CollabAR: Edge-assisted Collaborative Image Recognition for Mobile Augmented Reality

Zida Liu[§], Guohao Lan[§], Jovan Stojkovic[§]*, Yunfan Zhang[§], Carlee Joe-Wong[†], Maria Gorlatova[§]

[§] Duke University, Durham, NC, [†]Carnegie Mellon University, Moffett Field, CA *University of Belgrade, Belgrade, Serbia

Outline

- Introduction
- CollabAR system design
- MVMDD dataset
- Evaluation

Augmented Reality (AR)

• The [virtual] content is laid out around a user in the same spatial coordinates.

 Image recognition enables seamless contextual AR experience.

Large proportion of distorted images in real-world mobile AR scenarios.

Duke UNIVERSITY

Magic Leap One

Nokia 7.1

Satting	Hardware		
setting	Nokia 7.1	Magic Leap One	
Dark room (7lux)	617/1558=39.6%	infeasible	
Camera zoom-in (509lux)	1755/2185=97.2%	infeasible	
Corridor (178lux)	2681/3452=77.6%	3760/3776=99.6%	
Sunny outdoor (9873lux)	16/2687=0.5%	957/2766=34.6%	
Foggy	762/935=81.6%	infeasible	
Underwater	1250/1524=82.0%	infeasible	
	Setting Dark room (7lux) Camera zoom-in (509lux) Corridor (178lux) Sunny outdoor (9873lux) Foggy Underwater	Setting Hard Nokia 7.1 Nokia 7.1 Dark room (7lux) 617/1558=39.6% Camera zoom-in (509lux) 1755/2185=97.2% Corridor (178lux) 2681/3452=77.6% Sunny outdoor (9873lux) 16/2687=0.5% Foggy 762/935=81.6% Underwater 1250/1524=82.0%	

Measurements study in real-world mobile AR scenarios

Large proportion of distorted images in real-world mobile AR scenarios.

Magic Leap One

Nokia 7.1

Distortion	Satting	Hardware		
Distortion	Setting	Nokia 7.1	Magic Leap One	
Gaussian noise	Dark room (7lux)	617/1558=39.6%	infeasible	
$(\sigma_{GN}^2 \ge 0.003)$	Camera zoom-in (509lux)	1755/2185=97.2%	infeasible	
Motion blur	Corridor (178lux)	2681/3452=77.6%	3760/3776=99.6%	
$(l \ge 5)$	Sunny outdoor (9873lux)	16/2687=0.5%	957/2766=34.6%	
Gaussian blur	Foggy	762/935=81.6%	infeasible	
$(k \ge 5)$	Underwater	1250/1524=82.0%	infeasible	

Measurements study in real-world mobile AR scenarios

Large proportion of distorted images in real-world mobile AR scenarios.

Nokia 7.1

Distortion	Satting	Hardware		
Distortion	Setting	Nokia 7.1	Magic Leap One	
Gaussian noise	Dark room (7lux)	617/1558=39.6%	infeasible	
$(\sigma_{GN}^2 \ge 0.003)$	Camera zoom-in (509lux)	1755/2185=97.2%	infeasible	
Motion blur	Corridor (178lux)	2681/3452=77.6%	3760/3776=99.6%	
$(l \ge 5)$	Sunny outdoor (9873lux)	16/2687=0.5%	957/2766=34.6%	
Gaussian blur	Foggy	762/935=81.6%	infeasible	
$(k \ge 5)$	Underwater	1250/1524=82.0%	infeasible	

Measurements study in real-world mobile AR scenarios

Multiple distortions cause dramatic performance degradation of well-trained DNNs for image recognition.

Impact of image distortions on MobileNetV2 trained with Caltech-256 dataset

Outline

- Introduction
- CollabAR system design
- MVMDD dataset
- Evaluation

Our method

Collaborative image recognition: leverage the *temporally and spatially correlated images* to improve the image recognition accuracy in heterogeneous scenarios.

Duke

System design: distortion-tolerant image recognizer

1. Distortion Classifier

11/29

RGB

System design: distortion-tolerant image recognizer

2. Recognition Expert

- Step 1: Initialize the CNN by training it on ImageNet dataset.
- Step 2: Fine-tuning the CNN by pristine images to get *Expert*_p.
- Step 3: Fine-tuning $Expert_p$ to get $Expert_{MB}$, $Expert_{GB}$ and $Expert_{GN}$.

System design: distortion-tolerant image recognizer

2. Recognition Expert

- Step 1: Initialize the CNN by training it on ImageNet dataset.
- Step 2: Fine-tuning the CNN by pristine images to get *Expert*_p.
- Step 3: Fine-tuning $Expert_p$ to get $Expert_{MB}$, $Expert_{GB}$ and $Expert_{GN}$.

