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Abstract—Characterizations of environmental energy availabil-
ity and properties provide important insights for designing energy
harvesting nodes and developing energy harvesting adaptive sys-
tems and algorithms. Previous characterizations of light energy
availability provided baseline estimates of the total available
energy that could be harvested by a crystalline silicon solar
cell. However, these measurements did not consider the spectral
composition of the incident light. In this paper, we present a
method and a proof-of-concept implementation for obtaining
information about the spectral composition of the incident light.
LightBox, a portable measurement unit, determines the light
source, measures the incident irradiance, and calculates the
amount of energy that would be harvested by two different
harvesters: a crystalline silicon solar cell and an amorphous
silicon solar cell. To the best of our knowledge, LightBox is the
first portable irradiance measurement device that considers the
spectral composition of the incident light. Our method and proof-
of-concept implementation are an important step toward better
characterizing environmental light energy availability for energy
harvesting nodes deployed in a wide range of environments. The
insights from this data will enable the development and wide
deployment of energy-aware algorithms and systems.

Index Terms—Energy harvesting, light energy characteriza-
tion, spectral intensity distribution, solar cells.

I. INTRODUCTION

Advances in energy harvesting and ultra-low power com-

munication technologies have enabled energetically self-reliant

wireless nodes [7], [13] that require energy harvesting adap-

tive communications and networking. Energy harvesting-aware

protocols that account for the expected environmental energy,

deterministically or stochastically, allow networks to adapt

to efficiently spend the energy [6], [12]. Developing such

protocols requires experimental characterization of the energy

available from the environments in which the nodes will

be deployed. Initial characterizations of environmental light

energy availability have been conducted and provide first-order

estimates of the available energy [5]. However, these estimates

implicitly assume that the harvester is a crystalline silicon solar

cell, while future energy harvesting networks are likely to rely

on a range of solar cell technologies, including amorphous

silicon [13] and organic photovoltaics [3].

Determining the energy harvested by different solar cells

requires knowledge of the spectral composition of the incident

light. Fig. 1 shows the normalized spectral distribution, Ēe(λ),
of different common indoor light sources. It is important to

note that the overall efficiency of the harvester depends on

the spectral composition of the incident light. For example,
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Fig. 1. Normalized spectral distribution of three different light sources:
incandescent, compact fluorescent (CFL), and LED.

a crystalline silicon solar cell will harvest more energy than

an amorphous silicon solar cell under outdoor illumination,

but the amorphous silicon solar cell will harvest more energy

under an LED light source [1]. If the energy availability

estimates from [5] are used, energy harvesting nodes equipped

with amorphous silicon solar cells may underestimate the

available energy indoors and overestimate the available energy

outdoors, resulting in suboptimal energy use.

Additionally, accurately measuring the environmental en-

ergy available to portable nodes (such as mobile and wear-

able nodes) requires a portable measurement device, while

compact diffraction grating spectrometers that can be used to

measure the complete light spectrum must be connected to

a PC. However, it is not necessary to measure the complete

spectrum of the incident light. If there is a single dominant

light source, the light source can be identified using a series

of photodetectors with different responsivities. For example,

it is easy to distinguish between sunlight and indoor light

using an infrared (IR) photodetector because sunlight has a

strong IR component that is not present in artificial light

sources [9]. Similarly, it is possible to use a combination

of photodetectors to identify distinguishing components of

artificial light sources. This approach has been used previ-

ously to determine the color temperature, but not the spectral

composition, of a light source [10]. Based on this principle,

we developed LightBox: a portable, low-cost measurement

unit that determines the spectral composition of the incident

light and measures the incident irradiance. The measurements

collected by LightBox provide more accurate estimates of

energy availability, especially for mobile nodes that will be

exposed to both indoor and outdoor conditions.
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Fig. 2. The proof-of-concept LightBox measurement unit.

II. LIGHTBOX SYSTEM DESCRIPTION

The LightBox portable light energy measurement unit mea-

sures and logs the output of two low-cost, multichannel light

sensors. This information is then used to determine the spectral

composition of the incident light source, calculate the incident

irradiance, and estimate the amount of energy that can be

harvested by different solar cells under this illumination. We

can calculate c, the expected output of a channel, using the

following equation:

c =

∫ ∞

0
Ee(λ)R(λ)dλ, (1)

where Ee(λ) is the spectral irradiance of the incident light

source in W/cm3 and R(λ) is the responsivity of the channel

in counts/(W/cm2). This equation can be rewritten as:

c = EeR

∫ ∞

0
Ēe(λ)R̄(λ)dλ, (2)

where Ee is the incident irradiance in W/cm2, R is a conversion

factor with units counts/(W/cm2), Ēe(λ) is the normalized

spectral distribution of the incident light source, and R̄(λ) is

the normalized responsivity of the channel. It is important to

note that the ratio of the output of two channels depends on the

normalized spectral distribution of the incident light source but

not on the incident irradiance. Therefore, we can classify the

light source by using the ratios of different channels. After the

light source has been determined, we can calculate the incident

irradiance as Ee = c/R0, where R0 = R
∫ ∞

0 Ēe(λ)R̄(λ)dλ. For a

given channel, this factor will be different depending on the

incident light source.

