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Abstract—Numerous energy harvesting wireless devices that
will serve as building blocks for the Internet of Things (IoT) are
currently under development. However, there is still only limited
understanding of the properties of various energy sources and
their impact on energy harvesting adaptive algorithms. Hence,
we focus on characterizing the kinetic (motion) energy that can
be harvested by a wireless node with an IoT form factor and
on developing energy allocation algorithms for such nodes. In
this paper, we describe methods for estimating harvested energy
from acceleration traces. To characterize the energy availability
associated with specific human activities (e.g., relaxing, walking,
cycling), we analyze a motion dataset with over 40 participants.
Based on acceleration measurements that we collected for over
200 hours, we study energy generation processes associated with
day-long human routines. We also briefly summarize our ex-
periments with moving objects. We develop energy allocation
algorithms that take into account practical IoT node design
considerations, and evaluate the algorithms using the collected
measurements. Our observations provide insights into the design
of motion energy harvesters, IoT nodes, and energy harvesting
adaptive algorithms.

Index Terms—Energy harvesting, motion energy, measure-
ments, low-power networking, algorithms, Internet of Things.

I. INTRODUCTION

ADVANCES in the areas of solar, kinetic, and thermal
energy harvesting as well as in low-power wireless com-

munications will soon enable the realization of self-sustainable
wireless devices [2]–[5]. These devices can compose networks
of rechargeable sensors [4], [5], active tags [3], or computa-
tional RFIDs [6]. Such networks will serve as building blocks
for emerging Internet-of-Things (IoT) applications, including
supply chain management and wearable computing.
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Two promising energy sources for IoT nodes are light and
motion.1 Accordingly, extensive effort has been dedicated to
the design of solar cells and kinetic energy harvesters (e.g.,
[8]–[11]). Moreover, the design of energy harvesting-adaptive
communication and networking algorithms recently gained ex-
tensive attention [4], [12]–[15]. To complement these efforts,
[5], [13], [16] collected traces and studied the impact of the
energy source properties on higher layer algorithms. However,
there is still only limited understanding of motion energy avail-
ability and its impact on the design of both hardware (energy
harvesters, energy storage components) and algorithms. More-
over, commercially available harvesters are still not designed
for human motion. Hence, we focus on characterizing the
kinetic (motion) energy that can be harvested by an IoT node
and on the impact of the energy characteristics on harvesting
adaptive algorithms. Self-sustainable IoT nodes powered by
motion will be implemented in ultra-low-power architectures.
Thus, we additionally focus on developing algorithms that take
practical IoT node design considerations into account.

Everyday activities such as walking can generate substantial
power [17]. Therefore, many harvesters are under development,
including shoe inserts that harvest energy from footfalls [8] and
mobile phone chargers integrated in backpacks [10] or phones
[9]. While there are several ways of harvesting motion energy,
we focus on inertial energy harvesters, since their form factor
fits IoT applications. An inertial harvester suitable for a small
wireless device (e.g., under 5 cm × 5 cm, and weighing less
than 2 grams) can generate 100–200 µW from walking [18],
[19], which is sufficient for many applications.2 However, the
harvesting level changes dynamically as illustrated in Fig. 3
that shows the power harvesting level corresponding to a device
carried by a walking person.

In inertial harvesters, the output power is maximized when
the harvester resonant frequency is “matched” to the motion
frequency [11] (see Section IV for details). Human motion
is a combination of low frequency vibrations (< 10 Hz) that
vary from activity to activity and from person to person.
Therefore, characterizing the properties of the harvested power
requires an in-depth study of human motion (e.g., the frequen-
cies associated with different motions) and human mobility
patterns. Namely, characterizing kinetic energy harvesting is

1The power available from RF harvesting is 100 times less than the power
available from indoor light [7]. Thermal gradients can provide substantial
power in industrial applications, but are currently impractical for non-industrial
IoT applications.

2This is comparable to the power a solar cell of similar size can harvest from
indoor light [5], [13].
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substantially more complex than characterizing light energy
harvesting (e.g., [13]).

We first describe methods for collecting motion accelera-
tion traces and the methods of [11], [16], [19] for estimating
harvested power from the traces. Our study is based on traces
that we collected using SparkFun ADXL345 boards3 and traces
collected in [20] using similar devices. While the traces in
[20] were collected to examine activity recognition, we use
them to estimate the amount of energy that could be harvested.
Moreover, while we focus on inertial harvesters, the traces that
we collected (and that are shared via CRAWDAD [21]) can be
used with other harvester models.

We examine the energy availability associated with specific
human motions, such as walking, running, and cycling. Unlike
previous studies that obtained estimates based on small num-
bers of participants [18], [19], [22], we use a motion dataset
with over 40 participants [20], obtaining extensive and general
kinetic energy characterization for common human motions.
The study demonstrates the range of motion frequencies and
harvested powers for different participants and activities, and
uniquely demonstrates the importance of human physical pa-
rameters for energy harvesting. For example, the taller half of
the participants can harvest on average 20% more power than
the shorter half.

The short duration traces in [20] are for specific motions. To
study the energy generation processes associated with day-scale
human routines (as opposed to specific motions), we conducted
a measurement campaign with 5 participants over a total of
25 days. We collected traces with over 200 hours of acceleration
information for normal human routines. The traces provide
important input for IoT node design (e.g., for determining
the battery capacity and harvester size necessary for self-
sustainable operation) and for algorithm design (as will be
discussed below). Hence, we share the collected dataset in [23]
and via CRAWDAD [21].4 We analyze the traces and show that
the power availability from normal routines and from indoor
lights are comparable. We also demonstrate that the power gen-
eration process associated with human motion is highly vari-
able. We compare this process with i.i.d. and Markov processes,
demonstrating the importance of evaluating algorithms with
real world traces and of developing algorithms that do not build
on the adsumption that energy generation is Markovian or i.i.d.

We note that the primary goal of collecting and analyzing
traces is to set a reasonable upper bound on the available energy
and to study the energy availability dynamics. Commercially
available kinetic energy harvesters [24]–[26] are optimized for
harvesting energy from machine vibrations above 40 Hz. There-
fore, these harvesters would generate essentially no energy when
subjected to human motion. In general, measuring acceleration
is preferable to measuring the energy harvested by a particular
harvester, since the traces can be used to calculate how much
energy any past, present, or future harvester would generate.

3Although smartphones include accelerometers, we use dedicated sensing
units, since the phones’ accelerometers have a limited range, restricted sam-
pling rate control, and high energy consumption (that hinders day-scale trace
collection).

4To the best of our knowledge, this is the first publicly available long-term
human motion acceleration dataset.

As the IoT will incorporate many objects, we additionally
briefly present results regarding measurements with a variety
of moving objects. For example, we measured the power that
can be harvested from everyday activities such as writing with a
pencil and opening a door. We also collected measurements for
objects in transit. We shipped a FedEx box with a measurement
unit across the U.S., placed a unit in a checked-in luggage
during a 3 hour flight, and carried units on cars and trains. We
confirm that, as expected based on inertial harvesters’ filter pro-
perties (see Section III-A), the energy availability is low for
many common non-periodic motions. We additionally demon-
strate that the energy availability is low for many high-amplitude
periodic object motions. For example, we show that inertial
harvesters can harvest little energy from opening and closing
a door, opening cabinet drawers, and spinning a swivel chair.

Next, we develop energy allocation algorithms for wireless
IoT nodes. Due to the high variability of energy obtained from
motion, IoT nodes that harvest this energy will implement
algorithms that control the node’s energy spending rates [4],
[12]–[14], [27], [28]. The spending rates will provide inputs
for determining node transmission power, duty cycle, sensing
rate, or communication rate. We formulate an optimization
problem of a node whose objective is to maximize the utility
of its energy allocations, and develop algorithms for solving it.
The problem formulation and the algorithms take into account
realistic properties of an ultra-low-power IoT node and based
on our measurement observations do not make assumptions
regarding the harvesting process.

In particular, IoT nodes that are powered by the motion
energy will likely to be implemented in ultra-low-power archi-
tectures. As such, they will support only a limited number of
possible energy spending rates, and their energy use patterns
may call for considering various possible utility functions.
Moreover, these nodes will likely to use capacitors [6], [13],
[29], rather than batteries, as their energy storage components.
This is due to the fact that capacitors can be charged and dis-
charged many more times than batteries, which is an important
feature for nodes powered by the widely varying motion energy.
Additionally, capacitors are more environmentally friendly than
batteries [6], and are therefore more suitable for human-facing
IoT applications such as wearable computing. To the best of our
knowledge, these aspects of IoT node modeling have not been
jointly considered before.

