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Abstract—Recent advances in energy harvesting materials and
ultra-low-power communications will soon enable the realization
of networks composed of energy harvesting devices. These devices
will operate using very low ambient energy, such as indoor
light energy. We focus on characterizing the energy availability
in indoor environments and on developing energy allocation
algorithms for energy harvesting devices. First, we present
results of our long-term indoor radiant energy measurements,
which provide important inputs required for algorithm and
system design (e.g., determining the required battery sizes).
Then, we focus on algorithm development, which requires non-
traditional approaches, since energy harvesting shifts the nature
of energy-aware protocols from minimizing energy expenditure to
optimizing it. Moreover, in many cases, different energy storage
types (rechargeable battery and a capacitor) require different
algorithms. We develop algorithms for determining time fair
energy allocation in systems with predictable energy inputs, as
well as in systems where energy inputs are stochastic.

Index Terms—Energy harvesting, ultra-low-power networking,
indoor radiant energy, measurements, energy-aware algorithms.

I. INTRODUCTION

Recent advances in the areas of solar, piezoelectric, and

thermal energy harvesting [29], and in ultra-low-power wire-

less communications [36] will soon enable the realization of

perpetual energy harvesting wireless devices. When networked

together, they can compose rechargeable sensor networks [18],

[30], [40], networks of computational RFIDs [14], and Energy

Harvesting Active Networked Tags (EnHANTs) [9], [10], [12].

Such networks will find applications in various areas, and

therefore, the wireless industry is already engaged in the

design of various devices (e.g., [5]).

In this paper we focus on devices that harvest environmental

light energy. Since there is a 3 orders of magnitude difference

between the light energy available indoor and outdoor [12],

[31], significantly different algorithms are required for differ-

ent environments. However, there is lack of data and analysis

regarding the energy availability in such environments. Hence,

over the past 16 months we have been conducting a first-of-its-

kind measurement campaign that enables characterizing the

energy availability in indoor environments. We describe the

results and show that they provide insights that can be used for

the development of energy-harvesting-aware algorithms and

systems.

Clearly, there has been an extensive research effort in the

area of energy efficient algorithms for sensor networks and

for wireless networks in general. However, for devices with
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Fig. 1. Examples of different light energy sources: (top) predictable profile

(Las Vegas, NV [4], outdoors), (middle) partially-predictable profile (New
York, NY, a static indoor device), and (bottom) stochastic behavior (New
York, NY, a mobile device in Times Square at nighttime).

renewable energy sources, fundamentally different problems

arise. Hence, in the second part of the paper we focus on

developing algorithms for determining the energy spending

rates and the data rates in various scenarios.

To describe our contributions, we introduce below several

dimensions of the algorithm design space:

• Environmental energy model: predictable and partially-

predictable energy profile, stochastic process, and model-

free.

• Energy storage type: battery and capacitor.

• Ratio of energy storage capacity to energy harvested:

large to small.

• Time granularity: sub-seconds to days.

• Problem size: stand-alone node, node pair (link), cluster,

and multihop network.

The combinations of values along these dimensions induce

several “working points”, some of which have been studied

recently (see Section II).

A. Environmental Energy Models

The model representing harvested energy depends on vari-

ous parameters such as the energy source (e.g., solar, kinetic),

the properties of the environment, and the device’s behavior

(stationary, semi-stationary, or mobile). Fig. 1 provides ex-

amples of radiant (light) energy sources in different settings.

This paper was presented as part of the main technical program at IEEE INFOCOM 2011
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Fig. 2. An example of harvested power vs. storage curves for a capacitor-
based light energy harvesting system.

In Fig. 1(a) the energy availability is time-dependent and

predictable. On the other hand, in Fig. 1(b) that corresponds

to an indoor environment, it is time-dependent and periodic,

but harder to predict. Time-dependent and somewhat periodic

behaviors (along with inputs such as weather forecasts) would

allow to develop an energy profile [7], [19]. We will refer

to ideal energy profiles that accurately represent the future

as predictable profiles, and to those that are not accurate as

partially-predictable profiles.

Energy behavior that does not warrant a time-dependent pro-

file appears in Fig. 1(c), which shows the irradiance recorded

by a mobile device carried around Times Square in New York

City at nighttime. In this case, the energy can be modeled by

a stochastic process. Other scenarios where stochastic models

are a good fit are a floorboard that gathers energy when stepped

on and a solar cell in a room where lights go on and off as

people enter and leave. Finally, in some settings not relying

on an energy model (a model-free approach) is most suitable.

B. Energy Storage Types - Linear and Non-Linear

In order to operate when not directly powered by en-

vironmental energy, energy harvesting devices need energy

storage: a rechargeable battery or a capacitor. Batteries can

be modeled by an ideal linear model, where the changes in

the energy stored are linearly related to the amounts of energy

harvested or spent, or more realistically by considering their

chemical characteristics [32]. Use of capacitors for storing

harvested energy recently started gaining attention [12], [14],

[18], [40]. Specifically, capacitor self-discharge (leakage) is

considered in [40]. We consider another important aspect of

capacitor-based systems: due to the highly non-linear output

versus voltage characteristics, in a simple system, the amount

of power harvested depends both on the amount of energy

provided (irradiance in the case of light energy harvesting),

and on the amount of energy stored [14], [25]. The non-linear

relations are demonstrated in Fig. 2.

