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Abstract—We focus on resource allocation for energy harvest-
ing devices. We analytically and numerically evaluate the perfor-
mance of algorithms that determine time fair energy allocation
in systems with predictable and stochastic energy inputs. To gain
insight into the performance of networks of devices, we obtain
results for the simple cases of a single node and a link. Due
to the need for low complexity algorithms, we focus on simple
policies (some of which proposed in the past as heuristics) and
analytically derive performance guarantees. We also evaluate the
performance via simulation, using real-world energy traces that
we collected for over a year, and in a testbed of energy harvesting
devices developed within the EnHANTs project.
Index Terms—Energy harvesting, ultra-low-power networking,

indoor radiant energy, measurements, energy-aware algorithms

I. INTRODUCTION

Recent advances in the areas of solar, piezoelectric, and

thermal energy harvesting, and in ultra-low-power wireless

communications will soon enable the realization of energy

harvesting wireless devices. When networked together, they

can compose rechargeable sensor networks [5], [15], networks

of computational RFIDs [11], and Energy Harvesting Active

Networked Tags (EnHANTs) [10]. Such networks will find

applications in various areas, and thus networking energy har-

vesting devices has lately been gaining attention. Work in this

area includes design of energy-harvesting aware algorithms

[5], [6], [9], [12]–[17], [19], development of energy harvesting

devices, and characterizations of different energy sources [9],

[11] (for reviews of related work see [5], [9], [10]).

Energy sources may have different characteristics. We con-

sider the predictable profile energy model [5], [9], [12], [14]

in which ideal energy profiles that accurately represent the

future are available, and the stochastic energy model [6], [9],

[13] in which the energy availability can be modeled by a

stochastic process. Examples of the latter include a mobile

device harvesting light energy, a floorboard that gathers energy

when stepped on, and a solar cell in a room where lights go

on and off as people enter and leave. We mostly focus on

the case of stationary (i.i.d.) process to describe the energy

availability, for which we provide optimal spending policies. In

addition, we consider non-stationary stochastic models, where

the energy availability characteristics may change arbitrarily

with time. In this case, we propose to apply online learning

algorithms, such as [20]. In our model, we also consider linear

energy storage device (i.e., a battery) and a non-linear device

(i.e., a capacitor).

Energy availability may have high time-variability [11],

[12], [19], and therefore, we aim to, as much as possible,

allocate the varying energy in a uniform way with respect to

time. For that, we use the lexicographic maximization and the

network utility maximization frameworks, which are typically

applied to achieving fair resource allocation among different

nodes rather than among different time slots. Once the energy

spending rates are determined by these frameworks, they can

be converted to duty cycle, sensing rate, or communication

rate.

Energy harvesting shifts the nature of energy-aware proto-

cols from minimizing energy expenditure to optimizing it over

time. Therefore, the resource allocation problems are highly

complex [9]. On the other hand, since the devices are resource

constrained, there is a need for very low (computation and

communication) complexity algorithms. While some attempts

have been made to develop algorithms for specific types

of networks (e.g., directed graphs [15] and trees [5]), most

previous work on implementable algorithms focused on a

single node or a link [12], [13], [16], [19]. In order to provide

insight into the development of low complexity algorithms for

a network, we focus in this work on a single node and a

link. We analytically and numerically evaluate the performance

of approximate and heuristic policies, some of which are

proposed in [5], [13], [15], [16]. In particular, for a single

node, we study the following policies:

• Optimal (OPT) policies for both the predictable profile

and the stationary stochastic models serve as a bench-

mark for other policies. For the stationary stochastic case,

we use a Markov Decision Process (MDP), prove that

energy state discretization can be applied, and provide

bounds on the performance degradation due to discretiza-

tion.

• Spend-What-You-Get (SG) policy – within a time slot a

node spends the expected energy input for that slot, and

therefore, the complexity is very low (similar policies

are proposed in [15], [16]). For both the deterministic

and stationary stochastic models, we provide performance

guarantees.

• Constant Rate (CR) policy – a node spends energy at

a constant rate in all time slots, resulting in very low

complexity (it is proposed in [5]). For the predictable

profile model, we provide a performance guarantee.
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• Energy Storage Threshold-based (THR) policy – a set

of energy storage thresholds and corresponding rates are

chosen, and the node determines the spending rates based

on the current storage level (similar policies are proposed

in [13], [16]). We study the parameter settings for the

stationary stochastic model.

• Energy Storage-Linear (SL) policy – the spending rate

is a linear function of the energy storage level. We study

the parameter settings for the stationary stochastic model.

For links (node-pairs) we study the following policies:

• Optimal (OPT) policies (under which nodes need to

exchange their parameters) for both energy models.

