possible sequence numbers must be 

larger than the maximum number of outstanding 

frames  

E.g., stop-and-wait: 1 outstanding frame, 2 sequence 

numbers 
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Finite Sequence Numbers: An Example 

• Things may go wrong when SWS=RWS, SWS too large 

• Example:  

 3-bit sequence number [0, … 7], SWS=RWS=7 

 Sender sends 0, …, 6; receiver ACKs, expects (7,0, …, 5), but all 

ACKs lost 

 Sender retransmits 0,…,6; receiver thinks they are new 

• (0, … , 5) are in receiver’s window size and will be recorded 

as parts of a new frame   

Finite Sequence Numbers: Window 

Size Limits  

• SWS < (MaxSeqNum+1)/2 

 Alternates between first half and second half of sequence 

number space 

 Just as stop-and-wait alternates between 0 and 1 
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Multiple Functions of the Sliding 

Window Algorithm 

• Perhaps one of the best-known algorithms in computer 

networking 

• Multiple functions 

 Reliable delivery of frames over a link 

 In-order delivery to upper layer protocol 

 Flow control 

• Not to over-run a slow receiver 

 Congestion control (later) 

• Not to congest the network 

Other ACK Mechanisms 

• NACK: negative ACKs for packets not received 

  Unnecessary, as sender timeouts would catch this information 

• SACK: selective ACK the received frames 

 Refinement to cumulative ACKs: specify exactly what has been 

received  

 + No need to send duplicate packets 

 - more complicated to implement 

 Newer version of TCP has SACK 
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Concurrent Logical Channels 

• A link has multiple logical channels 

• Each logical channel runs an independent stop-

and-wait protocol 

• + keeps the pipe full 

• - no relationship among the frames sent in 

different channels: wildly out-of-order 

 

Exercise 

• Delay: 100ms; Bandwidth: 1Mbps; Packet Size: 

1000 Bytes; ACK: 40 Bytes 

• Q: the smallest window size to keep the pipe 

full? 
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• Window size = largest amount of unacked data 

• How long does it take to ACK a packet? 

 RTT = 100 ms * 2 + transmission delay of a packet (1000 B) + 

transmission delay of an ACK (40 B) ~=208ms 

• How many packets can the sender send in an RTT? 

 1 Mbps * 208 ms / 8000 bits = 26 

• Roughly 13 packets in the pipe from sender to receiver, 

and 13 ACKs from receiver to sender 

100ms 

1Mbps 

Lecture Summary 

• Link layer: an introduction  

• Encoding  

• Framing  

• Error detection 

Parity, checksum, CRC 

• Reliability 

FEC, sliding window 

 80 
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Next Lecture  

• Wireless 

communications 

• Link layer: Ethernet  

• Link layer: Multiple 

access  

81 


