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Abstract—Today’s Internet must support applications with in-
creasingly dynamic and heterogeneous connectivity requirements,
such as video streaming and the Internet of Things. Yet current
network management practices generally rely on pre-specified
flow configurations, which cannot cover all possible scenarios. In
this work, we instead propose a model-free learning approach to
automatically optimize the policies for heterogeneous network
flows. This approach is attractive as no existing comprehen-
sive models quantify how different policy choices affect flow
performance under dynamically changing network conditions.
We extend multi-armed bandit frameworks to propose new
online learning algorithms for protocol selection, addressing
the challenge of policy configurations affecting the performance
of multiple flows sharing the same network resources. This
performance coupling limits the scalability and optimality of
existing online learning algorithms. We theoretically prove that
our algorithm achieves a sublinear regret and demonstrate its
optimality and scalability through data-driven simulations.

Index Terms—Network protocol selection, completion time
minimization, multi-armed bandit, online algorithm design

I. INTRODUCTION

The Internet today is diversifying in terms of both the
applications and devices that it aims to support, as well as
the means for doing so. Applications like virtual reality, for
instance, require increasingly low latencies [1], while the
Internet-of-Things has dramatically expanded the range of
devices connected to the Internet [2]. Fifth-generation (5G)
wireless networks are simultaneously predicted to integrate
several different access frequencies in an effort to boost
capacity and coverage [3]. Yet this heterogeneity comes with
challenges: it is far from clear how the network can enforce
heterogeneous application requirements when the applications
share limited bandwidth on heterogeneous network links.

Current network management practices generally rely on
static pre-configurations, e.g., pre-specifying the routing algo-
rithms used to determine flow paths. Initiatives like network
functions virtualization (NFV) and the RAN (radio access
network) Intelligent Controller [4] aim to enable more flexible
policies, but they still require manual intervention to change
the preset network policies [5]. In this work, we recognize
that pre-specified policies are likely insufficient to handle all
possible scenarios. While a vast array of possible policies at

TABLE I: Outline of formulation use cases.

Use case Topology Example protocols
5G Single link Control channel size

MAC Single link CSMA/CD, CSMA/CA
Network slicing Arbitrary Slice reservation priorities
Transport layer Arbitrary TCP CUBIC, TCP Reno

various layers of the stack can be used for different types of
networks, in this work we focus on the selection of protocols
for flows on each link of a given network. We suppose that a
given set of protocols is available and that each flow’s achieved
performance depends on the protocols chosen for all flows on
shared links and the unknown network condition. We develop
new, model-free algorithms that learn this unknown relation-
ship between protocol choices and optimize the aggregate
flow performance over time. Table I summarizes the network
topology and protocol choices considered in each use case.

Our contributions. We derive and validate, analytically
and empirically, the first algorithms that can learn the as-
signment of protocols to flows that maximizes aggregate flow
performance. We take the first steps towards meeting these
challenges with a new extension of the multi-armed bandit
(MAB) framework [6]. We view the selection of each set
of protocols for all flows in the network as an “arm” to be
pulled and decode each arm’s “reward” from the transmission
rates achieved by all present flows to learn a set of protocol
candidates. We then execute an online protocol selection to
minimize the aggregate flow completion times, which extends
the existing MAB algorithms by: reducing the exponential
number of arms (combinations of protocols) to be polynomial
with the network size and independent with the number of
co-existing flows; and accounting for (1) a completion time
objective, which is a highly nonlinear function of the protocol
performance that also depends on past protocol selections, and
(2) constraints (bandwidth capacities) on the achievable reward
that may be unknown or adversarial.

II. PROBLEM FORMULATION

We consider a communication network described by a graph
G(V,L), where V represents the nodes, corresponding to the978-1-7281-2700-2/19/$31.00 2019 c© IEEE



locations of routers in the network, and L represents the links.
We divide time into discrete slots, each of which lasts ε > 0
seconds. Each link l has a bandwidth capacity Blt (bps) in
time slot t, which is not known before time t. These links
may be virtual links in an overlay network, with unknown or
dynamic physical topologies. In a wireless setting, we can
view a “link” as a wireless link between UEs and a base
station. Network slice configurations and transport protocols,
on the other hand, generally are not changed at physical links,
but can be changed at some intermediate points, e.g., when
flows enter a new network domain or via network proxies that
forward packets on behalf of the sender for the next link such
as Dropbox does in their datacenter networks [7]. Suppose n
flow requests arrive at time ti over the lifetime of the system,
T . Each flow i has a fixed path Pi exogenously determined at
the time of its arrival and a fixed size πi, i.e., the amount of
data (in bytes), to transfer along Pi.