• Decoupled Rate Control (DRC) policies – the nodes

first determine independently their spending rates, and

then jointly calculate the data rates (similar approaches

are used in [5], [15]). We examine a few versions:

– Node-optimal DRC (DRC-NOPT) – the nodes’

spending rates are determined according to the op-

timal single-node policy. We provide a performance

guarantee for the predictable profile model.

– DRC-SG, DRC-CR, etc. – one of the above-

described policies is used to solve the two single-

node problems. These policies are evaluated numer-

ically for the predictable profile model.

Within the Energy Harvesting Active Networked Tags (En-

HANTs) project [10] we have been developing energy har-

vesting devices and characterizing the availability of indoor

ambient light energy. To evaluate the performance of the al-

gorithms, we use simulations based on traces that we collected

for over a year [9] as well as experiments with the EnHANTs

prototypes [8]. In many of the considered cases, the simple

policies perform very well.

This paper is organized as follows. Section II describes the

model. Sections III and IV present the analytical results for the

predictable profile and stationary stochastic energy models, re-

spectively. In Section V we discuss the non-stationary stochas-

tic model and the corresponding online learning algorithm.

Section VI presents energy trace-based and testbed evaluation

of the presented policies. We summarize and discuss future

work in Section VII. Due to space constraints, the proofs are

omitted and can be found in [7].

II. MODEL AND PRELIMINARIES

We focus on discrete-time models, where the time axis is

separated into K slots, and a decision is made at the beginning

of a slot i (i = {0, 1, ...,K − 1}). We denote the energy

storage capacity by C and the amount of energy stored by B(i)
(0 ≤ B(i) ≤ C). We denote the initial and the final energy

levels by B0 and BK . The energy spending rate is denoted by

s(i). The amount of energy a device has access to is denoted

by D(i), which can be a given value or a random variable.

The effective amount of energy a device can harvest from the

environment is denoted by Q(i). In general, Q(i) may depend

both on the available energy D(i) and on the current energy

level: Q(i) = q(D(i), B(i)) and hence can be non-linear in

TABLE I
NOMENCLATURE.

D(i) Environmental energy (J/slot)
K Number of slots
C Energy storage capacity (J)
B(i),B0,BK Energy storage state, initial, and final levels (J)
s(i) Energy spending rate (J/slot)
Q(i) Effective energy harvested (J/slot)
h Quantization resolution (J)
r(i) Data rate (bits/slot)
ctx, crx Energetic costs to transmit and to receive (J/bit)
U(·) Utility function
Z Objective function value
T Node downtime

D(i) (e.g., the non-linear energy storage model applies to a

capacitor). For a linear energy storage model device (such as

a battery), q(D(i), B(i)) = D(i) and in general Q(i) ≤ D(i)
[9]. The ‘storage evolution’ for the models we consider can

be expressed as:

B(i) = min{B(i− 1) +Q(i− 1)− s(i− 1), C} (1)

Note that for the stochastic energy model, we consider quan-

tizing the above energy-related parameters, and denote the

quantization resolution by h.

We consider a single node and a node pair (link). We denote

the endpoints of a link by u and v, the effective amount of

energy each node can harvest by Qu(i) and Qv(i), and their

data rates by ru(i) and rv(i). For a single node we optimize

the energy spending rate vector s(i), which provide inputs

for determining duty cycle, sensing rate, or communication

rate. For a link, we optimize either the spending rates su(i)
and sv(i) or the communication rates ru(i) and rv(i). We

denote the costs to transmit and receive bits by ctx and crx.

The constraints relating node energy spending rates and data

rates on a link for slot i are:

ctxru(i) + crxrv(i) ≤ su(i), ctxrv(i) + crxru(i) ≤ sv(i). (2)

We focus on time-uniform (time-fair) allocation of re-

sources, and use the lexicographic maximization and network

utility maximization frameworks. In the former, we lexico-

graphically maximize an energy spending rate vector (for a

stand-alone node), or a data rates vector (for a link). In

the latter, we maximize the overall utility, where the utility

function U(·) for each individual assignment is concave and

non-decreasing. For deriving numerical results, we use U(·) =
log(1+(·)). We denote the total objective function value by Z
(i.e., Z =

∑
i U(·)), and use subscripts to indicate the policy

under which Z was obtained (e.g., ZOPT for the OPT policy

and ZCR for the CR policy). As another performance measure,

we consider the downtime of a node and a link, namely, the

fraction of slots the node or the link do not spend energy. We

denote the downtime of a node by T = |{i|s(i) = 0}|/K and

the downtime of a link by TL = |{i|ru(i) = 0, rv(i) = 0}|/K.

III. PREDICTABLE PROFILE ENERGY MODEL

In this section, we analyze various policies for a single node

model and discuss a link model. Section VI provides numerical
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results demonstrating the performance of the policies based on

real-world energy traces.