For solving the energy allocation problem, we develop an
optimal offline algorithm, an efficient approximation scheme,
and an online algorithm which is optimal in certain cases. We
evaluate the algorithms using the collected measurement traces.
The evaluation results demonstrate that the approximation and
online algorithms perform well and highlight the importance of
designing algorithms that take into account the energy storage
properties of the IoT nodes.

To summarize, the main contributions of this paper are:
(i) insights into energy availability from human motion, based
on a dataset with a large number of participants, (ii) collection
of a dataset of long-term human motion and a study of the
corresponding energy generation processes, and (iii) energy al-
location algorithms that take practical IoT node design consid-
erations into account. The collected motion traces are already
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available online [23]. The paper contributes to the understand-
ing of motion energy harvesting availability and properties, and
provides insights that are important for the design of motion
energy harvesters, IoT nodes, and energy harvesting adaptive
algorithms.

The paper is organized as follows. Section II summarizes
the related work and Section III describes the harvester model,
the measurements, the procedures for determining the harvester
parameters, and the wireless node model. Section IV focuses
on common human motions and Section V focuses on our
measurement campaign and day-scale human motion measure-
ments. Additionlly, Section V provides brief comments regard-
ing motion of objects. Section VI describes our algorithms and
provides the results of algorithm evaluations with the collected
measurements. Section VII concludes the paper.

II. RELATED WORK

To the best of our knowledge, our experiments with
long-term activities (Section V-A) and with object motion
(Section V-C) are unique. Below we briefly summarize the
related work for our other contributions.

Previous studies that examined energy of particular human
motions had a small number of participants (10 in [18] and 8 in
[16], [19]). Additionally, with the exception of [16], they ex-
amined short intervals of walking and running on a treadmill
at a constant pace. We examine a dataset [20] with over
40 participants performing a set of several unrestricted
motions5 and labeled with human physical parameters. To
the best of our knowledge, this is the first publicly available
acceleration dataset collected for a large number of participants.
It was not previously used for an energy study.

Day-scale human motion acceleration traces were previously
collected for 8 participants over 3 days and examined in [16],
which established energy budgets for wearable nodes using
assumptions suitable for larger electronic devices. The data
collected in [16] is not publicly available. We collect day-scale
data that in some cases has more information per participant,
examine the traces under assumptions suitable for small IoT
nodes, and characterize energy harvesting process variability
and properties that have not been considered before.

Many energy harvesting adaptive communication and net-
working algorithms have been recently developed (e.g., [4],
[12], [14], [15], [27], [28], [31]–[34]). We consider a wireless
node model and develop algorithms that capture several practi-
cal IoT node design aspects: (i) discrete, rather than continuous
[12]–[15], [27], energy spending rates; (ii) general, rather than
concave [12]–[15], [27] or linear [4], utility functions; and
(iii) use of a capacitor [13], [29], rather than a battery [12],
[14], [15], [27], as an energy storage component. These aspects
have not been jointly considered before. Existing algorithms are
typically evaluated with light [4], [12], [29] or wind [12] energy
traces. We evaluate the algorithms with the collected day-scale
human motion energy measurements.

5The properties of restricted and unrestricted human motions are known to
differ [30].

TABLE I
NOMENCLATURE

Fig. 1. (a) A second-order mass-spring system model of a harvester with proof
mass m, proof mass displacement limit ZL, spring constant k, and damping
factor b, and (b) the frequency response magnitude for harvesters H1 and H2.

III. MODELS AND MEASUREMENT SETUP

Our motion energy study is based on recorded acceleration
traces which are processed, following the methods developed in
[11], [16], [19], to determine the energy generated by an inertial
harvester. Our algorithms are developed based on a model
that extends existing models [4], [12]–[14], [27] to capture
important IoT node design considerations. In this section, we
describe the kinetic energy harvester model, the collection
of acceleration measurements, the procedures for determining
the harvester parameters, and the wireless node model. The
notation is summarized in Table I.

A. Inertial Harvester Model

An inertial harvester can be modeled as a second-order mass-
spring system with a harvester proof mass m, proof mass dis-
placement limit ZL, spring constant k, and spring damping
factor b [11], [19]. Fig. 1(a) demonstrates such a harvester model.

Two important harvester design parameters are m and ZL.
The harvester output power, P, increases linearly with m [35],
and is non-decreasing (but generally non-linear) in ZL. Yet, m
and ZL are limited by the harvester weight and size considera-
tions, which ultimately depend on the application. We use the
following values that are consistent with the IoT restrictions
on the size and weight of a node, and correspond to one of
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Fig. 2. Acceleration measurement unit and placements: (a) our sensing unit
based on a SparkFun ADXL345 board, and (b) the sensing unit placements in
a multi-participant human motion characterization study [20].

the configurations examined in [19]: (i) m = 1 · 10−3 kg and
(ii) ZL = 10 mm.

The other two model parameters, k and b, are tuned to
optimize the energy harvested for given motion properties. The
parameter k determines the harvester resonant frequency, fr =
2π

√
k/m. To maximize power output, the resonant frequency,

fr, should match, reasonably closely, the dominant frequency of
motion, fm.

Jointly, k and b determine the harvester quality factor, Q =√
km/b, which determines the spectral width of the harvester.

A harvester with a small Q harvests a wide range of frequencies
with a low peak value, while a harvester with a large Q is finely
tuned to its resonant frequency fr. The role of fr and Q can
be observed in Fig. 1(b), which shows the magnitude of the fre-
quency response of two different harvesters, denoted by H1 and
H2. For H1, fr =2.06 Hz (which corresponds to a typical fre-
quency of human walking) and Q=2.35 (k=0.17, b=0.0055).
For H2, fr = 2.77 Hz (which corresponds to a typical fre-
quency of human running) and Q=3.87 (k=0.30, b=0.0045).

B. Collecting Motion Information

In Sections IV–VI, we examine measurements that we
collected and measurements provided in a triaxial accelera-
tion dataset of common human motions [20]. Our measure-
ments were obtained with sensing units based on SparkFun
ADXL345 evaluation boards (see Fig. 2(a)). Each unit includes
an ADXL345 tri-axis accelerometer, an Atmega328P micro-
controller, and a microSD card for data logging. The sensing
units record acceleration along the x, y, and z axes, ax(t), ay(t),
az(t), with a +/−16g range and a 100 Hz sampling frequency.
We conducted multiple experiments with multiple sensing unit
placements, as described in Section V.

The dataset of [20] was obtained using an ADXL330 tri-
axis accelerometers with a 100 Hz sampling frequency. The
measurements of [20] were conducted with sensing unit place-
ments corresponding to a shirt pocket, waist belt, and trouser
pocket, as shown in Fig. 2(b). These placements on the human
torso are used by people carrying different objects (e.g., keys,
sunglasses, wallet). In all the measurements, the orientation
of the sensing unit is not controlled. We examine a(t) =√

ax(t)2 +ay(t)2 +az(t)2, the overall magnitude of the acceler-
ation. Due to the earth gravity of 9.8 m/s2 (“1g”), the measured
acceleration includes a constant component that we filter out
(similarly to [16], [19], we use a 3rd order Butterworth high-
pass filter with a 0.1 Hz cutoff frequency).

Fig. 3. Demonstration of obtaining the power generated by a harvester, P(t),
from the recorded acceleration, a(t): (a) a(t) recorded by aperson walking,
(b) the corresponding harvester proof mass displacement, z(t), and (c) the
resulting P(t) for harvester H1 (k = 0.17, b = 0.0055).

We examine two motion properties of the measurements:
the average absolute deviation of the acceleration, D, and the
dominant frequency of motion, fm. D quantifies the variability
in the a(t) value and is a measure of the “amount of motion.”
It is calculated as D = 1

T ∑T (a(t)− a(t)), where a(t) denotes
the average of a(t) over time interval T . We obtain fm by
determining the maximum spectral component of the Fourier
Transform of a(t).

C. Harvesting Rates and Data Rates

We calculate the power generated by a harvester, P(t), sub-
jected to acceleration a(t), using the following procedure based
on the methods developed in [16]. We first convert a(t) to proof
mass displacement, z(t), using the Laplace-domain transfer
function

z(t) = L−1 {z(s)}= a(s)
s2 +(2π fr/Q)s+(2π fr)2 .

Next, to account for ZL, we limit z(t) using a Simulink limiter
block. The power P(t) generated by the harvester is then
determined as P(t) = b(dz(t)/dt)2.The average of P(t) is de-
noted by P.

We implemented this procedure in MATLAB and Simulink.
Fig. 3 shows an example of obtaining P(t) for a particular
a(t). The a(t) values were recorded by a sensing unit carried
by a walking person (Fig. 3(a)), and the z(t) and P(t) values
were obtained using the procedure described above for the
harvester H1.