C. Storage Capacity, Decision Timescale, and Problem Size

Storage capacity vs. amount of energy harvested – Energy

storage capacity can vary from 0.16J for an EnerChips device

[2] to 4700J for an AA battery. The environmental energy

availability also varies widely, from thousands of J/cm2/day

in sunny outdoor conditions to under 2J/cm2/day in indoor

environments (see Section IV). Different combinations require

different algorithmic approaches. For example, when the stor-

age is small compared to the harvesting rate, the algorithms

must continuously keep track of the energy levels, to guarantee

that the storage is not depleted or that recharging opportunities

are not missed. On the other hand, with relatively large storage,

simpler algorithms can be used.

Time granularity – Nodes can characterize the received

energy and make decisions on timescales from seconds to

days. This timescale is related to the storage-harvesting ratio

and the environmental energy model.

Problem/Network Size – Energy harvesting affects nodes’

individual decisions, pairwise (link) decisions, and behavior

of networked nodes (e.g., routing and rate adaptation).

D. Our Contributions

First, we present the results of a 16 month-long indoor

radiant energy measurements campaign and a mobile outdoor

light energy study that provide important inputs to the design

of algorithms. We discuss the energy available in various in-

door environments. We also show that in indoor environments,

the energy models are mostly partially-predictable and that

simple parameters can significantly improve predictions when

the time granularity is at the order of days. To the best of

our knowledge, this work is the first to present long-term

indoor radiant energy measurements (the traces are available

at enhants.ee.columbia.edu and will be made available in

CRAWDAD [1]).

Second, we consider predictable energy profiles and focus

on the simple cases of a single node and a link. Our ob-

jective is fair allocation of resources along the time axis. In

particular, we use the lexicographic maximization and utility

maximization frameworks to obtain the energy spending rates

for a node and the data rates for a link, both for battery-based

systems and for capacitor-based systems. To the best of our

knowledge our work is the first to consider the nonlinearity

of the capacitor-based system illustrated in Fig. 2. We provide

numerical results that demonstrate its effect.

We also consider a stochastic model in which the energy

inputs are i.i.d. random variables (e.g., a mobile device out-

door) and show how to treat it as a Markov Decision Process.

We obtain optimal energy spending policies (both for battery-

based and capacitor-based systems) for a single node and a

node pair (link) that can be pre-computed in advance.

This paper is organized as follows. Section II briefly reviews

the related work. Section III presents the model and Section

IV describes the measurements. Section V and VI describe

algorithms for the predictable profile and stochastic models,

respectively. Section VII briefly presents the numerical results.

We summarize and discuss future work in Section VIII. Due

to space constraints, the proofs are omitted, and can be found

in a technical report [11].

II. RELATED WORK

In this section we briefly review related work using the

outlined general settings.

Predictable energy profile: In [17], [19], duty cycle adapta-

tions (mostly for single nodes) are considered. For a network,

various metrics are considered including data collection rates

[7], end-to-end packet delivery probability [37], data retrieval
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TABLE I
NOMENCLATURE.

I Irradiance (W/cm2)

H Irradiation (J/cm2)
D Energy harvested given device physical parameters (J)
K Number of slots
C Energy storage capacity (J)
B,B0,BK Energy storage state, initial, and final levels (J)
s Energy spending rate (J/slot)
Q Effective energy harvested (J)

Q̂ Total energy to be allocated (J)
∆ Quantization resolution (J)
r Data rate (bits/s)
ctx, crx Energetic costs to transmit and to receive (J/bit)
U(·) Utility function

,

D

I

A η

H

Q

∫
T
I(t)dt

Fig. 3. A schematic diagram of the relationships between energy parameters:
irradiance (I), irradiation (H), energy available to a device (D), and energy
collected in storage (Q).

rate [38], and routing efficiency [23], [39]. Per-slot short-term

predictions are assumed in [24].

Partially-predictable energy profile: While considering en-

ergy predictable, [19], [24], [27] have provisions for adjust-

ments in cases in which the predictions are not accurate.

Stochastic process: Dynamic activation of energy-harvesting

sensors is described in [20]. Admission and power allocation

control are developed in [8].

Model-free approach: Duty cycle adjustments for a single

node (and under the linear storage model) are examined in

[35]. A capacitor-based system is presented and the capacitor

leakage is studied in [40].

Additional related work includes a study of the effect of

duty cycle adaptations on network-wide parameters [13] and

specific considerations for indoor radiant energy harvesting

[9], [12], [14], [31].