A. Single Node

The optimal solution for a single node can be obtained by

solving the following problem [9].

Time Fair Utility Maximization (TFU) Problem:

max
s(i)

{
Z ,

K−1∑

i=0

U(s(i))

}
(3)

subject to:

s(i) ≤ B(i) ∀ i (4)

B(i) ≤ B(i− 1) +Q(i− 1)− s(i− 1) ∀ i ≥ 1 (5)

B(0) = B0; B(K) ≥ BK ;B(i) ≤ C ∀ i (6)

B(i), s(i) ≥ 0 ∀ i (7)

We now provide bounds on the optimal solution as well

as an approximation ratio for the CR policy. Observation 1

applies to both linear and non-linear energy storage models,

while Observations 2 and 3 apply to the linear energy storage

model (the proofs can be found in [7]).

Observation 1:

ZOPT ≤ K · U

((
B0 −BK +

K−1∑

i=0

D(i)

)
/K

)
.

Observation 2: The total energy allocated by the optimal

solution is
∑

i min(Q(i), C)+B0−BK . The optimal solution

will allocate all available energy if C > max(Q(i)).
Observation 3: Under the CR policy, for1 BK = B0 ≤∑
i Q(i) and U(s) = log(1+s), ZCR ≥ ZOPT ·

(
B0∑

K−1

i=0
Q(i)

)
.

The following proposition provides an approximation ratio for

the SG policy for both linear and non-linear energy storage

models.

Proposition 1: Under the SG policy and for U(s) = log(s+
M), ZSG ≥ ZOPT · log(G(Q′))/ log(Q′), where M is a

constant, (·) and G(·) denote the arithmetic mean and the

geometric mean of a sequence, and Q′(i) , Q(i) +M ∀i.
For example, consider a case of Q(i) such that L samples

of Q(i) are equal to some non-zero constant, and the rest are

equal to zero. Such Q(i) may correspond to the case where the

indoor lights are on for a portion of the day. Using Proposition

1, we demonstrate that for BK = B0 (energy neutrality

[12]) and for U(s) = log(1 + s), the SG policy is a K/L-
approximation algorithm (for instance, if the indoor lights are

on for 8 hours per day, the SG policy is a 3-approximation

algorithm). Denote Q̂ =
∑

i Q(i). For U(s) = log(1 + s),
U(Q(i) = 0) = 0, and thus:

ZOPT

ZSG

≤

∑
(U(Q̂/K))

∑
(U(Q̂/L))

=
K · U(Q̂/K)

L · U(Q̂/L)

=
K

L

log(Q̂/K + 1)

log(Q̂/L+ 1)
≤

K

L
.

1Namely, under energy neutrality [12], with a relatively small energy
storage.

The last inequality stems from the fact that K > L, thus

Q̂/K < Q̂/L, and hence log(Q̂/K + 1)/ log(Q̂/L+ 1) < 1.

Therefore, K/L is the upper bound. This bound is tight, as

for Q̂→∞ we can demonstrate that

lim
Q̂→∞

K

L

log(Q̂+K)− log(K)

log(Q̂+ L)− log(L)
= lim

Q̂→∞

K

L

Q̂+K

Q̂+ L
=

K

L
.

B. Node Pair (Link)

The optimal solutions for a link can be obtained by solving

the following problems [9].

Link Time Fair Utility Maximization (LTFU) Problem:

max
ru(i),rv(i)

K−1∑

i=0

[U(ru(i)) + U(rv(i))] (8)

s.t. : constraints (2) ∀ i; u, v : constraints (4)− (7)

Link Time Fair Lexicographic Assignment (LTFL) Prob-

lem:

Lexicographically maximize:

{ru(0), ..., ru(K − 1), rv(0), ..., rv(K − 1)} (9)

s.t. : constraints (2) ∀ i; u, v : constraints (4)− (7)

The results in this section apply to the linear energy storage

model. First, we show below that under specific conditions the

solutions to both problems are equal.

Proposition 2: When ctx = crx, the LTFL problem and the

LTFU problem have the same solution.

We now examine the performance of the following set of

algorithms.

Decoupled Rate Control (DRC) Algorithms: For a given link

(u, v), the algorithms first determine su(i) and sv(i) for every

slot i according to some single-node policy, optimal (DRC-

NOPT), or approximate (i.e., DRC-SG, DRC-CR). Then, for

each slot i, under constraints (2), the algorithms obtain a

solution to

max
ru(i),rv(i)

{U(ru(i)) + U(rv(i))} . (10)

Small per-slot problem (10) can be easily solved. For example

if ctx = crx, the solution to (10) is

ru(i) = rv(i) = min(su(i), sv(i))/(ctx + crx). (11)

Fig. 1 shows schematically the difference between solving link

problems optimally and applying the DRC algorithms. Now let

Z̃ denote the solution of (10) for su(i) ← [B0,u − BK,u +∑
i Qu(i)]/K and sv(i)← [B0,v−BK,v+

∑
i Qv(i)]/K. For

example, for the case of ctx = crx,

Z̃ = 2 · U
( 1

ctx + crx

min
{
[B0,u −BK,u +

∑

i

Qu(i)]/K,

[B0,v −BK,v +
∑

i

Qv(i)]/K
})

.