To characterize the performance of wireless IoT nodes, we
calculate the data rates, r, that a node would be able to maintain
when harvesting the generated P. The harvester energy con-
version efficiency, ηh, depends on various factors [24] (e.g.,
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Fig. 4. The average power generated by a harvester, P, from the same motion
(human running) for different combinations of harvester resonant frequencies,
fr , and damping factors, b.

selected regulated output and temperature). While perfectly
optimized energy harvesting systems obtain energy conversion
efficiency values between 30% and 90% [36], we use ηh = 20%
which is more realistic for practical systems where the harvester
cannot be continuously aligned with the axis that generates
the maximum output throughout the day. Similar to [13], we
assume that the communication cost is ctx = 1 nJ/bit for ultra-
low-power transceivers appropriate for IoT nodes. Hence, r =
ηhP/ctx = 2 ·105P (Kb/s).

D. Optimizing the Harvester Parameters

Finding the optimal harvester parameters k and b is difficult
because it requires optimizing over a multi-dimensional sur-
face of unknown geometry [19]. For example, Fig. 4 shows
the average power (P) values calculated from a set of a(t)
measurements (corresponding to a person running) for different
fr and b combinations. To determine the optimal harvester pa-
rameters for short a(t) samples, we implemented an exhaustive
search algorithm. The algorithm considers a large number of
k and b combinations, obtains the corresponding P (using the
procedure described in Section III-C), and chooses the k and b
combination that maximizes P.

The exhaustive search algorithm is time-consuming even
for relatively short a(t) samples. For longer a(t) samples, we
implemented a simplified procedure developed in [16]. The
procedure first determines the k value that matches the har-
vester’s fr to the dominant frequency in the a(t) sample, fm.
Specifically, the procedure selects k such that k = m f 2

r /(2π)2 =
(m f 2

m)/(2π)2. It then considers a relatively large number of b
values and selects the b that maximizes P.

E. Wireless Node Model

We model an ultra-low-power IoT node that harvests energy,
stores it in an energy storage device, and uses it to communicate
wirelessly (e.g., a wearable node may be communicating with a
human-carried mobile phone). We assume that the time is slot-
ted and denote the slot index by i and the number of slots by K.
We will develop algorithms that control the node energy spend-
ing rates, s(i), which can provide inputs for determining node
transmission power, duty cycle, sensing rate, or communication
rate. An IoT node is likely to support only a restricted number
of modes of operation (i.e., sleep, idle), transmission power

levels,6 and transmission rates, thereby supporting only a finite
set S of s(i) values. We thus restrict s(i) as s(i) ∈ S ∪{0} (note
that s(i) is typically modeled as a continuous variable [13], [27],
[37]). This complicates the energy allocation problems, as we
will demonstrate in Section VI-A.

We formulate an optimization problem for a single node
which maximizes the sum of the utilities of its per-time-slot
energy allocations. This problem is important, for example,
in networks where nodes transmit mostly ID information [38]
to a common gateway.7 We consider a utility function U(s(i))
that corresponds to the data rate r(i) obtained when the energy
spending rate is s(i).8 The node may achieve different r(i) in
a slot i by transmitting different number of packets, changing
the transmission power, or changing the packet size. Thus the
utility function, U , may be concave (when the node changes its
transmission power [15], [27], [37]), linear (when it transmits
different number of packets), convex (when it changes the
packet size under certain settings [39]), or not concave and
not convex (when it changes a combination of the parameters).
Correspondingly, we place no restrictions on U(s(i)) except
that it can be computed efficiently.

An IoT node may use a battery or a capacitor as its energy
storage device. For a slot i of duration Tint, B(i) is the node

energy storage level, e(i) =
∫ (i+1)Tint

t=iTint
P(t)dt is the environmen-

tal energy available to the node, and L(i,B(i)) is the energy
loss (leakage) from the storage. Q(e(i),B(i)) is the energy
harvested by the node; its dependency on B(i) is characteristic
of capacitor-based nodes [13], [40]. η(i,B(i)) is the energy
conversion efficiency and C is the storage capacity. Between
time slots, the energy storage evolves as

B(i) = min{B(i−1)+Q(e(i−1),B(i−1))−L(i−1,
B(i−1))− s(i−1)/η(i−1,B(i−1)) ,C} .

η(i,B(i)) depends on the difference between the energy storage
voltage, Vout(i), and the node’s operating voltage, Vop. Within
a battery’s operating region, Vout(i) is nearly constant. For a
capacitor, Vout(i) depends on B(i) [13], [40]. We define two
node models: for a battery model, η(i,B(i)) = 1, while for a ca-
pacitor model, η(i,B(i)) is a non-linear function. The η(i,B(i))
that we use in the performance evaluations is described in
Section VI-C.

IV. HUMAN MOTION

We now examine a dataset with over 40 participants per-
forming 7 common motions in unconstrained environments.
We emphasize that this dataset, previously used to examine
techniques for activity recognition [20], has not been used for
energy characterization. We first introduce the study. Then, we
characterize the energy availability for different motions, the

6For example, the ultra-low-power Chipcon CC1000, Chipcon CC2420, and
Nordic NRF24L01 RF transceivers support, correspondingly, only 32, 8, and
4 transmission power levels.

7Single node energy allocation problems were studied in [13], [15], [27]
under simpler models. In Section VI-A we show that even for a single node,
the considered optimization problem is NP-hard. The extension to the case of
multiple nodes is a subject for future research.

8The model allowsU(s(i)) to account for other considerations as well (e.g., the
number of activations of nodes’ sensors when the energy spending rate is s(i)).
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Fig. 5. Characterization of kinetic energy for common human activities, based
on a 40-participant study: (a) average absolute deviation of acceleration, D,
(b) dominant motion frequency, fm, and (c) power harvested by an optimized
inertial harvester, P.

variability in motion properties among sensing unit placements
and participants, and the dependence of energy availability on
the participant’s physical parameters.

A. Study Summary

The dataset we examine [20] contains motion samples for
7 common human activities—relaxing, walking, fast walking,
running, cycling, going upstairs, and going downstairs—
performed by over 40 participants and recorded from the
3 sensing unit placements, shown in Fig. 2(b). For each
20-second motion sample, we use the acceleration, a(t), trace
to calculate D, fm, P, and r. To obtain P, we use the ex-
haustive search harvester optimization algorithm described in
Section III-D. By determining the best harvester for each mo-
tion, we can offer important insights into the harvester design.

To validate the data from [20], we replicated the measure-
ments using our sensing units. The results of our measurements
were consistent with the provided data. We note that the fm

values calculated for the different motions in the dataset are
consistent with the physiology of human motion. For example,
the range of the calculated fm values for running motion sam-
ples in the dataset corresponds to the typical foot strike cadence
for running (180 foot strikes per minute, i.e., fm = 3 Hz, is
considered an optimal running cadence [41]).

The statistics of the calculated D, fm, and P are summarized
in the boxplots in Fig. 5. For each of the 7 motions the leftmost
(black), middle (red), and rightmost (blue) boxes correspond
to the shirt pocket, waist belt, and trouser pocket sensing unit
placements, respectively. For each motion and sensing unit
placement, the number of participants that had a(t) samples
appears on the top of Fig. 5(a). At each box, the central mark
is the median, the edges are the 25th and 75th percentiles, the
“whiskers” cover 2.7σ of the data, and the outliers are plotted

individually. In Table II we separately summarize the results for
4 important motions.

B. Energy for Different Activities

Relaxing: As expected, almost no energy can be harvested
when a person is not moving (P < 5 µW).

Walking and Fast Walking: Walking is the predominant peri-
odic motion in normal human lives and thus particularly impor-
tant for motion energy harvesting. For walking, the median P
is 155 µW for shirt pocket sensing unit placement, 180 µW for
waist belt placement, and 202 µW for trouser pocket placement.
These P values are in agreement with previous studies of energy
harvesting for human walking [18], [19]. In comparison, indoor
light energy availability is on the order of 50–100 µW/cm2.
Considering harvester energy conversion efficiency estimates
[13], [16], a similarly sized harvester would harvest more
energy from walking than from indoor light. Fast walking
(identified as “fast” by the participants themselves) has higher
D and fm than walking at a normal pace (Fig. 5) and generates
up to twice as much P.

Running: Running, an intense repetitive activity, is associ-
ated with high D and fm (Fig. 5(a) and (b)), and hence results
in 612 ≤ P ≤ 813 µW.

Cycling: For the examined unit placements, cycling gen-
erates relatively little energy—the median P values are 41–
52 µW, 3.7–3.9 times less than the P for walking. While the
high cadence of cycling motion results in relatively high fm

(Fig. 5(b)), a harvester not on the legs will be subject to only
small displacements, resulting in small values of D (Fig. 5(a))
and P (Fig. 5(c)). For cycling-specific IoT applications, har-
vester placements on the lower legs should be considered.