Our algorithm chooses one out of M protocols for each
flow i on its path, Pi, so as to minimize the flows’ overall com-
pletion time. Let xilm represent whether protocol m ∈ [M ]
is chosen (xilm = 1) for flow i on link l, or not (xilm = 0).
Let rilt(xl) denote the transmission rate achieved on link l
for flow i at time slot t, which is revealed after we choose
the protocols for flow i. As different flows may compete for
the bandwidth on one or more links, rilt(xl) is a function
of the decisions xjlt for all alive flows j on l at t. Let
δil(xl) denote the transmission delay on each link l of flow i.
Then δil(xl) = maxti≤t≤+∞ t · 1(

∑
ti≤t′≤t εrilt′ (xl) ≤ πi),

where 1(X) equals 1 if X is true; and 0 otherwise. We
then let τi(x) = ti + maxl∈Pi

δil(xl) + propagation delay
denote the completion time of flow i, i.e., its arrival time plus
the total delay of serving flow i. Since our protocol choices
do not affect the propagation delay, our goal is to minimize
maxl∈Pi δil(xl), and our optimization problem is then:

minimize
∑
i∈[n]

max
l∈Pi

δil(xl) (1)

subject to:
∑
i∈Alt

rilt(xl) ≤ Blt, ∀l ∈ Pi, i ∈ [n], t ∈ [T ] (2)∑
ti≤t≤τi(x)

rilt(xl) ≥ πi, ∀l ∈ Pi, i ∈ [n] (3)

∑
m∈[M ]

xilm = 1, ∀l ∈ Pi, i ∈ [n] (4)

This formulation reflects our research challenges: rilt(xl) is
a function of the protocol choices of all alive flows at t,
accounting for competition between flows, and both rilt and
Blt are unknown (Blt can be adversarial: arbitrarily chosen by
the environment). Thus, the problem is complex and difficult to
solve. In some cases, prior models exist for rilt, e.g., network
utility maximization (NUM) frameworks for certain MAC
and TCP protocol variants [8], [9]. However, such models
are not available for all protocols and may require knowing
the bandwidth capacity, so we assume the rilt are unknown
random variables that may depend on Blt.

Algorithm 1: Online Protocol Selection via Learning
Bandwidth Competition – OPSBC
Input: G(V,L), n, α
Output: x
Initialize: x = 0, η = 1, t = 0

1 while time slot 1 ≤ t ≤ T starts do
2 for each link l ∈ L do
3 Update π̃ilt = (remaining size of each alive flow);
4 Update i∗ = argmini∈Alt

π̃ilt ;
5 Choose (m∗,mb) = argmin(m,m′ ) ηlt(m,m

′
);

6 Update xi∗lm∗t = 1;
7 Update xilmbt = 1,∀i 6= i∗;
8 Update ηlt(m,m′) and ηLCBlt (m∗,mb) using (7) ;
9 end

10 end

III. ONLINE PROTOCOL SELECTION

Our key insight in solving the optimization problem (1)
– (3) is to understand and exploit the relationship among
transmission rates, joint protocol decisions of flows, and
bandwidth capacities. We first define a model of how the link
bandwidth is divided between coexisting flows, depending on
the protocols they use, and the resulting flow transmission
rates. As shown in (5) below, the transmission rate achieved
by each flow will be proportional to the weight of its corre-
sponding protocol, divided by the total weights of other flows’
protocols. We assume that on each link l, the weight vector
(wlt(e1), · · · , wlt(eM )) is i.i.d. drawn from an unknown dis-
tribution Dwl over all times, e.g., due to fluctuations in wireless
signal strength or routing in an overlay network.

rilt(xl) =
wlt(~xilt)Blt∑
i′∈Alt

wlt(~xi′ lt)
(5)

where: u(xl, Blt) ≤ 1,∀~xl, l ∈ Pi, i ∈ [n], t ∈ [T ]

Based on this model, we choose protocols by learning the
distribution of each weight vector, as shown in Algorithm 1.

Algorithm intuition. If the distributions of the weight
vectors and the current capacities are known, the problem
(1–3) becomes a pure online decision making problem, with
unknown arrival times and sizes of future flows and future
bandwidth capacities. Moreover, minimizing the total flow
time (1) is equivalent to minimizing the number of alive flows
at each time. Therefore, the offline optimum would make the
flow with the shortest remaining time finish first so as to
reduce the number of alive flows. Guided by these intuitions,
we propose to greedily choose the protocols on each link at
each time so as to minimize the remaining time of the flow
with the smallest amount of un-transferred data on the link.