We then have the following.

Proposition 3: ZOPT ≤ K · Z̃.

The next Proposition implies that the DRC-NOPT policy
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Link data rate 

determination

replacements

ru(i), rv(i)

Q(i), B(i), C

Q(i), B(i), CNode u:

Node v:

(a) Overall schematics of an optimal link pol-
icy determination algorithm

Data rate 

determination 

Single node 

energy spending 

determination 

Single node 

energy spending 

determination 

ru(i), rv(i)

s(i)

s(i)

Q(i), B(i), C

Q(i), B(i), CNode u:

Node v:

(b) Overall schematics of the DRC algorithm

Fig. 1. Comparison of an optimal link policy determination and the DRC
algorithms.

obtains the optimal solution to the LTFL problem for a link

(u, v) in which u and v have the same energy parameters
Q(i), C,B0 and BK .

Proposition 4: DRC-NOPT solves the LTFL problem opti-

mally, if for all slots i, node-optimal su(i) ≤ sv(i).

The following observation discusses the downtime under the

DRC-SG policy.

Observation 4: Under the DRC-SG policy, max[Tu, Tv] ≤
TL
u,v ≤ Tu + Tv.

For example, consider a case where Qu(i) and Qv(i) are

vectors with L non-zero entries. For a (u, v) where Qv(i) =
Qu(i) ∀ i (Qu(i) and Qv(i) are synchronized), TL

u,v = (K −
L)/K. On the other hand, for a (u, v) where Qv(i) is shifted

with respect to Qu(i), T
L
u,v can be as high as 2 · (K−L)/K.

IV. STOCHASTIC ENERGY MODELS

We now study models in which the energy harvested in

slot i is a random process {D(i)}. We examine the model of

a single node with {D(i)} i.i.d. random variables. We let D
denote the “representative” variable for D(i) and pD denote its

probability density function (pdf). In addition, we also briefly

discuss the extension of the model to a link. In this Section

we focus on the the linear storage model (i.e., q(d, b) = d).

A. Single Node – Optimal Policies and Dicretization Bounds

We formulate the problem as an average cost Markov

Decision Process (MDP). Let B = [0, C] and S = [0, C]
denote the state and action spaces of the MDP, respectively.

For any b ∈ B and s ∈ S , the transition density is denoted by

p(·|b, s). It determines the next energy storage level B(i+ 1)
given that the current energy storage level is B(i) = b and

the spending rate is s(i) = s. This transition density is

determined by pD and (1). A policy π is a collection of

decision rules πi : Bi × Si−1 → ∆(S) which at each time

i prescribe a probability distribution over the actions (∆(S)
denotes the probability simplex over the set S). The goal is to

find an optimal policy, which maximizes the average utility.

In particular, let2 λπ(b) , limK→∞ Eπ

(∑K−1
i=0 U(s(i))

)
/K

denote the asymptotic expected average utility obtained by

starting from state B0 = b and using a given policy π. The

optimal average utility is then λ∗(b) , supπ λπ(b). It is well

known (i.e., [18]) that under certain ergodicity (or mixing)

conditions, the optimal average utility does not depend on b.
In our case, we use the following mixing condition.

Assumption 4.1 (Mixing): There exists a scalar ρ ∈ (0, 1]
and a measure ν with ν(B) ≥ ρ such that p(A|b, s) ≥
ν(A), ∀A ⊆ B, (b, s) ∈ Γ.
For our problem, we prove the following.

Lemma 4.1: If when B(i) = C, s(i) ≥ α > 0 holds

for some α, Assumption 4.1 is satisfied with ν(y) ,

min(b,s)∈Γ pD(y − b + s), y ∈ B, ρ ,
∫
B
min(b,s)∈Γ pD(y −

b+ s)dy > 0.
In the view of Lemma 4.1, we let

Γ , {(b, s) ∈ B × S : max(b− C + α, 0) ≤ s ≤ b} (12)

denote the set of admissible state-action pairs.

Under the mixing condition, an optimal policy is determin-

istic Markov stationary policy π∗ : B → S and can be found

by solving the optimality equation λ+J(b) = T J(b), b ∈ B,
where T is Bellman’s operator, defined for any bounded func-

tion J as T J(b) = maxs∈S

{
U(s) +

∫
B
p(b′|b, s)J(b′)db′

}
.