Walking Upstairs and Downstairs: Comparing the P val-
ues for relaxing, walking, and running, one may conclude
that higher exertion (perceived effort and energy expenditure)
corresponds to higher energy harvesting rates. Our examina-
tion of walking upstairs and downstairs demonstrates that this
is not the case. While people exert themselves more going
upstairs, the P for going downstairs is substantially higher
than for going upstairs, with the median P values differing
by 1.65–2.1 times depending on the sensing unit placement.
Although counterintuitive, going downstairs is associated with
higher magnitudes of motion and higher motion frequencies
(Fig. 5(a) and (b)), which leads to the higher P. We observed
the disconnect between perceived effort and energy harvesting
rates in other measurements as well. For example, in our
measurements highly strenuous push-ups and sit-ups resulted
in lower P than non-strenuous walking at a normal pace.

C. Consistency of Dominant Motion Frequency

To maximize power output, the resonant frequency of a har-
vester, fr, should “match” the dominant frequency of motion,
fm. In this section, we comment on the variability in fm and
provide important observations for harvester design. Due to
space constraints, we leave the study of harvester sensitivity to
different design parameters to future work.

Consistency Among Sensing Unit Placements: The same
motion will result in a different fm depending on the sensing
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unit’s placement on the human body [16], [18]. We observed
this in measurements that we conducted, especially for sensing
units attached to the lower legs and lower arms. However, for
the sensing unit placements examined in this section (shirt,
waist, and trousers), the same motion resulted in similar fm

values, as can be seen in Fig. 5(b). These placements are on or
near the torso, and are subjected to similar stresses. Cycling is
an exception; the fm for the trouser placement is different from
the other placements. Because the body is in a sitting position,
the stresses experienced by the legs and the torso are different
and fm differs for the different placements.

The uniformity of fm offers valuable hints for energy har-
vesting node designers. People are likely to keep many objects
that will become IoT nodes (keys, wallets, and cell phones) in
pockets located in places that correspond to the placements we
examine. This suggests that a harvester tuned to a particular
fm will perform well regardless of where a person chooses to
carry such an object.

Inter-Participant Consistency: For common periodic mo-
tions, such as walking and running, the fm values are relatively
consistent among the different participants. The 25th and 75th
percentiles of the participants’ fm values are separated by
only 0.15 Hz for walking and by only 0.3 Hz for running.
For less commonly practiced motions (cycling, going upstairs,
going downstairs), the values of fm are less consistent, but are
still somewhat similar. This consistency indicates that an all-
purpose harvester designed for human walking or running will
work reasonably well for a large number of different people.
The next section examines whether harvesters can be tuned to
particular human parameters.

D. Dependency on Human Height and Weight

We examine the dependency of energy availability on human
physiological parameters. We correlate D, fm, and P obtained
for different motions and different participants with their height
and weight data from [20].9 The participants’ heights range was
155–182 cm, and their weights range was 44–65 kg. We verified
that, in agreement with general human physiology studies, the

9The dataset [20] is also annotated with participants’ age and gender. How-
ever, the age range (20 to 23 years) and the number of females (10 participants)
are insufficient for obtaining statistically significant correlations.

participants’ height and weight are strongly positively corre-
lated (ρ = 0.7, p < 0.001).

As indicated in the previous subsection, for many activities
fm is consistent among different participants. Yet, we addi-
tionally observed fm dependencies on human physiology. For
many of the activities we examined, we determined negative
correlations of fm with the participants’ height and weight.
When walking, running, and going upstairs and downstairs,
heavier and taller people took fewer steps per time interval than
lighter and shorter people.

For example, for going upstairs with waist unit placement,
fm and the participant’s height are correlated as ρ = −0.34
(p = 0.03, n = 39). When going upstairs, the taller half of
the participants made, on average, 9 fewer steps per minute
(0.15 Hz) than the shorter half ( fm = 1.85 and 2.05 Hz, cor-
respondingly). For running, with trouser placement, fm and the
participant’s weight are correlated as ρ =−0.46 (p < 0.01, n =
39). When running, the heavier half of the participants made, on
average, 18 fewer steps per minute (0.3 Hz) than the lighter half.
This suggests that future harvester designs may benefit from
targeting harvesters with different fr values for human groups
with different physiological parameters. For example, differ-
ent harvesters may be integrated in clothing of different sizes.

Generally, motion energy availability increases as fm in-
creases [11]. However, in human motion, other dependencies
may additionally come into play. In our study, for running with
trouser unit placement, we determined a positive correlation
between D and participants’ height (ρ = 0.35, p = 0.03, n =
38) and a positive correlation between P and participants’
height (ρ = 0.38, p = 0.01,n = 38). For the taller half of the
participants, the average P is 20% higher than for the shorter
half (704 and 582 µW, respectively). Studies with larger num-
ber of participants, wider participant demographics, and wider
range of participant parameters will most likely identify many
additional dependencies. This will allow harvester designers to
develop harvesters for different demographics, as well as to
provide guarantees on the performance of different harvesters
based on different human parameters.

V. LONG-TERM HUMAN MOBILITY AND

OBJECT MOTION ENERGY

The results presented in the previous section are based on
short motion samples from an activity recognition dataset.
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Fig. 6. Motion energy characterization for a 3 hour run: (a) the absolute de-
viation of acceleration, D, and (b) dominant motion frequency, fm, as functions
of time, and (c) the distribution of the corresponding power harvested, P(t).

In this section, we present results of our own, longer-term,
motion measurements. We describe our set of day-long human
mobility measurements and discuss energy budgets and gener-
ation process properties. Specifically, we show that the energy
generation cannot be modeled using a Markov process or by
independent identically distributed (i.i.d.) random variables.
Therefore, there is a need to revisit the design principles of
energy-harvesting aware algorithms since many of them have
been developed under the assumption of i.i.d. or Markov energy
generation processes. Accordingly, there is a need to develop al-
gorithms that will take into account the special characteristics
of the harvesting process.

A. Prolonged Activities

To study motion energy properties over time, we collected a
set of measurements of longer activity durations (over 20 min-
utes). We considered long walks, bike rides, runs, and other
activities, performed in normal environments (i.e., not on a
treadmill or a stationary bike). To the best of our knowledge,
the properties of longer motion samples were not been analyzed
before.

The measurements demonstrate that for prolonged activities,
D, fm, and P(t) vary substantially over time. This variability
is related to physiological parameters, such as changes in
cadence or posture over time due to fatigue, and changes in the
surrounding environment, such as traffic lights, terrain changes,
or pedestrian traffic. For example, Fig. 6 shows D, fm, and
P corresponding to a 3 hour run, calculated for 1-second a(t)
intervals. In this trace, the average D changes subtly over time
(Fig. 6(a)), and fm varies continuously in the 2.6–3.4 Hz range
(Fig. 6(b)). Correspondingly, while the mean P(t) is 550 µW,
the 10th–90th percentiles of the P(t) span the range of
459–710 µW (Fig. 6(c)).

The variability of P(t) throughout an activity suggests that
node energy management policies are essential even for specifi-
cally targeted IoT applications, such as nodes for fitness runners
or cyclists. In the following section we demonstrate even more
variability in P(t) for the regular everyday human mobility
patterns.

B. Day-Long Human Mobility

To determine the daily energy available to an IoT node
with an inertial harvester, we collected acceleration traces from
different participants during their normal daily routines. We

obtained over 200 hours of acceleration information for 5 par-
ticipants for a total of 25 days (the traces are available in
[21]). The participants (see Table III) were instructed to carry a
sensing unit in any convenient way. Thus, the measurements
correspond to the motion that a participant’s keys, mobile
phone, or wallet would experience.

Fig. 7 shows the a(t) for a day-long trace of participant
M5, and the corresponding P(t). For all the collected traces,
the dominant motion frequency, fm, range is 1.92–2.8 Hz,
corresponding to human walking.

The calculated energy budgets are summarized in Table III.
We calculated P, the average power a harvester would generate
over the length of the trace, as well as Pd , the average power a
harvester would generate over a 24-hour interval. To calculate
Pd we assumed that when the sensing unit did not record
data (e.g., before the participants got dressed for school or
work), it was stationary and that a harvester would not generate
energy during these intervals. Specifically, for a T hour-long
measurement trace, Pd = P ·T/24. For each of the participants,
Table III summarizes the minimum, average, and maximum P
and Pd over the different measurement days, and the data rate rd

that a node would be able to maintain continuously throughout
a day when powered by the harvested Pd . For completeness,
for all participants we additionally calculate P

H4
, the average

power a particular harvester, same for all participants (in this
case, the harvester calculated based on the traces for participant
M4), would harvest. An extensive examination of the sensitivity
of power harvested to different harvester design parameters is
subject of ongoing work.