III. MODEL AND PRELIMINARIES

In this paper we focus both on light measurements and

on resource allocation problems. The relationships between

variables characterizing energy availability are illustrated in

Fig. 3. Table I summarizes the notation.

Our measurements record irradiance, radiant energy inci-

dent onto surface (in W/cm2), denoted by I . Irradiation HT

(in J/cm2) is the integral of irradiance over a time period T . In

characterizing environmental light energy, we are particularly

interested in diurnal (daily) environmental energy availability.

For T = 24 hours, we denote the daily irradiation by Hd.

The amount of energy (in J) a device with the given physical

characteristics has access to is denoted by D. For a device

with solar cell size A and efficiency η, D = AηH .

We focus on discrete-time models, where the time axis is

separated into K slots, and a decision is made at the beginning

of a slot i (i = {0, 1, ...,K−1}). We denote the energy storage

capacity by C and the amount of energy stored by B(i) (0 ≤
B(i) ≤ C). We denote the initial and the final energy levels by

B0 and BK , respectively. The energy spending rate is denoted

by s(i).
The effective amount of energy a device can harvest from

the environment is denoted by Q(i). In general, Q(i) may

depend both on D(i) and B(i): Q(i) = q(D(i), B(i)) (see, for

example, Fig. 2). We refer to energy storage that is not linear in

D(i) (such as a capacitor) as nonlinear storage. For a linear

energy storage device (such as a battery), q(D(i), B(i)) =
D(i) (in general, Q(i) ≤ D(i)). The ‘storage evolution’ for

the models can be expressed as:

B(i) = min{B(i− 1) +Q(i− 1)− s(i− 1), C} (1)

We denote the total amount of energy the device is allocat-

ing by Q̂, where Q̂ =
∑

i Q(i) + (B0 − BK). For simplic-

ity, some of the developed energy allocation algorithms use

quantized B(i) and Q(i) values. We denote the quantization

resolution by ∆.

We consider the behavior of single nodes and node pairs

(links). We denote the endpoints of a link by u and v and their

data rates by ru(i) and rv(i). For a single node we optimize

the energy spending rates s(i), which can provide inputs for

determining duty cycle, sensing rate, or communication rate.

For a link, we optimize the communication rates ru(i) and

rv(i). We denote the costs to transmit and receive a bit by ctx

and crx.

Often the incoming energy varies throughout the day or

among different days. We aim to achieve a time-fair resource

allocation, that is, allocate, as much as possible, the energy

in a uniform way with respect to time. We achieve this by

using the lexicographic maximization and utility maximization

frameworks. In the former, we lexicographically maximize

the vector {s(0), . . . , s(K − 1)} (for a node), or the vector

{ru(0), . . . , ru(K − 1), rv(0), . . . , rv(K − 1)} (for a link).

Similar approaches have been used to achieve fairness in data

generation [7], [21] and in session rate allocations [6]. The

network utility maximization framework is also well-developed

[24], [28], but mostly for fairness among nodes, not across the

different time slots. To apply it, α−fair functions are used

under certain objective functions that will be described in

Sections V and VI. α−fair functions are the family of con-

cave and non-decreasing functions parameterized by α ≥ 0:

Uα(·) = (·)
1−α

/1 − α, for α ≥ 0, α 6= 1 and log (·) for

α = 1. Under our objective function, we use them to achieve

max−min and proportional fairness [26]. We apply the utility

maximization framework to find both the optimal spending

rates s(i) and the optimal communication rates ru(i) and

rv(i).

IV. CHARACTERIZING LIGHT ENERGY

One of the important dimensions of the problem space is

environmental energy modeling. Since large-scale outdoor so-

lar panels have been used for decades, properties of the Sun’s

energy were examined in depth [4], [22], [31]. Until recently
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TABLE II
LIGHT ENERGY MEASUREMENT SETUPS, AVERAGE DAILY IRRADIATION, AND ACHIEVABLE BIT RATES.

Location Location description Experiment timeline Hd σ(Hd) r

index (J/cm2/day) (Kb/s, cont. )

L-1 Students’ office, South-facing; windowsill-located setup. Aug. 15, 2009 – Sept. 13, 2010 1.3 0.72 1.5

L-2 Students’ office (same office as setup L-1); setup on a bookshelf far

from the windows.

Nov. 13, 2009 – Sept. 9, 2010 1.28 0.76 1.5

L-3 Departmental conference room, North-facing; setup on a windowsill. Nov. 7, 2009 - Sept. 13, 2010 63.0 48.0 72.0

L-4 Students’ office facing South-West; setup on a windowsill. Nov. 5, 2009 – Sept. 29, 2010 9.2 6.9 7.9

L-5 Students’ office (directly under the office of setup L-1); windowsill-

located setup.