Specifically, a solution (λ∗, J∗) of the optimality equation

is such that λ∗(b) ≡ λ∗ and an optimal policy is given by

π∗(b) = argmaxs∈S

{
U(s) +

∫
B
p(b′|b, s)J∗(b′)db′

}
. How-

ever, since our state and action spaces are infinite, there is no

practical algorithm to solve the optimality equation. To address

this, we discretize the state and action spaces uniformly, using

a fixed discretization parameter h. We denote the obtained

finite spaces by Bh and Sh. In particular, if b ∈ Bh, it is a

multiple of h, and similarly for Sh. For any b ∈ B, we let

xb ∈ Bh denote the representative point of b in Bh (which is

the closest point to b in Bh).

The discretized set of admissible state-action pairs is then

Γh ,

{
(b, s) ∈ B × Sh : |s− sb| ≤ h/2

for some max(xb − C + α, 0) ≤ sb ≤ xb

}
.

Finally, the transition function in the discretized

model is: ph(b
′|b, s) , p(xb′ |b, s)/

∫
B
p(xy|b, s)dy.

The corresponding Bellman’s operator is then

ThJ(b) = maxs∈Sh

{
U(s) +

∫
b′∈B

ph(b
′|b, s)J(b′)

}
. It

is easy to see that this operator returns a simple function

for any given function J . Moreover, the solution J∗
h of the

optimality equation

λh + Jh(b) = ThJh(b), b ∈ B (13)

is also a simple function. The solution (λ∗
h, J

∗
h) can be found

using value/policy iteration algorithms or linear programming

(see [18] for details).

2
Eπ denotes the expectation with respect to the probability law induced by

the MDP while using policy π, and {s(i)} are the spending rates under this
policy.
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We use the results in [2] to provide the performance bounds,

due to the introduced discretization process. To use these

results, in addition to the mixing condition (Lemma 4.1), our

MDP model should satisfy the following continuity condition.

Assumption 4.2 (Lipschitz Continuity): There exists a con-

stant β > 0 such that |U(s)− U(s′)| ≤ β |s− s′| ,
‖p(·|b, s)− p(·|b′, s′)‖v ≤ β ‖(b, s)− (b′, s′)‖∞ , for all

(b, s), (b′, s′) ∈ Γ, where ‖·‖v is the total variation norm.

The first part of Assumption 4.2 can be satisfied by choosing

an appropriate utility function. Let βU denote its continuity

constant. For the second part, we impose the following on the

probability distribution of the representative random variable

D.

Assumption 4.3: Suppose that there exists a finite constant

Dmax such that the variable D takes values in the interval

[0, Dmax]. Let Pmax , maxd∈[0,Dmax] pD(d). Moreover, as-

sume that there exists a finite constant βD > 0 such that

|pD(d)− pD(d′)| ≤ βD |d− d′| , ∀0 ≤ d, d′ ≤ Dmax.
Lemma 1: Under Assumption 4.3, there exists β =

β(βU , βD) > 0 such that Assumption 4.2 is satisfied. In

particular, β = max {βU , 2(CβD + Pmax)} .
Hence, the following theorem bounds the distance of the

optimal average reward λ∗
h in the discretized model from

the optimal average reward λ∗. This theorem is in fact an

application of Theorem 4.3.5 in [2] to our case.

Theorem 1: Under Assumption 4.3, there exists h̄ > 0
and βλ (depending only on β of Assumption 4.2 and ρ of

Assumption 4.1) such that for all h ∈ (0, h̄], we have that

|λ∗ − λ∗
h| ≤ βλh.

Proof: By Lemma 1, Assumption 4.2 is satisfied. By

Lemma 4.1, Assumption 4.1 is satisfied as well. Thus, the

proof follows from Theorem 4.3.5 in [2]. The exact expres-

sions for the parameters βλ and h̄ are obtained from the proofs

of Theorems 2.4.1 and 2.4.2 therein.

An optimal policy π∗
h (in the discretized model) may be

computed offline. Therefore, the actual choice of the spending

rate by a device can be done by using the precomputed

function π∗
h : Bh → Sh. The quantized policies are used to

derive numerical results that appear in Section VI.

B. Single Node – Bounds and Heuristic Policies

We now provide some analytical insights into the behavior

of the optimal and the SG policies for the stochastic energy

model. The following observations apply to both energy stor-

age models.

Observation 5: E(ZOPT ) ≤ U(E(D)).
Observation 6: E(ZSG) = E(U(Q)).
We also consider energy storage state-based policies,

namely the THR and the SL policies.

• THR policy: for a set of storage state thresholds

[B1, B2, ...BT ] and a set of constants spending rates

[s1, s2, ...sT ], sTHR(i) ← 0 ∀ B(i) ≤ B1; sTHR(i) ←
s1 ∀ B1 < B(i) ≤ B2; ...; sTHR(i) ← sT ∀ B(i) > BT .

