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Augmented Reality (AR)
• The [virtual] content is laid out 

around a user in the same 
spatial coordinates.

• Image recognition enables 
seamless contextual AR 
experience.
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Challenges 
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Nokia 7.1Magic Leap One

Measurements study in real-world mobile AR scenarios

Large proportion of distorted images in real-world mobile AR 
scenarios.
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Challenges 
Multiple distortions cause dramatic performance 
degradation of well-trained DNNs for image recognition.

Impact of image distortions on MobileNetV2 
trained with Caltech-256 dataset
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Our method
Collaborative image recognition:  leverage the temporally 
and spatially correlated images to improve the image 
recognition accuracy in heterogeneous scenarios.  
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System design: overview

Distortion
classifier

Pristine 
expert 

Motion blur 
expert

Gaussian blur 
expert

Gaussian noise 
expert

Recognition module

Edge Server

Resized 
Image

Distortion-tolerant
image recognizer

Multi-view ensemble 
learning

Results cache

Correlated Image lookup

Spatial-temporal 
image lookup

Anchor-time
cache

Cloud
anchorsRe

su
lt

Auxiliary-assisted 
multi-view ensembler

anchors 
timestamps image IDs

Pose 
estimation

Mobile 
client

anchor IDs

image ID
inference result

10/29



System design: distortion-tolerant 
image recognizer
1. Distortion Classifier
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System design: distortion-tolerant 
image recognizer
2. Recognition Expert
• Step 1: Initialize the CNN by 

training it on ImageNet dataset.

• Step 2: Fine-tuning the CNN by 
pristine images to get !"#$%&'.

• Step 3: Fine-tuning !"#$%&' to 
get !"#$%&)*, !"#$%&+* and 
!"#$%&+,.

Pristine 
Expert

Motion blur 
expert

50% pristine, 50% motion blur 
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System design: spatial-temporal 
image lookup

1. Spatial correlation look up:
Different images contain the 
same anchor:

2. Temporal correlation look up: 
Different images that are taken 
within a certain freshness:

{"#$ℎ&'()*},-.∩ {"#$ℎ&'()*}/012-3 ≠ 0

∆7 = 79-. − 7/012-3 and  ∆7 <;<=->2
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System design: auxiliary-assisted 
multi-view ensemble learning 
(AMEL)

• !" = {%& …%|)|} − probability vector of 
image ,

• -" − weight of image ,

-" !" =.
/0&

|)| %/123(%/)
123 |6|

1. Normalized entropy:

2. Ensemble multi-user results based on 
normalized entropy:

• 6 − number of classes

! =.
/0&

7
(1 − -/)!/
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Multi-view multi-distortion image 
dataset (MVMDD)

Summary of collected MVMDD datasetExamples of the pristine images that are 
collected in our MVMDD dataset
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Evaluation: experiment setup
1. Implementation:

• Client: android smartphones with 
Google ARCore SDK.

• Edge server: a desktop with an 
Intel i7-8700k CPU and a Nvidia 
GTX 1080 GPU.

• Deep learning framework: Keras 
2.3 on top of the TensorFlow 2.0.

• Communication: python Flask 
framework through HTTP protocol.
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Evaluation: experiment setup
2. Benchmark datasets:

○ Single-view datasets: 
■ Caltech-256: 

● 257 categories, 80 instances every category. 
■ MobileDistortion:

● 4 distortion types, 300 image instances for each distortion type. 
○ Multi-view datasets: 

■ MIRO:
● 12 categories, 10 objects each category, 160 views each object, 

black background.
■ MVMDD:

● 6 categories, 6 objects each category, 6 views each object, 3 
different distances, 2 background complexity levels.
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Dataset collected by ourselves
Existing standard dataset



Evaluation: distortion classifier 
performance

Caltech-256 MVMDDMobileDistortion

Synthesized distortionsReal-world distortions
Accuracy: 92.92%
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Evaluation: image recognition 
accuracy
1. Performance of distortion expert.
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2. Performance of multi-view collaboration:
• Multi-view single-distortion 

Evaluation: image recognition 
accuracy
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2. Performance of multi-view collaboration:
• Multi-view multi-distortion 

Evaluation: image recognition 
accuracy

(b) MIRO(a) MVMDD
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3. Advantages of AMEL

Evaluation: image recognition 
accuracy

• Good view: the image is a 
pristine image.

• Bad view: the image contains 
multiple distortions with high 
distortion levels.

CollabAR accuracy on the MVMDD dataset 
with and without the auxiliary feature
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Evaluation: system profiling 
1. Computational latency 
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Nokia 7.1 Pixel 2 XL Xiaomi 9
32.7ms 21.5ms 17.8ms

2. Total end to end latency 



We have open sourced the MVMDD dataset and the code of 
CollabAR! 

• MVMDD:  https://github.com/CollabAR-Source/MVMDD.
• The code of CollabAR: https://github.com/CollabAR-

Source/CollabAR-Code.

Open source
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https://github.com/CollabAR-Source/MVMDD
https://github.com/CollabAR-Source/CollabAR-Code
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