June 25, 2009 – Oct. 11, 2009 12.3 8.3 13.9

L-6 Students’ office, East-facing; windowsill-located setup. Feb. 15, 2010 – Sept. 20, 2010 97.3 64.4 112.3

O-1 Outdoor: ECSU meteostation [4], Elizabeth City, NC. Jan. 1, 2009 – Dec. 31, 2009 1517 787 1,750

O-2 Outdoor: HSU meteostation [4], Arcata, CA. Jan. 1, 2009 – Dec. 31, 2009 1407 773 1,600

using indoor radiant energy for networking applications was

considered impractical, and indoor light was studied mostly

in architecture and ergonomics [15], [33]. However, in these

domains the important factor is how humans perceive the given

light (photometric characterization – i.e., measurements in

Lux) rather than the energy of the light (radiometric charac-

terization). Photometric measurements by sensor nodes were

reported in [3], [14]. Photometric measurements, however, do

not provide energetic characterization, and there is a lack of

data (e.g., traces) and analysis (e.g., variability, predictability,

and correlations) regarding energy availability [31].

To characterize indoor energy availability, since June 2009

we have been conducting a light measurement study in office

buildings at Columbia University in New York City, NY. In

this study we take long-term measurements of irradiance in

several indoor locations, and also study a set of shorter-term

indoor/outdoor mobile measurements. For the measurements,

we use TAOS TSL230rd photometric sensors installed on

LabJack U3 DAQ devices. Table II summarizes measurement

locations. In addition to our indoor measurements, we also

analyze a set of outdoor traces provided by the NREL [4].

The provided measurements and irradiance traces can be

used to determine the performance achievable by a particular

device, for system design (e.g., choosing a suitable energy

storage or energy harvesting system component), and for

determining which algorithms to use. The traces we have

collected can be also used as energy feeds to simulators and

emulators. The traces are available at enhants.ee.columbia.edu

and will be made available in the CRAWDAD repository [1].

Below, the highlights of the measurements are summarized

(due to space constraints, additional details are left to [11]).

A. Device Energy Budgets and Daily Energy Availability

Sample irradiance measurements (for three setups over

the same 10 days) are provided in Fig. 4. One use of

the measurements is to determine energy budgets for indoor

energy harvesting devices. Hence, we calculate the total daily

irradiation Hd, representing energy incident onto 1cm2 area

over the entire course of a day. Fig. 5 demonstrates the Hd

values for setup L-1. Table II presents the mean and the

standard deviation values, Hd and σ(Hd), and includes the

bit rate r a node would be able to maintain throughout a day

when exposed to irradiation Hd. These bit rates are calculated

assuming solar cell efficiency of η = 1% (i.e., efficiency of an

organic solar cell) and solar cell size A = 10cm2. As an energy
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Fig. 4. Sample irradiance measurements in locations L-2, L-3, and O-1 (Mar.
2, 2010 - Mar. 12, 2010).
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Fig. 5. Long-term daily irradiation (Hd) for setup L-1 (Aug. 15, 2009 -
Sept. 13, 2010).

cost to communicate, 1nJ/bit is used [12].1 We note that for the

different setups, the Hd values vary greatly. The differences

are related to presence or absence of direct sunlight, the use of

shading, windows, and indoor lights, as well as office layouts.

To predict daily energy availability Hd, a node can use a

simple exponential smoothing approach, calculating a predic-

tor for slot i, Ĥd(i), as Ĥd(1)← Hd(0), Ĥd(i)← α ·Hd(i−

1)+ (1−α) · Ĥd(i− 1) for α constant, 0 ≤ α ≤ 1. The error

for such a simple predictor is relatively high. For example,

for setup L-1 the average prediction error is over 0.4Hd, and

for setup L-2 it is over 0.5Hd. For the outdoor datasets the

average prediction errors are approximately 0.3Hd.

Improving the energy predictions (for outdoor conditions)

using weather forecasts has been studied in [22], [34]. We

examined whether the Hd values in the indoor settings were

correlated with the weather data, and determined substantial

correlations for some locations. For example, for setup L-1

the correlation coefficient of the Hd values with the weather

1The bit rate is calculated as r = A · η ·Hd/(3600 · 24)/(10−9).
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Fig. 6. Sample energy profiles for indoor locations L-1, L-2, L-3, and for the
outdoor installation O-1. Left: irradiance measurements from several different
days, overlayed; Right: HT values, with errorbars representing σ(HT ).

data is rc = 0.35 (p < .001), and for setup L-6 it is rc =
0.8 (p < .001). This suggests that for some indoor setups

the energy predictions may be improved, similar to outdoor

environments, by incorporating the weather forecasts into the

predictions.

Work week pattern also influences indoor radiant energy

in office environments, particularly for setups that do not

receive direct sunlight. For setup L-2, for example, Hd = 1.63
J/cm2 on weekdays, and Hd = 0.37 J/cm2 on weekends (it

receives, on average, 9.7 hours of office lighting per day on

weekdays and under 1 hour on weekends). By keeping separate

predictors for weekends and weekdays, the average prediction

error for the weekdays is lowered from 0.5Hd to 0.26Hd .