That is, for example, for T = 1, the THR is an ON-OFF

policy, and for T = 2 is is a bi-level policy.

• SL policy: sSL(i)← αSL · [B(i)/C] for some parameter

αSL.

These policies require choosing parameters, and the policies’

performance heavily depends on the choice of the parameters.

For policies relying on a small parameter set, simple brute-

force algorithms can be used to select the best ones. Consider,

for example, a THR policy with T = 1. A simple algorithm

to find the best values for s1 and B1 is as follows. For each

possible B1, the algorithm considers all feasible values of s1,

and for each {B1, s1} combination the algorithm calculates the

transition probabilities, determines the stationary probabilities

of the states, and calculates Z, choosing the {B1, s1} combi-

nation that maximizes Z. For every state in the state space,

the algorithm needs to compute the transition probabilities and

the resulting stationary storage state probabilities. However,

the state space the algorithm considers is relatively small,

O(|C/h|2). In a similar manner, the SL policy parameter αSL

can be computed by going through at most O(|C/h|) possible

αSL values.

Section VI demonstrates the performance of different poli-

cies using real-world traces.

C. Link Model

The MDP formulation can be extended to a link (u, v) as

follows. We let D(i) , (Du(i), Dv(i)) denote the energy

harvested in slot i by both devices. We let D , (Du, Dv)
denote the “representative” variable for D(i) and pD denote

its pdf. In this case, pD is a joint pdf of Du and Dv . The

state space of the MDP is B = [0, C]2, and the action space

at state b = (bu, bv) ∈ B is given by S(b) , {(ru, rv) :
ctxru + crxrv = su ≤ bu, ctxrv + crxru = sv ≤ bv}. The

goal is to find an optimal policy that maximizes the average

utility limK→∞ Eπ

(∑K−1
i=0 U(ru(i)) + U(rv(i))

)
/K, which

is done using methods similar to those of Section IV-A. Also,

corresponding discretization bounds can be obtained.

Similarly to the predictable energy model, the DRC algo-

rithms can be used with this model. In this case, the DRC

policies are calculated using the marginal pdfs of Du and Dv

(rather than the joint pdf), and thus do not account for the

dependency between Du and Dv .

V. NON-STATIONARY ENERGY MODELS

In Section IV, we assumed that the harvested energy is a

stationary (i.i.d.) process. However, in many environments,

the harvested energy characteristics change with time, mak-

ing non-stationary models a better fit. For instance, if slots

represent days, the distribution of the harvested energy in a

day is different in different seasons of the year. Moreover,

sometimes the harvesting conditions around the device change

arbitrarily with time (e.g., due to changes in the location of

the device). In such cases, the appropriate model is an MDP

with non-homogeneous transition function. Since the changes

in the distribution cannot be known in advance, we use an

online learning algorithm and measure its performance in

hindsight against stationary policies. In particular, we adopt

the algorithm and the results of [20] to our problem.
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Ji(b) = max
s∈S

{
Ûi(s) + inf

δ∈∆

∑

b′∈B

Ji(b
′)pδ(b′|b, s)− Ji(b0)

}
, b ∈ B, (14)

si(bi) ∈ argmax
s∈S

(
Ûi(s) +Ni(s) + inf

δ∈∆

∑

b′∈B

Ji(b
′)pδ(b′|bi, s)

)
. (15)

A. Setting

For simplicity, we assume that the MDP was already dis-

cretized, as described in Section IV. We omit the subscript h
throughout, since it is fixed. For any b ∈ B and s ∈ S , the

transition density in slot i is denoted by pi(·|b, s). It determines

the next energy storage level B(i + 1) given that the current

energy storage level is B(i) = b and the spending rate is

s(i) = s. As before, this transition density is determined by

(1), where we assume the linear storage model. However,

in contrast to the case studied in Section IV, the transition

probabilities change with time, since the distribution of D
changes with time. In addition, in this section we assume a

more general case, where the utility function may also change

with time, that is Ui(si).

Let L denote a finite set of indices. Let each pℓ : B ×
B × S → [0, 1], for ℓ ∈ L, denote a fixed transition function.

The set L can be interpreted as the set of slot types. If the

slot is of type ℓ ∈ L, the energy storage level in the next

slot is determined according to pℓ. We assume that both the

types set L and transition probabilities
{
pℓ
}
ℓ∈L

are known.

The actual type of slot i, however, is unknown in advance.

For example, consider a room with several possible device

positions. Every position has a different lighting condition.

The set of the positions corresponds to L and is known in

advance (together with the harvested energy characteristics at

these positions). However, the actual position of the device at

each time slot is unknown.