Distributed MAB algorithm for predictions. Inspired by
classic MAB algorithms, we predict the protocols with the
highest and lowest expected weights on each link. However,
our protocol decisions do not directly map to arms. If we call
a protocol decision vector for all flows an “arm,” we obtain



M |L|×|At| arms at each time t, which is too large to effectively
sample. Moreover, we cannot directly observe the protocol
weights by recording the rates rilt, due to the time-varying
bandwidth capacity. For instance, we might observe 10Mbps
and 20Mbps achieved by protocols 1 and 2 at the first time and
50Mbps and 500Mbps achieved by protocols 3 and 4 at the
next time. However, we cannot interpret ( 10

580 ,
20
580 ,

50
580 ,

500
580 )

as the rewards (weight samples) of these four arms: the rates
do not translate into weights for protocols that are present
at different times under different capacities. To address this,
we discover that, on each link in each time, we only need to
observe the weight ratio of each pair of protocols to predict
the best and worst protocols in expectation. We first define:

ηlt(m,m
′) =

average flow rate on l under m′ at t
average flow rate on l under m at t

. (6)

We then run a Lower Confidence Bound (LCB) algorithm
independently on each link to estimate E[ηlt(m,m′)], which
equals E

[
wlt(em′ )
wlt(em)

]
. In total, we have only |L| ×M2 arms,

alleviating our research challenge of too many sets of protocol
choices. Let xlt(m,m′) be the indicator variable which equals
1 if we choose the protocol pair (m,m′); and 0 otherwise.
Let Rm,m

′

lt =
√

α log t∑t
t′=1

xlt′ (m,m
′)

, the LCB of E[ηlt(m,m′)],
denoted by ηlt(m,m′), is defined as

ηlt(m,m
′) =

∑t
t′=1 ηlt′(m,m

′)xlt′(m,m
′)∑t

t′=1 xlt′(m,m
′)

−Rm,m
′

lt (7)

Online protocol selection. At time slot t, on each link, we
choose the protocol pair (m,m′) that minimizes ηlt(m,m′),
denoted as (m∗,mb) (line 5 of Alg. 1) and assign m∗ to the
shortest alive flow (indexed by i∗) and mb to all the other
alive flows (lines 6 and 7). By doing so, we guarantee that the
shortest flow gets the highest transmission rate if our predic-
tions are accurate, namely ηlt(m,m′) = E[ηlt(m,m′)]. To see
this, note that line 5 guarantees that wlt(emb )

wlt(em∗ )
≤ wlt(em)

wlt(em′ )
for

all protocol pairs (m,m′), if ηlt(m,m′) = E[ηlt(m,m′)]. Let
x∗lt and xlt denote our protocol decision and any other feasible
protocol decision at t, respectively. We can then show that the
transmission rate achieved by the shortest flow i∗ under our
decisions at t is no smaller it would have been under any other
decision at t, given the same decisions at other time slots:

ri∗lt(x
∗
lt) = Blt

(
(|Alt| − 1)wlt(emb) + wlt(em∗)

wlt(em∗)

)−1

≥Blt

1 +
∑

i∈Alt\{i∗}

wlt(~xilt)

wlt(~xi∗lt)

−1 = ri∗lt(xlt), ∀xlt (8)

The inequality in (8) is due to the strategies in lines 5 – 7.

We evaluate our algorithm by upper-bounding its Regret,
i.e., the expected difference of the total completion time
between that in our algorithm and the offline optimum. Here,
the offline optimum is an omniscient algorithm that has perfect
knowledge of: (1) the arrival times and sizes of all flows, (2)
the bandwidth capacities on each link over all time slots, and

Fig. 1: Topology used in our ns-3 simulation.