We also examined correlations between the Hd values

of different datasets, and determined statistically significant

correlations for a number of setups. For example, for setups

L-1 and L-2 located in the same room, rc = 0.58 (p < .001),

and for setups L-1 and L-5 facing in the same direction,

rc = 0.71 (p < .001). This indicates that in a network of

energy harvesting devices, a device will be able to infer some

information about its peers’ energy availability based on its

own (locally observed) energy state.

B. Short Term Energy Profiles

To characterize energy availability at different times of day,

we determine the HT values for different 0.5 hour intervals

T , generating energy profiles for the setups. Sample energy

profiles are shown in Fig. 6, where the left side shows the

irradiance curves corresponding to different days overlayed on

each other, and the right side shows the HT values, with error-

bars representing σ(HT ). Due to variations in illumination and

occupancy patterns, the energy profiles of different locations

can be very different. For example, while setup L-3 exhibits

daylight-dependent variations in irradiance, for setup L-2 the

15 30 45 60
10

0

10
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Minutes

I 
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W
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Fig. 7. Irradiance measurements recorded by a mobile device: a mix of
indoor and outdoor conditions (note the log scale of the y-axis).

irradiance is either 0 or 45 µW/cm2 for most of the day (as

this setup receives mostly indoor light). In addition, while for

setup L-2 the lights are often on during late evening hours,

for setup L-3 it is almost never the case. The demonstrated

σ(HT ) values suggest that these energy inputs generally fall

under the partially predictable profile energy models.

C. Mobile Measurements

We have also conducted shorter-term experiments for mobile

devices. A sample irradiance trace for a device carried around

Times Square in New York City at nighttime was shown in

Fig. 1(c). Fig. 7 demonstrates an irradiance trace of a device

carried around a set of indoor and outdoor locations (note

the log scale of the y-axis) during mid-day on a sunny day.

These measurements highlight the disparity between the light

energy available indoors and outdoors. For example, inside

a lab, the irradiance was 70µW/cm2, while in sunny outdoor

conditions it was 32mW. Namely, the outdoor to indoor energy

ratio was more than 450 times. We conducted a series of

mobile measurements, obtaining traces corresponding to a

person commuting, shopping, and others. We observed that

mobile devices’ energy levels are poorly predictable and could

in some cases be represented by stochastic energy models.

V. PREDICTABLE ENERGY PROFILE

In this section we consider the predictable profile energy

model (similar to the models studied in [7], [19], [27]). We

formulate optimization problems that apply to both linear and

nonlinear energy storage2 for a single node and for pair-wise

nodes (link), and introduce algorithms for solving them.

A. Single Node: Optimizing Energy Spending

To achieve smooth energy spending for a node, we for-

mulate the following problems using utility maximization and

lexicographic maximization frameworks.

Time Fair Utility Maximization (TFU) Problem:

max
s(i)

K−1∑

i=0

U(s(i)) (2)

s.t.: s(i) ≤ B(i) ∀ i (3)

B(i) ≤ B(i− 1) +Q(i− 1)− s(i− 1) ∀ i ≥ 1 (4)

B(i) ≤ C ∀ i (5)

B(0) = B0; B(K) ≥BK (6)

B(i), s(i) ≥ 0 ∀ i. (7)

Recall that Q(i) = q(D(i), B(i)). Constraint (3) ensures that

a node does not spend more energy than it has stored, (4) and

2Recall that a linear energy storage model applies to a battery and that a
non-linear energy storage model may represent a capacitor.
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(5) represent the storage evolution dynamics, and (6) sets the

initial and final storage levels to B0 and BK .

Time Fair Lexicographic Assignment (TFLA) Problem:

Lexicographically maximize: {s(0), ..., s(K − 1)} (8)

s.t.: constraints (3)− (7).

For quantized energy inputs and energy storage, the

TFU problem can be solved by the following dynamic

programming-based algorithm:

Algorithm 1 Time Fair Rate Assignment (TFR).

h(i, B)← −∞, s(i)← 0 ∀ i < K, ∀ B;

h(K,B(K))← −∞ ∀ B(K) < BK ;

h(K,B(K))← 0 ∀ B(K) ≥ BK ;

for i = K − 1; i ≥ 0; i−−; do

for B = 0;B ≤ C;B ← B +∆; do

for s = 0; s ≤ B; s← s+∆; do

ŝ← s; ĥ← U(ŝ) + h(i+1,min(B+ q(D(i), B)−
ŝ, C);
if ĥ > h(i, B) then

h(i, B)← ĥ; s(i)← ŝ;

return h(0, B0), and associated s(i) ∀ i

In the TFR algorithm, for every {i, B(i)}, we determine

h(i, B(i)) = max
s(i)≤B(i)

[U(s(i)) + h(i+1,min(B(i) +Q(i)−

s(i), C))]. Going “backwards” from i = K−1, we thus deter-

mine a vector {s(0), ..., s(K − 1)} that maximizes h(0, B0);
this vector is the optimal energy allocation. Recall that we

denote the energy quantization resolution by ∆. The running

time of the TFR algorithm is O(K · [C/∆]2).
For linear storage (q(D(i), B(i)) = D(i)), we refer to the

TFU and the TFLA problems as TFU-LIN and TFLA-LIN.