Moreover, we assume that the type of slot i can be some

convex combination of the basic types, which we denote

by δi ∈ ∆ ⊆ ∆(L). Thus, the actual transition proba-

bility at slot i is pi(b
′|b, s) =

∑
ℓ∈L δi(ℓ)p

ℓ(b′|b, s). We

call any δ ∈ ∆(L) a mixed type, and write pδ(b′|b, s) ,∑
ℓ∈L δ(ℓ)pℓ(b′|b, s). As proposed in [20], we measure the

performance of an online algorithm by comparing its average

utility to that of an optimal stationary policy in hindsight

J∗
K , maxπ:B→S

∑K−1
i=0 Eπ (Ui(π(b

∗
i ))) /K, where the initial

state b∗0 is fixed, each next state b∗i+1 is distributed according

to pi(·|b
∗
i , π(b

∗
i )), and the expectation is taken with respect to

the sequence b∗0, ..., b
∗
K−1. The regret of the algorithm after K

time slots is then RK , J∗
K −

∑K−1
i=0 E (Ui(si)) /K, where

the initial state b0 is fixed, the spending rate si is determined

according the algorithm’s rule, the next state is distributed

according to pi(·|bi, si), and the expectation is taken with

respect to the sequence b0, ..., bK−1. The goal is to use an

online algorithm which asymptotically minimizes the regret

with respect to every possible sequence of the harvested energy

level D(0), D(1), ..., D(K − 1).

B. Online Algorithm

In order to use the algorithm of [20], we need some

ergodicity or mixing assumption to be satisfied, similarly to

the requirements in Section IV-A.

Assumption 5.1 (Bounded Mixing and Cover Times):

The sequence of transition functions p0, p1, ..., pK−1 is

non-periodic. There exists constants τ and τcov such that for

every (randomized) policy π : B → ∆(S) and every mixed

type δ, the Markov chain induced by the transition function

pδ(·|s, π(s)) is ergodic with expected mixing time at most τ
and expected cover time3 at most τcov.

In addition, in order to obtain small regret, we need a limit

on the extent to which the transition functions may vary with

time.

Assumption 5.2 (ǫ-arbitrary Transition Functions): Let P δ

denote the transition matrix of a given mixed type δ ∈ ∆

for a given policy π. Let F δ ,
[
I − P δ + P δ

∞

]−1
, where

P δ
∞ , limK→∞

1
K

∑K−1
i=0

(
P δ
)i
. F δ is called the fundamen-

tal matrix associated with P δ. We assume that there exists

a finite constant F such that4
∥∥F δ

∥∥
∞
≤ F for all δ ∈ ∆.

Moreover, we assume that there exists ǫ > 0 such that

‖P δ − P δ′‖∞ < ǫ for every δ, δ′ ∈ ∆.

Roughly speaking, this assumption implies that we have a

bound on how much the transition law can change when the

type of the time slot changes. In [7], we present an example

for the case where these assumptions hold in our setting.

Let ÛK−1(s) ,
∑K−1

i=0 Ui(s)/K denote the empirical

average utility until time slot K − 1. Below we present the

Online Robust Dynamic Programming (ORDP) Algorithm and

the corresponding low-regret result.

Algorithm 1 ORDP Algorithm:

At time slot 0, use an arbitrary spending rate s0.

for i = 1, 2, ... do
1. Solve Bellman equations (14) for MDPs with infinite-

horizon average-reward objective (via linear program-

ming or otherwise; e.g., see [18]), where b0 ∈ B is a

fixed state and Ji(b0) is a normalization term.

2. Sample a random variable Ni uniformly over the

support [−i−0.5, i0.5]|S|.

3. Output the action according to (15).

3See [20] for the standard definitions of the mixing and cover times of a
Markov chain.

4We let ‖M‖
∞

denote the maximum absolute row-sum of a matrix M .
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(a) Setup O-1.
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(b) Setup L-3.

Fig. 2. Z (left) and % of energy used (right), for a single node with a
predictable profile energy, under the optimal solution and the CR policy. The
x-axis expresses the storage capacity as a percentage of the total incoming
energy.

Theorem 2: Under Assumptions 5.1 and 5.2, for all K >
4eτ/ǫ we have that

RK ≤ (Z + 1)ǫ+
√
|B| |S| /K + 4τ2

√
log(|S|)/K + 4τ/K,

for any sequence of the harvested energy D(0), ..., D(K−1).
We note that the ORDP algorithm solves a linear program

at each time slot, which is computationally expensive. An

alternative is to periodically compute a new policy and follow

this policy for a while. Choosing the length of the intervening

intervals provides a mean of trade-off between the regret

bound and the computational complexity of the solution.