1) Power Budgets: For most participants, an inertial har-
vester can provide sufficient power to continuously maintain a
data rate of at least 1 Kb/s (i.e., Pd > 5µW). This is comparable
with the data rates estimated in [13] for nodes with a similarly
sized light harvester in indoor environments (not exposed to
outdoor light).

The majority of inter-participant and inter-day differences
seem to relate to the participants’ amount of walking. For
example, participant M2, whose P and Pd values are higher
than the others, has a relatively long walk to the office, and
walks frequently between two different offices in the same
building. Other factors (unit placement, amount of daily activity
as perceived by the participants) appear to be only of secondary
importance. We note that the majority of traces that correspond
to Pd < 5 µW (and thus rd < 1 Kb/s) correspond to participants
working from home.10 Overall, daily routines that involve a
lot of walking correspond to relatively high levels of energy
availability.

2) Harvesting Process Variability and Properties: The
amount of energy that can be harvested varies widely through-
out the day. As shown in Section IV, walking generates sub-
stantial amounts of energy, while being stationary generates
little. Physiological studies (e.g., [30]) have shown that people
are at rest the majority of the time. Correspondingly, in our
measurements, P(t) is low for most of the day and over 95%
of the total energy is collected during only 4–7% of a day. For

10As indicated by the minimum value of Pd in Table III, several individual
traces with Pd < 5 µW were considered for participants M1, M3, and M4.
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Fig. 7. Kinetic energy for normal daily human routine: (a) acceleration, a(t),
recorded over 11 hours for participant M5, and (b) the power harvested, P(t).

example, Fig. 8 shows, for participant M1, the percentage of
the total energy that would be harvested over different ranges
of P(t) and the percentage of the time that the harvester would
generate these P(t) values. For this participant, the harvester
would generate P(t) < 15 µW 91% of the time, and only 6.1%
of the total energy would be harvested during this time.

Consider an ON/OFF representation of the energy harvest-
ing process, Ponoff(t), where Ponoff(t) ← ON if P(t) > γ, and
Ponoff(t) ← OFF otherwise. For the analysis below, we em-
pirically set γ = 10 µW; the results are similar for 10 ≤ γ ≤
40 µW. For all participants, Ponoff is ON for less than 20%
of the time (Table III). The participants do not lead sedentary
lifestyles; their activity patterns are in line with general health
guidelines. However, the generally recommended 30 minutes of
physical activity per day correspond to only 9% of an 11-hour
trace. Additionally, the typical duration of ON intervals is
short—on the order of seconds. While some of the ON intervals
are long (over 200 seconds), the vast majority of the ON
intervals (78.5–89.0%) are shorter than 30 seconds; the median
ON intervals are 5–9.5 seconds. The longer ON intervals corre-
spond to commuting (e.g., walking from a public transit station
to a campus building), and represent only 1–3% of the ON
intervals. These results are consistent with the overall results for

Fig. 8. Motion energy harvesting process variability for participant M1:
(a) the percentage of the total energy harvested at different power levels P(t),
and (b) the percentage of time the power is harvested at the different P(t) (notice
that for 0 ≤ P(t)≤ 15, the value is 91%).

walking intervals examined in a physiological study of human
mobility [30].

In summary, P(t) is low for the majority of the time, and
when it does become high, it stays high for only a brief period of
time. This emphasizes the need for energy harvesting-adaptive
algorithms.

3) Harvesting Process vs. I.i.d. and Markov Processes: Sev-
eral energy harvesting adaptive algorithms were developed
under the assumption that the energy harvesting process is
Markov, or has independent identically distributed (i.i.d.) per-
slot energy inputs [13], [15], [42]. However, such assumptions,
realistic in certain scenarios [13], do not hold for our motion
energy traces. We use a slotted representation of the energy
harvesting processes, Pmeas, setting the time slot length Tint = 1
second, and determining the Pmeas(i) by computing the average
value of the P(t) for each Tint. For all day-long traces, Pmeas is
clearly not i.i.d. or Markovian. For example, for the Pmeas for
participant M1 for γ = 20 µW, p(Pmeas(i) > γ|Pmeas(i− 1) >
γ) = 0.84, while p(Pmeas(i)> γ|Pmeas(i−1)> γ, Pmeas(i−2)<
γ) = 0.45.

To demonstrate the differences between the traces and i.i.d.
and Markov processes, we examine the performance of the
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Fig. 9. Scheme-LB policy performance using energy traces (Pmeas) for partic-
ipant M1 and using the corresponding ON/OFF (Ponoff), Markov (PMarkov), and
i.i.d. (Piid) processes: (a) average data rates, r, and (b) node ON times.

Scheme-LB policies [12] with the different processes. In the
Scheme-LB policies [12], s(i) ← (1− ε)Q̂(i) if B(i)+Q(i) ≥
(1−ε)Q̂(i), and s(i)← B(i)+Q(i) otherwise, where Q̂(i) is the
running average of Q(i)(Q̂(i)← ∑i−1

j=0 Q( j)/i), and ε is a small
constant (we use ε = 0.01). For a process Pmeas, we generate
a corresponding i.i.d. process, Piid, by randomly permuting the
values of Pmeas (we use the Wald-Wolfowitz runs test to verify
the independence of the Piid values). To generate a Markov
process, PMarkov, we calculate the empirical state transition
probabilities of the Ponoff process (defined in Section V-B2)
and generate a Markov process with states {ON, OFF} and
the calculated transition probabilities. We set the PMarkov values
for ON and OFF states to the average values of Pmeas(i) for
which Ponoff(i) = ON, and for which Ponoff(i) = OFF , respec-
tively. This ensures that the processes have the same first-order
statistics.11

The policy performance observed using i.i.d. and Markov
processes differs dramatically from the policy performance
observed using the traces. For example, Fig. 9 shows the r and
the ON times obtained under the Scheme-LB policy for the
different processes based on a trace of participant M1. Using
the process Ponoff, the performance is similar to the performance
obtained using Pmeas—the r values differ by at most 17%
(0.23 Kb/s), and the ON times differ by at most 7%. However,
the performance observed using Piid and PMarkov differs greatly
from the performance observed using Pmeas. The differences in
r values reach over 105% (1.35 Kb/s), and the differences in
ON times reach 63%.

Moreover, using i.i.d. and Markov processes results in differ-
ent performance trends. Using Pmeas, the performance strongly
depends on C, with r for the different values of C differing
by over 2.3 times, and with the ON percentages differing by
over 45%. However, using Piid and PMarkov, both r and ON
times are nearly independent of C. Additionally, evaluating
policy performance using Pmeas shows that the ON times are
an important metric because they can be low for small values of
C (Fig. 9(b)). However, when evaluating using Piid and PMarkov,
the ON times are nearly 100% for all values of C, including
values as low as 15 mJ (i.e., less than 15% of the average energy
harvested per day). This emphasizes the need to evaluate energy

11For each of the processes, we calculate Q(i) as Q(i) ← ηh · Tint · P(i),
where ηh = 20% [16]. We rely on a battery node model and set B0 = 0.5C.
We calculate the data rate as r(i)← s(i)/ctx.

TABLE IV
OBJECT MOTION MEASUREMENTS

harvesting-adaptive policies for wireless nodes equipped with
an inertial harvester using real traces.

C. Object Motion Energy

While Sections IV and V focus on human motion, in this
section we also provide some brief observations regarding
the energy availability associated with the motion of objects.
This study is motivated by various IoT applications, including
inventory management and object tracking, which require at-
taching small devices to everyday objects (e.g., keys, books,
packages). We conducted extensive experiments, recording a(t)
and calculating P for a wide range of motions. Our experiments
included performing everyday activities with a variety of every-
day objects (see Table IV), shipping a FedEx box with a sensing
unit in it from Houston, TX to New York, NY, transporting sens-
ing units in carry-on and checked airport luggage, and taking
sensing units on cars, subways, and trains. Below, we present
observations based on our measurements. To put the P values
in perspective, we note that, as we demonstrated in Section IV,
human walking typically corresponds to 120 ≤ P ≤ 280 µW.

Expectedly, for the vast majority of common object motion
the energy availability is low. Due to the filter properties of
inertial harvesters (see Section III-A), a motion needs to be
periodic to be “harvestable”. The vast majority of common ob-
ject motion is not periodic, and hence the corresponding energy
availability is low. For example, we attached a sensing unit to
a book and observed that when the book is being taken off the
shelf, read, or put back on the shelf, P < 10 µW. For a sensing
unit attached to a pencil used by a student to write homework,
10≤P≤ 15 µW. Even high-acceleration non-periodic motions,
such as a plane landing and taking off, and an accelerating or
decelerating car, correspond to only limited energy availability
(P < 5 µW. For example, when a unit was placed in a bag
checked in on a 3 : 13 hour flight the recorded a(t) showed
that the luggage was subjected to varying high-acceleration
motions, but the P did not exceed 5 µW even during the most
turbulent intervals of the flight. Furthermore, substantially more
energy could be harvested from a human walking around the
airport with the luggage (i.e., periodic motion of a human
walk) than from the motion associated with the entire flight.