(3) the distribution of each weight vector. Formally,

Regret = E

∑
i∈[n]

τi(xi)

−min
x

E

∑
i∈[n]

τi(x)

 (9)

Let η̂maxl = max(m,m′,t) E[ wltm

wltm′
], which represents the max-

imum expected ratio of the weights of any two protocols on
link l over all t. Let ηmin denote the minimum difference of
E[ηlt(pm1)] and E[ηlt(pm1)] between any two protocol pairs
pm1 and pm2 on any link, Bmax and Bmin denote the largest
and smallest capacity over all links over all time, wmax and
wmin denote the largest and smallest expected weights over
all protocols and all links. We have the following theorem:

Theorem III.1. If all the flows share the same path, the weight
vector for each link is i.i.d., then the regret of our algorithm
OPSBC will be upper-bounded by

O

(
εBmaxwmax|P|M2 log T

Bminwminη2min

)
,

if we have Blt

Bl′t
≤ η̂max

l

η̂max
l′
≤ Bl′t

Blt
, ∀(l′, l) : Bl′t ≥ Blt, t ∈ [T ].

IV. EXPERIMENTAL VALIDATION

In this section, we validate our theoretical results. We
simulate 500 flows arriving at the network according to a
Poisson Process with an arrival rate of 0.8. Each flow takes
a randomly chosen path in the network with size chosen
uniformly within [20, 60] (Mb). We compare our OPSBC
algorithm’s results with several heuristics: HomoPS always
chooses the same protocol for all the alive flows on each link,
which corresponds to using the same default protocol for all
flows. In each time slot, Random randomly chooses a protocol
pair for each flow on each link. FixedPS randomly chooses a
protocol on all links for each flow at the first time slot without
changing the decisions over time.

We test the algorithm on performance data from ns-3 [10]
TCP simulations. Figure 1 shows the setup of our ns-3 [10]
simulator. We assume that 20 mobile nodes each receive
data from a dedicated server over an LTE network with a
crab topology; the server-PGW links have 100Mbps capacity
while the PGW-BS link has 20 Mbps capacity, making it the
network bottleneck. Each node can use one of five transport
protocols: UDP, TCP CUBIC, TCP NewReno, TCP Vegas, or
TCP Westwood. Nodes running UDP saturate their flows at 1
Mbps. We run 20 flows for each protocol pair in 30 different
scenarios (e.g., with varying mobility of the mobile nodes) and
measure their throughput and delay on each link. Figure 2



Fig. 2: OPSBC achieves lower flow-time on ns-3 data traces.

Fig. 3: OPSBC achieves a lower standard deviation of flow-
time than heuristic algorithms on ns-3 data traces.

compares the total flow-time of OPSBC (Alg. 1) to that of the
HomoPS and Random heuristics. These two heuristics show a
30% larger total flow-time than our Alg. 1 when 1000 flows are
processed, indicating that OPSBC outperforms both a priori
fixed and random protocol selections. We also find the standard
deviation of the total flow-time (σ(·)) of OPSBC, HomoPS
and Random. Figure 3 shows that OPSBC has the smallest
standard deviations, indicating it consistently performs well
over the randomly repeated experiments.

V. RELATED WORK

Machine learning has recently been adopted to design TCP
congestion control protocols and help with network man-
agement. Winstein et al. [11] design Remy, a program that
can generate distributed congestion control algorithms in a
multi-user network. Mao et al. [12] use deep reinforcement
learning to allocate cloud resources to minimize job slow-
downs. In contrast, we provide theoretical guarantees of our
online algorithms’ solution optimality. We also compare our
work to prior work on making decisions in network settings
when data gradually become available over time. Chen et
al. [13] design novel algorithms for online convex optimization
problems with switching costs. Zhang et al. [14] integrate
the online gradient descent method into online cloud resource
provisioning. However, these studies assume full feedback on
all feasible solutions. MAB approaches, such as the one we
propose in this work, instead only use information from the
chosen decisions and have been adopted in various scenarios,
e.g., dynamic channel access [15] and cloud job scheduling
[16]. Unlike these works, we do not directly optimize the
rewards of our chosen protocol arms, but instead use them
as estimates of unknown inputs needed by an additional
algorithm to optimize the protocols.

VI. CONCLUSION

To cope with flows’ increasingly heterogeneous require-
ments and changing network characteristics, we propose a
dynamic network management framework that leverages ex-
isting network protocols. We use model-free online learning
to support automatic protocol selection for each individual
flow, so as to optimize the overall flow completion time.
Motivated by the deficiency of existing models for flow
performance under different protocol choices, we propose
a model to characterize coexisting flows’ transmission rates
under different protocols. We then extend multi-armed bandit
algorithms to learn the rate function and predict an optimal
assignment of protocols to flows at each time. Taking these
real-time predictions as input, we then propose a provably
optimal online protocol selection scheme that can minimize
the aggregate flow completion time. The asymptotic optimality
of our learning and assignment algorithm is validated through
theoretical analysis and experiments.
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