VI. NUMERICAL AND EXPERIMENTAL RESULTS

A. Trace-based Simulation

To evaluate the performance of the various policies, we

performed an extensive simulation study using traces from

outdoor locations [1] and from our measurement campaign,

in which we recorded indoor light energy traces at a set of

locations at Columbia University for more than a year [9]. The

traces are available online at enhants.ee.columbia.edu. We use

the notation L-1, L-2, ... for the locations of the light energy

traces, corresponding to the measurement locations in [9]. For

simplicity, we use ctx = crx, and set them to 0.5 nJ/bit [10].

As a utility function, we use U(·) = log(1 + (·)). Further

technical details about the traces are provided in [7].

For a single node with a predictable profile energy model,

Fig. 2 illustrates the optimal solution and the performance of

the CR policy, for energy profiles of two different setups, and

shows the upper bound derived in Observation 1. It can be seen

that this bound is tight for large C. In our numerical results, the

actual ratio between the CR solution and the optimal solution

is substantially lower than the approximation ratio given in

Observation 3.

For a link with a predictable profile energy model, we use

light energy traces concurrently recorded in nearby locations.
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(a) Both Cu and Cv are varied.
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(b) Cu is kept the same, and Cv is varied.

Fig. 3. Z (left) and energy used (right), for a link (u, v) = (L-1,L-2) with
a predictable profile energy. The results include the optimal solution, and the
DRC-NOPT and DRC-CR policies.

Fig. 3 illustrates the optimal solution and the performance of

the DRC-CR policy for a link (u, v) = (L-1,L-2). Fig. 3(a)

shows the case in which both Cu(i) and Cv(i) are varied,

while Fig. 3(b) shows the case in which Cv(i) is varied

and Cu(i) is kept constant. We note that the DRC-NOPT

obtains results that are close to the optimal solution in the

first case but not in the second case. Separately, we studied

the DRC-SG policy and have noticed that, for the traces

examined, TL is mostly relatively close to the lower bound

derived in Observation 4. For example, for a link (L-1,L-2),

max(Tu, Tv) = 0.52, and TL
u,v = 0.57, and for a link (L-2,L-

3), max(Tu, Tv) = 0.52, and TL = 0.64.

For a single node and the stationary stochastic model, Fig.

4 shows the optimal solution and the solutions obtained by the

SL and THR1 (THR with one threshold) policies. The policies

were evaluated using an empirical pdf of the diurnal energy

of setup L-1. The calculations of the optimal solutions rely on

discretization procedure described in Section IV-A. It can be

seen that for this setup, the performance of the SL policy is

very close to optimal.

Finally, we note that preliminary simulation results based on

our traces show that the non-stationary learning framework of

Section V usually provide better performance than the schemes

that were designed for the stationary model. The extensive

performance evaluation for this case remains subject for future

work.

B. Testbed Experimental Results

To evaluate the performance of the policies in realistic

environments, we also used the testbed of energy harvesting

devices that we have recently developed [8]. In this testbed,

the devices harvest the energy from indoor light, and adjust

their communication parameters accordingly. We implemented

the CR and SL single-node policies. We also implemented the

DRC algorithms that can be used with any single-node policy.

Testbed implementation allows us to examine the behavior of
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Fig. 4. Z, % of energy spent, and the % of downtime under the optimal solution and the SL and THR1 (ON-OFF) policies, for setup L-1. The x-axis
expresses the storage capacity as a percentage of the expected energy.

various policies with widely varying and controlled energy

sources.

For example, under the DRC-SG policy, we examined the

effect on the performance of the dependence on Qu(i) and

Qv(i). With strongly correlated Qu(i), Qv(i) (i.e., harvesting

the energy of the same source), similarly to the light energy

traces examined above, TL
u,v is close to the lower bound

derived in Observation 4. However, when Qu(i) and Qv(i)
were independent (i.e., u and v positioned next to two lamps

controlled by different people), TL
u,v was closer to the upper

bound derived in Observation 4. For example, for Tu = 0.65
and Tv = 0.55, the link downtime TL

u,v was 0.98. Namely,

while both u and v had substantial amounts of energy, the

data rate on (u, v) was extremely low.

With the SL policy implementation we have observed, for

example, that low αSL values lead to smooth spending rates,

but cause substantial energy storage level variations, while

high αSL values lead to highly non-uniform energy spending

rates.

VII. CONCLUSIONS

In this work we analyzed and evaluated numerically and

experimentally a number of simple energy allocation policies

for the predictable profile model and the stochastic model.

Our analysis applies to linear and non-linear storage models.

Due to the problems’ complexity, the analysis presented in

this paper applies to a node and to a node pair (link).

Most algorithms that were developed for a network are too

complex for resource-constrained nodes. Therefore, we plan to

develop simple algorithms for a network. However, the curse

of dimensionality makes it challenging to directly extend the

examined stochastic models to larger scenarios, and therefore,

approximate solution techniques should be applied (such as

Approximate Linear Programming as in [3], [4]).
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