Our study additionally demonstrated low levels of energy
availability for many high-amplitude and high-periodicity mo-
tions. The motion of many objects in our environment is
damped for human comfort (e.g., by door dampers, cabinet
drawer dampers, and springs in swirling chairs). In such cases,
most of the motion energy is absorbed in the dampers and only
small amounts can be harvested (e.g., by sticker form factor
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harvesters [3]). Opening and closing a drawer, spinning a swivel
chair, and opening and closing a building door corresponded to
10 ≤ P ≤ 30 µW, 1 ≤ P ≤ 6.5 µW, and P < 1 µW, respectively.
This suggest that IoT nodes embedded in objects such as doors
and drawers should integrate motion energy harvesters with the
mechanical dampers.

Finally, our study confirmed that purposeful object motion
can be extremely energy rich. Periodic shaking of objects can
generate a relatively large amount of energy in a short time
(as demonstrated by “shake” flashlights). In our experiments,
purposeful shaking corresponded to P of up to 3,500 µW,
that is, 12–29 times more than the power for walking. In IoT
applications with mobile nodes, this can be useful for quickly
recharging battery-depleted nodes.

VI. ENERGY-AWARE ALGORITHMS

We now formulate an optimization problem of energy alloca-
tion for ultra-low-power energy harvesting IoT node and prove
it to be NP-hard. As mentioned in Section III-E, the formu-
lation captures realistic constraints that have not been jointly
considered before: (i) discrete, rather than continuous, energy
spending rates; (ii) general, rather than concave or linear, utility
functions; and (iii) use of a capacitor, rather than a battery,
as an energy storage component.

In Section V-B3 we demonstrated that the environmental
energy available to the node in each slot i, e(i), cannot be repre-
sented by a Markov or an i.i.d. process. Therefore, there is need
to develop algorithms that do not make an assumption on the
distribution of e(i). Since the energy allocation problem is NP-
hard, solving it is difficult even if e(i) ∀i is known in advance.
We distinguish between two types of energy allocation algo-
rithms: (i) offline, where e(i) ∀i is part of the input; an offline
algorithm can be used as a benchmark since it provides an upper
bound on the utility a node can achieve in practice, and (ii) on-
line, where a decision in slot i is made based only on e(i′) ∀i′ <
i; an online algorithm can be used by a real node to determine
spending rate s(i) in each slot. We develop optimal and approx-
imate offline algorithms. We then develop an online algorithm
and prove it to be optimal for some cases. We also evaluate
the performance of the algorithms with the collected motion
energy traces.The proofs for this section appear in Appendix I.

A. Energy Allocation Problem

We start by formulating the energy allocation problem for a
wireless IoT node:

Energy Allocation (EA) Problem:

max
s(i)

{
K−1

∑
i=0

U (s(i))

}
s.t. :

s(i)
η(i,B(i))

≤ B(i), s(i) ∈ S ∪{0} ∀ i (1)

B(i)≤ B(i−1)+Q(e(i−1),B(i−1))

−L(i−1,B(i−1))− s(i−1)
η(i−1,B(i−1))

∀ i ≥ 1 (2)

0 ≤ B(i)≤C ∀ i; B(0) = B0;B(K)≥ BK (3)

This is an integer optimization problem, namely, all the coef-
ficients and function values are integers. Constraint (1) ensures
that a node does not spend more energy than it has stored
and that the spending rate, s(i), is from a fixed set, (2) repre-
sents the energy storage evolution dynamics, and (3) imposes
the storage component capacity constraints and sets the initial
and final energy levels to B0 and BK . To simplify the nota-
tion, we omit the dependency of η(i,B(i)), Q(e(i),B(i)), and
L(i,B(i)), on B(i) in the rest of the section. However, unless
mentioned otherwise, the proofs and the algorithms are also
valid when the dependency on B(i) is considered.

The proof of the following theorem demonstrates the NP-
hardness of the EA Problem even for “simple” cases (e.g., B0 =
BK = 0 and linear U(s(i))).

Theorem 1: The EA Problem is NP-hard.

B. Energy Allocation Algorithms

For solving the EA Problem, we present a dynamic
programming-based pseudopolynomial algorithm,12 a Fully
P-olynomial Time Approximation Scheme (FPTAS),13 and
a greedy online algorithm which is optimal in particular
scenarios.

We first present an optimal offline dynamic programming
algorithm for solving the EA Problem. Thus, the algorithm
jointly considers realistic constraints that have not been jointly
considered before and uses similar ideas to the dynamic pro-
gramming algorithm from [13]. However, compared to [13], the
dynamic programming procedure’s parameters and return value
switch places. This difference is used to develop the FPTAS we
present later in this section.

Dynamic Programming Algorithm: We determine M(i,U)
which is the maximum battery level when obtaining util-
ity U in the beginning of slot i. We set M(0,0) = B0 and
M(0,U) = −∞ ∀ U > 0. For i > 0, M(i,U) is calculated as
M(i,U) = maxs(i−1)∈S∪{0}{M(i− 1,U −U(s(i− 1))) +Q(i−
1)− s(i − 1)/η(i − 1)− L(i − 1)}. Let the optimal solution
utility be U∗, and let UH ≥ U∗ be an upper bound. We cal-
culate M(i,U) for 1 ≤ i ≤ K and 0 ≤ U ≤ UH . Then, U∗ =
argmax{M(K,U) s.t. M(K,U) ≥ BK}. The optimal energy
spending values s∗(i) are found by maintaining an array A(i,U)
that stores the s(i−1) values chosen when calculating M(i,U).
Then, s∗(K − 1) = A(K,U∗). We can obtain s(K − 2) using
A(K − 1,U∗ −U(s∗(K − 1))). This process is repeated to find
s∗(i) for 0 ≤ i ≤ K −1.

The space complexity of the algorithm is O(K ·UH) for
storing A(i,U). Since in every calculation of M(i,U) we go
over S , the time complexity is O(K · |S | ·UH). Let smax be
the maximum item in S , clearly UH = K ·U(smax) is an upper
bound, for which we obtain space and time complexities of
O(K2 ·U(smax)) and O(K2 ·U(smax) · |S |), respectively.

FPTAS: For large values of U(smax), the time and space
complexities render the dynamic programming algorithm im-

12A pseudopolynomial algorithm is an algorithm whose running time is
polynomial if the input is encoded in unary format.

13An FPTAS is an algorithm which takes an instance of an optimization
problem and a parameter ε>0 and, in polynomial time in both the problem size
and 1/ε, produces a solution that is within a 1−ε factor of the optimal solution.
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practical. Therefore, we develop an approximation scheme. It
relies on a lower bound UL =U(smax), which is a lower bound,
since if spending only smax energy at some slot is always infea-
sible, smax can be removed from S . We define a scaling factor
µ = ε ·U(smax)/K and a new utility function Ũ(s) = �U(s)/µ�.
Next, we invoke the dynamic programming algorithm for Ũ()
to compute M(i,Ũ) for 0 ≤ i ≤ K and 0 ≤ Ũ ≤ UH/µ. The
algorithm returns the energy spending rates s̃(i) found by the
dynamic programming algorithm. Below we show that the
algorithm is an FPTAS.

Theorem 2: The above algorithm runs in times poly(1/ε,
K), and the solution s̃(i) is a (1− ε)-approximation.

Greedy Online Algorithm: In every time slot, the algorithm
tries to maximize the utility while not letting the energy storage
level go below BK . Namely, in each slot i the algorithm spends
s(i)=max{U(s) | s ∈ S ∪{0}∧ (B(i)−s/η)≥BK}.

We first focus on the battery node model and on a scenario
where (i) for x,y, U(x+ y) = U(x) +U(y), and (ii) the set S
is { j · s, j = 1, . . . , |S |} and s > 0. Such conditions hold, for
example, when a node uses a fixed power level and changes its
transmission rate by transmitting a different number of equal-
sized packets.

Theorem 3: For battery energy storage model, for BK = 0, if
conditions (i) and (ii) hold, the greedy algorithm is optimal.

In Section VI-C we evaluate the performance of the greedy
online algorithm under the capacitor model and for cases where
BK > 0.

To complement Theorem 3, Theorem 4 below shows that for
cases where BK > 0, any online algorithm performs arbitrary
bad. Since we showed in Section V-B3 that e(i) cannot be
represented by a Markov or an i.i.d process, for these cases any
online algorithm may perform arbitrary worse and it should be
evaluated with collected traces to assess its performance.

Theorem 4: For BK > 0, the performance of any online
algorithm that guarantees a feasible solution can be arbitrary
bad for K ≥ 2.