A LightBox, shown in Fig. 2, consists of a Sparkfun

ADXL345 evaluation board with an Atmel ATMega328P

microprocessor, a microSD card for data logging, an Avago

ADJD-S371 RGB digital color sensor, and a TAOS TSL2561

light-to-digital converter. The operation of the LightBox is

shown schematically in Fig. 3. The ADJD-S371 color sensor

provides four readings: the intensity of light through a red

filter (R), green filter (G), blue filter (B), and clear filter (C).

The TSL2561 light-to-digital converter provides two readings:

full spectrum (FS) intensity and infrared (IR) light intensity.

The spectral responsivity, R(λ), of the different channels is

shown in Fig. 4. Data from the six channels is logged to the

microSD card every second.
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Fig. 3. The schematic representation of the LightBox spectral determination
and energy estimation process.

(a) (b)

Fig. 4. (a) Spectral response of the color light sensor (taken from [11]), and
(b) spectral response of the full spectrum light sensor (taken from [2]).

III. LIGHT SOURCE CLASSIFIER

Our proof-of-concept system demonstrates light source clas-

sification using the ratios of different channel counts as a

feature vector. Specifically, the classifier feature space is the

ratios of R, G, and B channel outputs to the C channel output.

This feature space and the decision boundaries for a particular

classifier (see below) are shown in Fig. 5.

A fully controlled experimental setup was built to obtain an

accurately labeled training and test data for the classification

and to demonstrate the LightBoxes “in action”. The setup

is shown in Fig. 6. It consists of light-proof enclosures that

replicate different indoor light environments. We experimented

with 3 particular light sources: incandescent, compact fluores-

cent, and LED light bulbs. We use this setup to demonstrate

that LightBoxes can distinguish light conditions that are indis-

tinguishable to the human eye. Specifically, when we use light

bulbs of similar color temperature, humans cannot identify the

different light sources using only the naked eye, while they are

clearly distinguishable in the processed LightBox outputs.

We used a simple minimum-distance Maximum Likelihood

(ML) classifier. While we experimented with several other

classifiers (such as the Kth Nearest Neighbor, Support Vector

Machine, and Relevance Vector Machine classifiers), we ulti-

Fig. 5. The light source classifier feature space, and the decision boundaries
and test data points for the Maximum Likelihood classifier we implemented
in the portable measurement unit.

388



Fig. 6. The setup developed to experiment with light source classifiers.

mately chose the ML classifier because of its simplicity. The

classifier operates as follows. First, using the training data set,

we calculate the center of mass for all the data points for each

light source in the feature space. To classify an unknown light

source measured by LightBox, we find the light source type

for which the Euclidian distance of the measurement’s feature

vector is minimized. For each light source, we obtained 100

training data points and 100 test data points over a wide range

of incident irradiance. With the 300 data points representing 3

different single-source light conditions, the classifier correctly

identified the energy source more than 98% of the time.

Our preliminary experiments with light traces captured by

carrying a LightBox in natural environments indicate a low

rate of misclassifications when only a single dominant energy

source is present. In the presence of multiple light sources,

such as in a sunlit office, the classifier may not function

well because the spectral mixture of different light sources

may closely resemble a different light source. One potential

extension is developing an experimental setup to precisely

recreate mixed-source conditions to determine suitable mixture

models and classifiers for such conditions.1

IV. ENERGY AVAILABILITY ESTIMATES

Two important metrics for photovoltaic energy harvesting

systems are the total available environmental energy (incident

irradiance) and the total energy harvested by a specific solar

cell. The instantaneous power generated by a solar cell can be

calculated using the following equation:

Psc = AscVsc

∫ ∞

0
Rsc(λ)Ee(λ)dλ, (3)

where Asc is the area of the solar cell in cm2, Vsc is the

operating voltage of the solar cell in V, Rsc is the spectral

responsivity of the solar cell in A/W, and Ee(λ) is the spectral

irradiance of the incident light source in W/cm3. For a given

light source this can be rewritten in terms of counts measured

by a channel, c, as

Psc = ηEe = ηc/R0, (4)

1We note that obtaining the “ground truth” information about the intensity
and spectral composition of the light in multi-source conditions is difficult.
Typically, the light incident on a harvester will be a low-intensity, diffuse
combination of light generated by multiple sources and reflected by multiple
surfaces. Due to the low sensitivity of diffraction grating spectrometers, it is
not possible to concentrate this low-intensity, diffuse light and measure its
spectral composition in real time.
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Fig. 7. Spectral response of amorphous silicon (aSi) and crystalline silicon
(cSi) solar cells (adapted from [8]).
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Fig. 8. Trace of the estimated energy harvested by different solar cells.

where η = AscVsc

∫ ∞
0 Rsc(λ)Ēe(λ)dλ is the overall efficiency of

the solar cell. In previous work [5] instantaneous power was

calculated using the same factors η and R0 for all light sources.