The proof of the following Lemma appears in [11]:

Lemma 1: The optimal solutions to the TFU-LIN problem

and the TFLA-LIN problem are equal.

For solving the TFLA-LIN and the TFU-LIN problems, we

develop the Progressive Filling (PF) algorithm (Algorithm 2),

inspired by the algorithms for max−min fair flow control

[6]. The PF algorithm starts with s(i) ← 0 ∀ i, and iterates

through the slots, increasing the s(i) value of each slot by ∆
on every iteration. The algorithm verifies that increasing s(i)
does not result in shortage of energy for other slots, or in the

lack of final energy BK . An s(i) value is increased only when

it does not interfere with the spending in slots with smaller

s(i) values, thus the resulting solution is max−min fair. The

PF algorithm runs in O(K·[K + Q̂/∆]) time. Assuming that

K is small compared to Q̂/∆, for C and Q̂ that are on the

same order, the PF algorithm is faster than the TFR algorithm.

Finally, when the energy storage is large compared to the

energy harvested, the TFLA-LIN and TFU-LIN problems can

be solved easily. Let s̃(i) = Q̂/K ∀ i, and let B̃(i) =
[
∑i−1

j=0 Q(j)] − (i − 1) · s̃(i) ∀ i 1 ≤ i ≤ K . We define the

following sets of conditions.

Definition 1: The LS Conditions hold, if B0 ≥
| min
1≤i≤K

B̃(i)| and C −B0 ≥ max
1≤i≤K

B̃(i).

Algorithm 2 Progressive Filling (PF).

Afix ← ∅; s(i)← 0 ∀ i;
while Afix 6= ∅ do

for i = 0; i ≤ K − 1; i++; do

if i ∈ Afix then

s̃(j)← s(j) ∀ j ∈ [0,K − 1]; s̃(i)← s̃(i) + ∆;

valid← check validity(s̃);
if valid == TRUE then s(i)← s̃(i);
else Afix := Afix ∪ i;

function check validity(s̃):
B(i)← 0 ∀ i; B(0)← B0; valid← TRUE;

for i = 1; i ≤ K; i++; do

B(i)← min(C, B(i− 1) +Q(i− 1)− s̃(i − 1));
if s̃(i) > B(i) then valid← FALSE;

if BK < B(K) then valid← FALSE;

return valid

Definition 2: The LS-gen Conditions hold, if B0 ≥
[
∑

i Q(i)] · (1− 1/K) and C −B0 ≥ [
∑

i Q(i)] · (1− 1/K).

The proof of the following Lemma appears in [11]:

Lemma 2: When the LS conditions or the LS-gen conditions

hold, the optimal solution to the TFLA-LIN and the TFU-LIN

problems is s(i) = Q̂/K ∀ i.
Verifying that the LS Conditions (or the LS-gen Conditions)

hold and determining the corresponding optimal policy is

computationally inexpensive.3 Thus, in this section we demon-

strated a general algorithm (for linear and non-linear storage)

of a relatively high complexity, a faster algorithm for linear

storage, and a very fast algorithm for large linear storage.

B. Link: Optimizing Data Rates

For a link, we extend the above optimization problems as

follows:

Link Time Fair Utility Maximization (LTFU) Problem:

max
ru(i),rv(i)

K−1∑

i=0

[U(ru(i)) + U(rv(i))] (9)

s.t. : ctxru(i) + crxrv(i) ≤ su(i) (10)

ctxrv(i) + crxru(i) ≤ sv(i) (11)

u, v : constraints (3)− (7).

Link Time Fair Lexicographic Assignment (LTFL) Prob-

lem:

Lexicographically maximize:

{ru(0), ..., ru(K − 1), rv(0), ..., rv(K − 1)} (12)

s.t. : (10), (11); u, v : constraints (3)− (7).

Since the optimal solution to the LTFL problem is max−min
fair, it assigns the data rates such that ru(i) = rv(i) ∀ i. Thus,

the LTFL problem can be restated as:

3To determine if the LS Conditions hold, a node needs to know {Q(1), ...,
Q(K − 1)}, while determining if the LS-gen Conditions hold requires only
the knowledge of

∑
i
Q(i). LS-gen Conditions can be used, for example,

if light energy harvesting nodes characterize their energy availability by the
daily irradiation Hd and do not calculate their energy profiles (see Section
IV-B).
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Lexicographically maximize: {r(0), ..., r(K − 1)} (13)

s.t. : r(i) · (ctx + crx) ≤ min(su(i), sv(i)) (14)

u, v : constraints (3)− (7)

where r(i) = ru(i) = rv(i).
For quantized energy values, the LTFU problem can be

solved with an extension of the TFR algorithm, referred to as

LTFR. Over all {ru(i), rv(i)} such that ctxru(i) + crxrv(i) =
su(i) ≤ Bu(i), ctxrv(i) + crxru(i) = sv(i) ≤ Bv(i), the LTFR

algorithm determines, for each {i, Bu(i), Bv(i)},

h(i, Bu(i),Bv(i)) = max[U(ru(i)) + U(rv(i)) + h(i+ 1,

min(Bu(i) +Qu(i)− su(i), Cu),

min(Bv(i) +Qv(i)− sv(i), Cv))].