C. Trace-Based Performance Evaluation

In this section, we evaluate the algorithms using the motion
energy traces we collected, for both battery and capacitor node
models defined in Section III-E. We refer to the algorithm and
model combinations as follows:

Algorithms Invoked for the Battery Model:

• ALG-OB: The optimal dynamic programming algorithm.
• ALG-FB: The FPTAS.
• ALG-GB: The greedy online algorithm.
Algorithms Invoked for the Capacitor Model:

• ALG-OC: The optimal dynamic programming algorithm.
• ALG-FC: The FPTAS.
• ALG-GC: The greedy online algorithm.
We consider an IoT node that changes its data rate r(i) by

changing the number of packets it sends in a time slot (where
the length of a time slot is Tint = 1 second). The maximal r(i) is
250 Kb/s, the packet size is 127 bytes,14 and ctx = 1 nJ/bit (i.e.,

14These parameters correspond to IEEE 802.15.4/Zigbee nodes [43].

Fig. 10. Algorithm performance using energy traces for participant M1, for:
(a) battery and capacitor models, performance ratio between ALG-FC (ALG-
FB) and ALG-OC (ALG-OB), and (b) the capacitor model, average data rate,
r, achieved by different algorithms.

it takes 1,016 nJ to transmit 1 packet). Thus, S = {1016 · j, j =
1, . . . ,246}, and smin = min{s ∈ S}= 1016. We set L(i,B(i)) =
0. We use the day-long motion energy traces (see Table III).15

We evaluated the algorithms for traces of different users and
for different days. We observed that the performance trends of
the algorithms are very similar for all the considered day-long
traces. Therefore, only the graphs corresponding to a day-long
trace of participant M1 are shown. Since for the day-long traces
K is very large, to draw a single point in the graphs we run the
algorithms over 66 consecutive 10-minute intervals of Q(i) and
average the results. Unless specified otherwise, the evaluation
results are shown for B0 = BK = 0 and for 10 · smin ≤ C ≤
100 · smin.

We first explain in detail how to compute the conversion
efficiency η(). Recall that η() depends on the node’s fixed
operating voltage Vop and energy storage voltage Vout(i) (see
Section III-E). For the battery model, we assume Vout(i) = Vop

and set η = 1. For the capacitor model, approximating voltage
converter properties [44], we compute:

η(i,B(i)) =

⎧⎪⎨
⎪⎩

Vout(i)
Vop

, Vmin ≤Vout(i)≤Vop

1− Vout(i)−Vop
2·(Vmax−Vop)

, Vop <Vout(i)≤Vmax

0 otherwise

where Vmax = 2.8 V is the maximum voltage of the capacitor,
Vout(i) is node’s voltage in a time slot i(Vout(i) =

√
B(i)/C ·

Vmax), Vop = 2.5 V, and Vmin = 0.7 V.
We first examine the performance of ALG-FC as a function

of its approximation ratio, 1− ε (see Theorem 2). Fig. 10(a)
shows the ratio of the ALG-FC performance to the optimal
(ALG-OC) for C = 100 · smin. Even for small 1− ε, the ALG-
FC performance is close to the optimal (much closer than the
theoretical bound). Similar results were obtained for ALG-FB.

Next, we examine the performance of the ALG-GC, ALG-
OC, and ALG-FC for the capacitor mode. Fig. 10(b) shows
the average data rates r obtained by the algorithms. The
performance of ALG-FC is close to that of ALG-OC. The
performance of ALG-GC gets worse compared to ALG-OC for
larger C because it obtains lower Vout(i) (recall that Vout(i) =√

B(i)/C ·Vmax), resulting in lower η(). Furthermore, for C >
60 µJ, its obtained r decreases as C increases.

15From the traces, we calculate Q(i) as Q(i) ← ηh · Tint · Pmeas(i), where
ηh = 20%. To evaluate ALG-GB, ALG-FC, and ALG-GC, we compare their
performance with the optimal algorithms ALG-OC and ALG-OB.
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Fig. 11. The average data rate, r, achieved by the algorithms using energy
traces for participant M1, for (a) the battery model, for BK = B0 = 10 · smin, and
(b) the battery and capacitor models.

Fig. 12. Algorithm performance using energy traces for participant M1, for:
(a) battery and capacitor models, performance ratio between ALG-FC (ALG-
FB) and ALG-OC (ALG-OB), and (b) the capacitor model, average data rate,
r, achieved by different algorithms.

We also examine the performance of the ALG-GB and ALG-
OB algorithms for the battery model. Since for BK = 0 ALG-
GB is optimal (see Theorem 3), we consider BK = B0 =
10 · smin. Fig. 11(a) shows the r values obtained by ALG-
GB and ALG-OB. Since ALG-GB cannot take advantage of
the initial energy (because B0 = BK), for a particular C value
the capacity available to ALG-GB is C−B0. Correspondingly,
since consecutive plotted points differ by B0 in their C value, the
plotted points (C, r) for ALG-OB and (C+B0, r) for ALG-GB
appear in the figure.

To compare the performance for the battery and the capacitor
models, Fig. 11(b) shows the data rates obtained by ALG-GB
and ALG-OC. For ALG-OC, for larger C there is a wider range
of charge level for which η() is close to 1. Correspondingly,
ALG-OC can keep η() close to 1, thus its performance ap-
proaches that of ALG-GB.

Next, we consider the case where the node has a sensing
device (e.g., temperature and humidity sensor [45]). Based on
the parameters from [45], the sensor consumes 1,900 nJ per
sensor measurement. Accordingly, we update S as S = {1016 ·
j+1900, j = 1, . . . ,246}; note that Theorem 3 does not apply to
this case. Figs. 12 and 13 illustrate numerical results obtained
by the algorithms under these assumptions.

Fig. 12 demonstrates the same observations as those demon-
strated in Fig. 10. Fig. 13(a) shows the r values obtained by
ALG-GB and ALG-OB. Here ALG-GB does not reach the
optimal solution (ALG-OB) even for large capacity values. This
is because ALG-GB spends the energy as soon as it is available,
resulting in more energy spent for sensing (instead using it for
transmission). Fig. 13(b) shows the data rates obtained by ALG-
OB, ALG-GB, and ALG-OC. We observe similar trends as in
Fig. 11(b), except that ALG-GB is not optimal even for large
capacity values. For large capacity values (over 70 µJ), ALG-

Fig. 13. The average data rate, r, achieved by the algorithms using energy
traces for participant M1, for (a) the battery model, for BK = B0 = 10 · smin, and
(b) the battery and capacitor models.

Fig. 14. Algorithm performance using energy traces for participant M1 and
and considering a sensing device, for: (a) battery and capacitor models, perfor-
mance ratio between ALG-FC (ALG-FB) and ALG-OC (ALG-OB), and (b) the
capacitor model, average data rate, r, achieved by different algorithms.

Fig. 15. The average utility, achieved by the algorithms using energy traces
for participant M1, where the utility corresponds to the channel capacity, for
(a) the battery model, for BK = B0 = 10 · smin, and (b) the battery and capacitor
models.

OC performs better than ALG-GB since ALG-OC can keep the
capacitor level such that η is very close to 1.

Finally, we evaluate our algorithm for the case in which
U(s) = 0.5log(1+ s), where U(s) corresponds to the channel
capacity [46]. We use S = {1016 · j, j = 1, . . . ,246}.

Fig. 14(a) demonstrates that our FPTAS obtains much better
performance ratio than the theoretical guarantee of 1 − ε. In
Fig. 14(b), we see that ALG-GC performs poorly in this case.
In particular, as the capacity increases the performance of ALG-
GC decreases. This is due to two reasons: (i) as before, for the
capacitor model, larger capacity reduces η; and (b) the usage of
a concave U(s) reduces the benefit from larger capacity.

Fig. 15(a) demonstrates that ALG-GB performs substantially
worse than ALG-OB (55% performance ratio for high capacity
values). The reason is, again, due to the concave nature of
U(s), which implies that small portions of energy spending
over many slots is preferable. Fig. 15(b) demonstrates that, as
expected, ALG-OB obtains the highest performance, followed
by ALG-OC which loses some performance due to the conver-
sion efficiency η. ALG-GB performs the worst in Fig. 15(b)
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due to the concave utility function U(s) and the non-optimality
of ALG-GB.

In summary, the evaluations demonstrate that the algo-
rithms perform well and showcase that for the capacitor node
model, having a larger energy storage may worsen the overall
performance.

VII. CONCLUSION

This paper considers motion (kinetic) energy availability for
Internet of Things (IoT) applications. We thoroughly study
human motion and provide observations regarding object mo-
tion. For human motion, we use the results of our measure-
ment campaign that include 200 hours of acceleration traces
from day-long human activities. Moreover, we use a dataset of
7 common human motions performed by over 40 participants
[20]. We consider a wireless energy harvesting node model that
captures several practical IoT node design considerations. We
design optimal, approximation, and online energy allocation
algorithms and evaluate their performance using the collected
motion energy traces.