System design: distortion-tolerant image recognizer

2. Recognition Expert

- Step 1: Initialize the CNN by training it on ImageNet dataset.
- Step 2: Fine-tuning the CNN by pristine images to get *Expert*_p.
- Step 3: Fine-tuning $Expert_p$ to get $Expert_{MB}$, $Expert_{GB}$ and $Expert_{GN}$.

System design: spatial-temporal image lookup

1. Spatial correlation look up: Different images contain the same anchor:

 $\{anchorIDs\}_{new} \cap \{anchorIDs\}_{Cached} \neq 0$

2. Temporal correlation look up: Different images that are taken within a certain freshness:

 $\Delta t = t_{New} - t_{Cached}$ and $\Delta t < T_{fresh}$

System design: auxiliary-assisted multi-view ensemble learning (AMEL)

Duke

1. Normalized entropy:

$$S^{k}(P^{k}) = \sum_{i=1}^{|C|} \frac{p^{i} log(p^{i})}{\log |C|}$$

- $P^{k} = \{p^{1} \dots p^{|C|}\}$ probability vector of image k
- S^k weight of image k
- C number of classes

2. Ensemble multi-user results based on normalized entropy:

$$P = \sum_{i=1}^{m} (1 - S^i) P^i$$

Multi-view multi-distortion image dataset (MVMDD)

Examples of the pristine images that are collected in our MVMDD dataset

	Object categories		
Pristine image set	Number of views		
	Background complexity		
	Size of object in image		
	Number of instances		
Total pristine images	6×6×2×3×6=1,296		
Augmonted image set	Types of distortion		
Augmenteu mage set	Distortion levels		
Total augmented images	es 1,296×3×8=31,104		
Total images	32,400		

Summary of collected MVMDD dataset

Outline

- Introduction
- CollabAR system design
- MVMDD dataset
- Evaluation

Evaluation: experiment setup

1. Implementation:

- **Client:** android smartphones with Google ARCore SDK.
- Edge server: a desktop with an Intel i7-8700k CPU and a Nvidia GTX 1080 GPU.
- **Deep learning framework:** Keras 2.3 on top of the TensorFlow 2.0.
- **Communication:** python Flask framework through HTTP protocol.

Evaluation: experiment setup

2. Benchmark datasets:

Dataset collected by ourselves

Existing standard dataset

- Single-view datasets:
 - Caltech-256:
 - 257 categories, 80 instances every category.
 - MobileDistortion:
 - 4 distortion types, 300 image instances for each distortion type.
- Multi-view datasets:
 - MIRO:
 - 12 categories, 10 objects each category, 160 views each object, black background.
 - MVMDD:
 - 6 categories, 6 objects each category, 6 views each object, 3 different distances, 2 background complexity levels.

Evaluation: distortion classifier performance

Real-world distortions

Synthesized distortions

	Accuracy: 95.50%				
F	Pristine	100.0% 100	0.0% 0	0.0% 0	0.0% 0
Class	MBL	0.0% 0	100.0% 82	15.3% 18	0.0% 0
Output	GBL	0.0% 0	0.0% 0	84.7% 100	0.0% 0
-	GN	0.0% 0	0.0% 0	0.0% 0	100.0% 100
		Pristine	MBL Target	GBL Class	GN
	MohileDistortion				ion

1. Performance of distortion expert.

Duke UNIVERSITY

22/29

2. Performance of multi-view collaboration:

• Multi-view single-distortion

Duke UNIVERSITY

2. Performance of multi-view collaboration:

• Multi-view multi-distortion

3. Advantages of AMEL

- Good view: the image is a pristine image.
- Bad view: the image contains multiple distortions with high distortion levels.

CollabAR accuracy on the MVMDD dataset with and without the auxiliary feature

Evaluation: system profiling

1. Computational latency

Processing	Processing	Hardware Platform			
Component	Unit	Edge server	Nokia 7.1	Pixel 2 XL	Xiaomi 9
AMEL	CPU	48.0	255.4	189.9	124.2
(AlexNet)	GPU	6.8	331.0	127.5	71.2
AMEL	CPU	28.1	108.4	81.9	33.7
(MobileNetV2)	GPU	4.7	46.9	26.0	33.1
Distortion	CPU	4.4	29.3	22.33	13.1
classifier	GPU	3.4	20.3	8.7	8.4
Lowest	CPU	32.5	137.7	104.2	46.8
overall latency	GPU	8.1	67.2	34.7	41.5

2. Total end to end latency

Nokia 7.1	Pixel 2 XL	Xiaomi 9
32.7ms	21.5ms	17.8ms

Open source

We have open sourced the MVMDD dataset and the code of CollabAR!

- MVMDD: https://github.com/CollabAR-Source/MVMDD.
- The code of CollabAR: <u>https://github.com/CollabAR-Source/CollabAR-Code</u>.

Acknowledgements

Lord Foundation of North Carolina

•NSF awards CSR-1903136, CNS-1908051

Thank you & Questions?

