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ABSTRACT
Augmented reality (AR) technologies have seen significant improve-
ment in recent years with several consumer and commercial solu-
tions being developed. New security challenges arise as AR becomes
increasingly ubiquitous. Previous work has proposed techniques for
securing the output of AR devices and used reinforcement learning
(RL) to train security policies which can be difficult to define manu-
ally. However, whether such systems and policies can be deployed
on a physical AR device without degrading performance was left
an open question. We develop a visual output security application
using a RL trained policy and deploy it on a Magic Leap One head-
mounted AR device. The demonstration illustrates that RL based
visual output security systems are feasible.
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1 INTRODUCTION
Augmented Reality (AR) is becoming increasingly ubiquitous. Re-
search has shown that AR will be a $100 billion industry by 2020
[11] and companies are actively developing AR technologies for
consumer and commercial use [2, 4, 7, 10]. While the increasing
proliferation of AR devices will undoubtedly enable many new
applications, issues of privacy and security cannot be ignored. AR
security is concerned with both the inputs [5, 12] and outputs
[1, 8, 9] of AR devices.
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In particular, visual output security is concerned with two issues
pertaining to the user’s visual field [1, 9]:
• Regulating visual content displayed to reduce distraction and
prevent obstruction of the real-world context.

• Preventing holograms with a lower priority from obstructing
holograms with a higher priority.

For example, in the case of displaying holograms in car windshields,
it would be dangerous for a hologram to obstruct a stop sign. Sim-
ilarly, a hologram which displays the speedometer should not be
obstructed by a hologram which displays the album art of the song
the driver is currently playing.

Although previous work has investigated an operating system
enforced AR output security module which relies on developer
written policies [9], we previously realized that, while promising,
these hand-coded policies can be difficult to define for real-world
use [1]. Instead, we proposed the use of reinforcement learning (RL)
to generate visual output security policies through trial and error,
demonstrating the RL approach’s effectiveness in simulation [1].

While previous work has illustrated the importance of visual
output security and demonstrated its feasibility in simulation [1, 9],
it did not deploy policies on a physical AR device. To fill the gap,
in this work we train a visual output security policy using RL and
deploy it on a Magic Leap One head-mounted AR device [7] to
demonstrate that RL trained models can be used as visual output
security policies without any noticeable performance degradation
(i.e. a drop in quality of experience due to factors such as a reduced
frame rate). To our knowledge, although it has been feasible to
deploy RL policies on Magic Leap One devices, no previous work
has done so.

2 VISUAL OUTPUT SECURITY APPLICATION

Figure 1: Example of visual output before (left) and after
(right) a RL generated policy is applied (from Ahn et al. [1]).

Application Setup. A full visual output security application was
developed to test the deployment of a RL trained visual output
security policy on a Magic Leap One. The application was built
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using Unity version 2018.1.9f2 [15] with the Magic Leap Lumin
SDK version 0.19.0 [6]. The RL policy was trained and deployed
using the ml-agents framework [14]. Training was conducted in
a simulated environment. The goal of the training is to produce a
policy which moves the holograms so that they do not obstruct the
important real-world object while keeping the holograms as close
to their original position as possible. Fig. 1 shows an example of a
simulated visual output when a RL trained visual output security
policy is applied [1].

Finding the Right RL Policy. Finding the best RL policy proved
challenging. For example, rewarding an agent for moving holo-
grams which obstruct an important real-world object to a new loca-
tion which does not obstruct it resulted in an agent which learned
to always move the holograms to the top right of the user’s field
of view. Therefore, the reward function was tweaked to penalize
agents for moving holograms too far from their original location.

What worked best after several iterations was a policy which
trained an agent to move the holograms by applying force rather
than outputting a new position for the holograms. The agent used
in this demonstration observes the location of the important real-
world object and location and velocity of the holograms to calculate
the x and y force for each hologram (i.e. the amount to move a
hologram in a specific direction). The agent was rewarded for mov-
ing the holograms to a location which no longer obstructed the
important real-world object. More reward was given the faster it
achieved this goal.

Training the RL Policy. The proximal policy optimization algo-
rithmwas used to train the RL policy [13]. The important real-world
object and holograms had a constant size and their locations were
randomly initialized. The distance between a hologram and impor-
tant real-world object needed for a hologram to be considered no
longer obstructing the important real-world object was incremen-
tally increased to aid model convergence.

Deploying the RL Policy. The image tracking library built into the
Magic Leap One was used to recognize and track an important real-
world object. A target with many features was needed for tracking
to work reliably. In addition to the RL trained policy, two heuristics
are used in the visual output security application:
• Only apply the RL trained policy if the hologram’s original
position obstructs the important real-world object.

• Once the RL trained policy is applied, move the hologram back
to its original position as soon as its original position no longer
obstructs the important real-world object.

3 INTERACTIVE DEMONSTRATION
In the interactive demonstration, participants wear a Magic Leap
One device and see several large spherical holograms obstruct their
view. Participants can move freely around their physical environ-
ment while wearing the Magic Leap One (Fig. 2). Once an important
real-world object comes into view of the participant, the application
detects the object in real-time and applies the RL generated policy,
moving the holograms and revealing the important real-world ob-
ject (Fig. 3). The holograms move back to their original position
when they no longer obstruct the important real-world object. A
video visualizing the RL policy during training is available at [3].

Figure 2: Interactive demonstration. A user is wearing a
Magic Leap One. The printed image in the background is the
important real-world object used in the demonstration.

Figure 3: Example visual output before (left) and after (right)
the security policy is applied. A green square is placed over
the real-world object to indicate that it is tracked.
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