In future work we will expand our measurement study to
include additional motions and additional human participants.
Expanding the study for additional motions is motivated by the
appearance of new wearable devices targeting specific activities
(e.g., dancing, jumping). We will jointly measure light and
motion energy (available to the same device) to obtain insight
into the use of multipurpose harvesters.

APPENDIX I

Proof of Theorem 1: We prove that the EA Problem is NP-
hard using a reduction from a well-known NP-hard problem
[47]. The reduction performs several transformations, all of
which are polynomial in time and space. We start with two
definitions:

Definition 1: An instance of the EA Problem is defined using
the integers K ≥ 0, C ≥ 0, B0 ≥ 0, and BK ≥ 0, the set S , the
functions Q(), η(), U(), and L(), and the value of e(i) for every
slot i = 0, . . . ,K −1.

Definition 2: Given an instance of the EA Problem, a vector
s(i), i = 0, . . . ,K −1 is feasible if constraints (1)–(3) hold with
respect to it.

The decision version of the EA Problem (EA-D) is defined
using the same values as those defining the EA Problem, as well
as an additional integer U ≥ 0. A solution to the EA-D Problem
is a “yes” or “no” answer, where “yes” is returned if and only if
there is a feasible vector s(i) with ∑K−1

i=0 U(s(i))≥U . It is easy
to see that given a polynomial-time solver to EA-D, one can
solve the EA Problem using binary search on the values of U .
Therefore, to prove that the EA Problem is NP-hard,

We show a polynomial time reduction from the decision
form of subset sum Problem (SSP-D), which is known to be
an NP-hard Problem [47]. The SSP-D Problem is defined as
follows:

SSP-D(w,c) =

{∃x such that:
∑n

j=1 w jx j = c; x j ∈ {0,1} ∀ j,

where w = (w1, . . . ,wn) is a vector of size n. We assume that c
and all coefficients w j are integers.

It is clear that in any solution to SSP-D, the inequality
∑n

j=1 x j ≤ n holds. Therefore, we can add this as an additional
constraint to SSP-D. We also introduce slack variables y j and
obtain the following formulation equivalent to SSP-D, denoted
SSP-D1:

SSP-D1(w,c) =

⎧⎨
⎩
∃x such that:
∑n

j=1 w jx j = c, ∑n
j=1 x j + y j ≤ n

x j + y j = 1, x j,y j ∈ N0 ∀ j.

We now follow the same technique as used in [47] to merge
the equation x1 + y1 = 1 with the equation ∑n

j=1 w jx j = c,
obtaining the new equation x1 + y1 + 2∑n

j=1 w jx j = 2c + 1.
As shown in [47], this does not change the set of feasible
solutions. Repeating the process of merging with x j+y j = 1 for
j = 2, . . . ,n, we get the following formulation, denoted SSP-D2:

SSP−D2(w,c) =

⎧⎪⎪⎨
⎪⎪⎩
∃x,y such that:
2n ∑n

j=1 2− j(y j + x j)+
w jx j = 2nc+2n −1

∑n
j=1 x j + y j ≤ n; x j,y j ∈ N0∀ j.

Setting w̃ j = 2n− j + 2nw j, w j = 2n− j, and c = 2nc+ 2n − 1,
we reach the equivalent formulation, denoted SSP-D3:

SSP-D3(w̃,w,c) =

⎧⎨
⎩
∃x,y such that:
∑n

j=1 w̃ jx j +w jy j = c,
∑n

j=1 x j + y j ≤ n; x j,y j ∈ N0∀ j.

Let nb(w,c) be the number of bits required to represent (w,c).
It is shown in [47] that the new coefficients w̃ j, w j, and c, are
polynomial in nb(w,c). Therefore, the transformation can be
performed in polynomial time.

We now show how to reduce SSP-D3 into an instance of
EA-D, which will complete the proof. As input for EA-D we set
B0 = BK = 0, K = n+1, C =U = e(0) = c, S = {w̃ j}∪{w j};
L(i) = 0, η(i) = 1∀i; and e(i) = 0∀i ≥ 1. We set U() and
Q() as the identity function: U(x) = x and Q(x) = x. Clearly,
generating this input can be performed in polynomial time.

We now show that the reduction holds, namely, that the
generated EA-D is a “yes” instance if and only if SSP-D3 is
a “yes” instance. Note that since B0 = 0, we get s(0) = 0.
In addition, ∀i ≥ 1 Q(i) = 0, B(1) = e(0) = c, and BK = 0.
Therefore, the considered EA-D instance is a “yes” instance
if and only if there exist s(i) such that ∑n

i=1 s(i) ≤ c and
∑n

i=1 U(s(i)) = ∑n
i=1 s(i) = c.

If the SSP-D3 is a “yes” instance, there exist x j,y j such
that ∑n

j=1 x j + y j ≤ n. A feasible vector s(i) for EA-D can be
obtained as follows: for j = 1, . . . ,n, use x j slots by spending
w̃ j amount of energy in each such slot and use y j slots by
spending w j amount of energy in each such slot. Clearly, such
energy spending is feasible and obtains the total utility of U = c.
Therefore, the EA-D is a “yes” instance. The other direction,
namely, that if the EA-D instance is a “yes” instance, the
SSP-D3 instance is a “yes” instance, can be proved in a simi-
lar way. �

Proof of Theorem 2: The total profit of the solution re-
turned by the algorithm is ∑s̃(i)U(s̃(i)), and, due to the definition
of Ũ():

K−1

∑
i=0

U (s̃(i))≥
K−1

∑
i=0

µ ·Ũ (s̃(i)) .
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Since the dynamic programming returns the optimal solution
with respect to Ũ(),

µ
K−1

∑
i=0

Ũ (s̃(i))≥µ
K−1

∑
i=0

Ũ (s∗(i))≥
K−1

∑
i=0

µ

(
U (s∗(i))

µ
−1

)

K−1

∑
i=0

µ ·
(

U (s∗(i))
µ

−1

)
≥U∗ −K ·µ

Since µ = ε·U(smax)
K and UL = U(smax), using the above equa-

tions, we get ∑K−1
i=0 U(s̃(i)) ≥ (1 − ε)U∗, which proves the

approximation ratio.
Due to the invocations the dynamic programming with utility

function Ũ(), the space and time complexities are O(K2 ·
Ũ(smax)) and O(|S | · K2 · Ũ(smax)), respectively. Replacing

Ũ(smax) with U(smax)
µ , we obtain the space and time complexities

of O(K3

ε ) and O(|S | · K3

ε ), respectively. �
Proof of Theorem 3: We first make the following observa-

tion [29], [40]:
Observation 1: Let i1 and i2 be two slots. If B(i1) ≥ B(i2),

then L(i1)≥ L(i2).
Since condition (i) holds, ∑K−1

i=0 U(s(i)) = U(∑K−1
i=0 s(i)) and

the total energy spent is ηh ∑K−1
i=0 s(i). Therefore, maximizing

the utility is equivalent to maximizing the total energy spent
over the K slots.

To complete the proof we now show a transformation from an
optimal solution s∗(i) to the greedy algorithm’s solution sg(i),
which does not decrease the total amount of energy spent over
the K slots.

Let i′ be the earliest slot for which s∗(i′) �= sg(i′), clearly
s∗(i′) < sg(i′). Since s∗(i) obtains maximal energy spending,
there must be a set S′ of slots after slot i′ in which the total
energy spent is at least sg(i′)− s∗(i′). Also note that, due to
condition (ii), for some j > 0, sg(i′)− s∗(i′) = j · s. In each of
the slots in S′ the energy spent is a multiple of s. Therefore, we
can reduce the amount of energy spent in S′ by sg(i′)−s∗(i′) and
set s∗(i′) = sg(i′). Due to Observation 1 we get a feasible energy
spending. Furthermore, at least the i′+1 first slots are identical
the greedy algorithm’s solution. We repeat the process until
we obtain the energy spending sg(i) for i = 0, . . . ,K −1. �

Proof of Theorem 4: We set U(s(i)) = s(i), η = 1, L(i) =
0, C = smin where smin = min{s ∈ S}, and B0 = BK = C. It
is sufficient to consider instances in which e(i) > 0 only for
i ≥ K − 2. Therefore, without loss of generality we assume
K = 2. Assume that e(0) = 0. The online algorithm can: (i) set
s(0) = 0, or (ii) set s(0) = smin. If the first option is used and
e(1)< smin, the solution is infeasible. Thus, to ensure feasibility
the online algorithm will set s(0) = 0 and similarly s(1) = 0,
obtaining no utility. Therefore, the performance gap smin can be
arbitrarily large. �
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