Vectors {ru(0), ..., ru(K − 1)} and {rv(0), ..., rv(K − 1)}
that maximize h(0, B0,u, B0,v) are the optimal. Since this

formulation considers all {i, Bu(i), Bv(i)} combinations

and examines all feasible rates ru(i) and rv(i) for each

combination, the overall complexity of the LTFR algorithm

is O(K · [Cu/∆]2 · [Cv/∆]2).

For linear storage, the LTFL problem can be solved by

an extension of the PF algorithm, referred to as the LPF

algorithm. Similarly to the PF algorithm, the LPF algorithm

goes through all slots and increases the slots’ allocation by

∆ when an increase is feasible. Unlike the PF algorithm,

however, the LPF algorithm allocates the energy of both

nodes u and v. The running time of the LPF algorithm is

O(K · [K + (Q̂u + Q̂v)/∆]).
Solving the LTFU or the LTFL problems directly may be

computationally taxing for small devices with limited capabil-

ities. Instead, the nodes may use the following low complexity

heuristic algorithms, which do not require extensive exchange

of information.

Decoupled Rate Control (DRC) algorithms: Initially, nodes

u and v determine independently from each other their energy

spending rates su(i) and sv(i) for every slot i (i.e., using the

PF algorithm). Then, for each slot i, under constraints (10)

and (11), the nodes obtain a solution to max
ru(i),rv(i)

U(ru(i)) +

U(rv(i)) if the LTFU problem is being solved (LTFU-DRC

algorithm), and to max r(i) if the LTFL problem is being

solved (LTFL-DRC algorithm). These subproblems (each

considers a single slot i) can be easily solved. For the LTFL-

DRC algorithm, for example, due to (14), the subproblem

solution is r(i) = min(su(i), sv(i))/(ctx + crx).

For linear storage, when the storage is large compared to

the energy harvested for both u and v (that is, when the LS

conditions hold for both nodes), solving a single instance of

the LTFU-DRC or LTFL-DRC problem obtains the overall

solution. Moreover, as shown in the Lemma below, in this

case the DRC solution is optimal (the proof appears in [11]).

Thus, in such case the optimal solution can be calculated with

little computational complexity.

Lemma 3: If the LS conditions hold for nodes u and v,

the LTFU-DRC and LTFL-DRC algorithms obtain the optimal

solutions to the LTFU and the LTFL problems, respectively.

In Section VII we provide numerical results demonstrating

the rates {ru(i), rv(i)} obtained by using the DRC algorithms

to solve the LTFU and LTFL problems.

VI. STOCHASTIC ENERGY MODELS

In this section, we study models in which the energy har-

vested in a slot is an i.i.d. random variable D. For tractability,

we assume that D takes one of M discrete values [d1, ..., dM ]
with probability [p1, ..., pM ]. D may represent, for example,

the energy harvested by a mobile device in a short (seconds or

minutes) time slot. For time slots of days, it may represent the

daily irradiation Hd received by a device.4 We formulate the

control problems and determine corresponding policies for a

single node and for a node pair (link). The formulations apply

to linear and nonlinear energy storage models. For a given

distribution of D, the optimal policy needs to be calculated

once, thus operating according to the optimal policy does not

require frequent computations.

Spending Policy Determination (SPD) Problem: For a given

distribution of D, determine the energy spending rates s(i)
such that:

max
s(i)

lim
K→∞

1

K

K−1∑

i=0

U(s(i)). (15)

This discrete time stochastic control process is a Markov

Decision Process (MDP), and can be solved with standard

MDP solution techniques. For example, applying dynamic

programming, we consider a large number of slots K , and

going “backwards” from i = K − 1, for each {i, B(i)},
determine

h(i, B(i)) = max
s(i)≤B(i)

E
D
[U(s(i)) + h(i+ 1, (16)

min[B(i) + q(D(i), B(i))− s(i), C])] = max
s(i)≤B(i)

[U(s(i))

+
M∑

j=1

pdj
· h(i + 1,min[B(i) + q(dj , B(i))− s(i), C])].

Performing this iterative procedure for a large number of

slots K , we obtain, for each energy storage level B(i), a

corresponding stationary (same for all i) s(i) value that

approaches the optimal [16]. Although policy calculations are

computationally expensive (the running time of the algorithm

is O([C/∆]2 ·M ·K)), such a policy needs to be computed

only once for a particular distribution of D.