This gives an accurate estimate of the energy harvested by

a solar cell if the spectral responsivity of the sensor and the

solar cell are similar (for example, the measurements collected

with a silicon photodetector accurately estimate the energy

that could be harvested by a crystalline silicon solar cell). By

determining the spectral composition of the incoming light,

the measurements collected by our sensors can be used to

determine the amount of energy that could be harvested by a

solar cell with an arbitrary responsivity.

The normalized spectral responsivity, R̄sc, of a crystalline

silicon solar cell (cSi) and an amorphous silicon cell (aSi) are

shown in Fig. 7. The cSi solar cell has a spectral sensitivity

range of 500nm to 1100nm and is well suited to harvesting

energy from solar illumination which has a strong IR com-

ponent. The aSi solar cell has a spectral sensitivity range of

300nm to 700nm and is well suited to harvesting energy from

artificial light sources that generate light in the visible range.

We collected a series of traces from a LightBox attached to

a student’s bag. An example trace collected by a LightBox

is shown in Fig. 8. To process the data, we assume two

possible harvesters: a cSi solar cell where η = 10% under

outdoor illumination and η = 5% under indoor illumination

and an aSi solar cell where η= 5% under outdoor illumination

and η = 10% under indoor illumination. It is possible to

conduct more sophisticated processing, but even this first

order approximation provides useful insights into the energy

harvesting process. The results for eight traces are summarized

in Table I.

Trace 1 was recorded almost exclusively outdoors, traces

2-4 include a combination of indoor and outdoor activities,
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TABLE I
TRACE DATA COLLECTED BY LIGHTBOX.

# Duration Average
irradiance

Average power (µW/cm2 )

(mJ/cm2) cSi aSi

1 1h 23m 59s 1211.3 119.5 62.2

2 2h 08m 35s 460.4 39.5 29.7

3 1h 36m 22s 451.3 39.4 28.3

4 2h 24m 35s 474.8 41.6 29.6

5 1h 56m 13s 158.9 8.0 15.8

6 1h 39m 45s 95.3 5.3 9.0

7 1h 18m 17s 80.1 4.2 7.9

8 1h 08m 11s 68.3 3.7 6.5

Fig. 9. Irradiance measurements (µW/cm2) from different locations on the
body demonstrating the spatial variability of energy availability.

and traces 5-8 were recorded almost exclusively indoors. As

expected, the irradiance seen by exclusively indoor nodes is

on the order of 100µW/cm2 and the irradiance seen by outdoor

nodes is up to two orders of magnitude greater. Trace 2 demon-

strates the usefulness of determining the spectral composition

of the light. Without the spectral information, we would

assume that the entire trace was recorded outdoors. If our

harvester was an aSi solar cell, we would assume η = 5% for

the entire trace, but that would cause us to underestimate the

average power generated by 22%. Similarly, if our harvester

was a cSi solar cell and we assumed η = 10% for the entire

trace, we would overestimate the average power generated by

15%.

We also used the portability of the LightBox to explore the

spatial variations of energy availability, which is especially

important for wearable nodes. Fig. 9 shows the measurements

of average irradiance for different placements of Lightbox on

a stationary person who is standing directly underneath an

overhead lamp. While the often-cited rule-of-thumb estimate

of energy availability for indoor environments is 100µW/cm2

incident irradiance, it can be seen that the available energy

for a wearable node may be up to 60% greater or 80% less

depending on its placement.

V. CONCLUSIONS AND FUTURE WORK

While energy harvesting and low-power wireless commu-

nications are becoming ubiquitous, there are many low-layer

challenges in understanding the energy availability for these

nodes. Specifically, existing light energy availability measure-

ments only considered the overall irradiance of the incident

light and not its spectral composition. We developed a proof-

of-concept LightBox system, a portable system that uniquely

considers the spectral composition of the incident light, which

enables better estimates of energy availability, especially for

systems that use different solar cell technologies. Future

versions of LightBox could include an onboard classifier to

simplify data gathering and processing. LightBox could also

use different light sensors specifically designed to identify

features of common indoor light sources.

The current version of LightBox additionally includes a

tri-axis accelerometer, and can be used to simultaneously

measure light and motion energy availability.2 This will enable

system designers to determine the best energy source for

their application or to develop energy harvesting-aware multi-

harvester systems. Another extension is to develop a smaller,

wearable version of LightBox. This will enable more mea-

surements and provide insight into how the spatial variation

of energy availability changes during different activities. Better

understanding environmental energy availability for energy

harvesting nodes deployed in a wide range of environments

will enable smarter, more efficient deployments.
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