The MDP formulation can be extended to a link as follows.

Link Spending Policy Determination (LSPD) Problem:

max
ru(i),rv(i)

lim
K→∞

1

K

K−1∑

i=0

[U(ru(i)) + U(rv(i))] (17)

Similarly to the SPD problem, the LSPD problem can be

solved with standard approaches to solving MDPs. For ex-

ample, using dynamic programming, we determine, for each

{i, Bu(i), Bv(i)},

4When the energy storage is relatively large, variations in energy availability
within a day may be abstracted, and Hd can be used to characterize energy
availability.
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Fig. 8. Energy spending rates s(i): obtained by solving the TFLA-LIN and
TFU-LIN problems (left), and by solving the TFU problem for nonlinear

storage (right).

h(i, Bu(i), Bv(i)) = max E
Du,Dv

[U(ru(i)) + U(rv(i))

+ h(i+ 1,min[Bu(i) + q(Du(i), Bu(i))− su(i), Cu],

min[Bv(i) + q(Dv(i), Bv(i))− sv(i), Cv])], (18)

where the maximization is over all {ru(i), rv(i)} such that

ctxru(i) + crxrv(i) = su(i) ≤ Bu(i), ctxrv(i) + crxru(i) =
sv(i) ≤ Bv(i). This procedure is computationally complex.

Similarly to the SPD problem, it needs to be solved for a

large number of slots K , and has the complexity O([Cu/∆]2 ·
[Cv/∆]2 ·Mu ·Mv · K). However, it needs to be computed

only once.

The MDP formulations can be easily extended to consider

other parameters, such as the cost to change the energy

spending rate s(i). In Section VII we will present examples

of optimal policies obtained by solving the LSPD problem for

a linear storage model, and by solving the SPD problem for

both linear and non-linear storage models.

VII. NUMERICAL RESULTS

This section provides numerical results that demonstrate

the use of the algorithms described in Sections V and VI.

Measurement traces described in Section IV are used as inputs

to the algorithms.

Fig. 8 shows the solutions for the TFLA and the TFU

problems of Section V-A. The energy profile of setup L-3

(see Fig. 6) was used as an input to the algorithms. The left

side of Fig. 8 shows the spending rates s(i) that solve the

TFLA-LIN and the TFU-LIN problems. These spending rates

are obtained using the PF algorithm. The right side of Fig.

8 shows the solutions of the TFU problem with non-linear

energy storage, where storage state dependency was modeled

similarly to the dependency demonstrated in Fig. 2. Such a

system (energy storage with state-dependent inputs) has not

been analyzed before.

Fig. 9 shows the numerical results for the link rate determi-

nation problems, described in Section V-B. The energy profiles

of setups L-1 and L-2 (see Fig. 6) were used as inputs to

the algorithms. Fig. 9(a) shows the optimal communication

rates {ru(i), rv(i)} obtained by solving the LTFL and LTFU

problems for linear storage. Fig. 9(b) shows the rates ru(i) and

rv(i) calculated using a simple LTFU-DRC algorithm. The

LTFU-DRC algorithm obtains communication rates ru(i) and

rv(i) that are similar to those obtained by optimally solving

the LTFU problem. Fig. 9(c) presents an optimal solution to

the LTFU problem for nonlinear energy storage.
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(b) Solutions obtained by the LTFU-DRC algorithm,
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Fig. 9. Communication rates ru(i) and rv(i) obtained by solving the LTFL

and the LTFU problems.

Fig. 10 illustrates the optimal energy spending policies

obtained by solving the SPD problem defined in Section VI.

The daily irradiation Hd for setup L-1 (see Fig. 5) was used as

the random variable D. Fig. 10 shows the optimal policies for

linear and nonlinear storage types. Finally, Fig. 11 illustrates

the optimal link rate assignment policy obtained by solving the

LSPD problem (recall that a policy is computed only once).

VIII. CONCLUSIONS AND FUTURE WORK

Motivated by recent advances in the areas of energy har-

vesting and ultra-low-power communications, in this paper

we focus on energy harvesting devices. We describe the first

long-term indoor radiant energy measurements campaign that

provides useful traces, as well as insights into the design

of systems and algorithms. We developed algorithms for

predictable environment that uniquely determine the spending

policies for linear and non-linear energy storage models. The

algorithms for the predictable case also provide insight into

the partially-predictable case. We developed algorithms for

stochastic environments that can provide nodes with simple

pre-computed decisions policies. We used the algorithms to

obtain numerical results for various cases.

This paper covered a few “working points” in the design

space described in Section I. Yet, there are still many other

working points to study. In particular, although some algo-

rithms have been developed for networks of nodes, most of

them are too complex for resource-constrained nodes. We

plan to develop simple energy-harvesting-aware algorithms

for networks of nodes considering the various other problem

dimensions. Moreover, we plan to evaluate these algorithm in

an EnHANTs testbed that we are currently building [10].
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