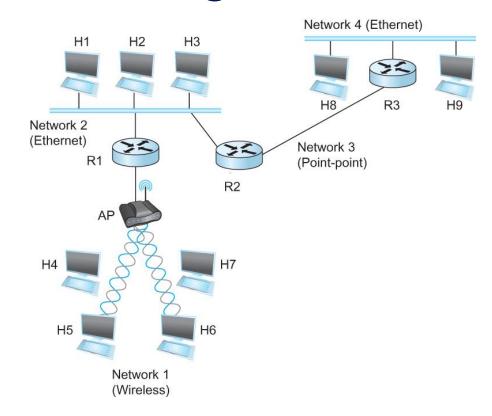
ECE 356/COMPSI 356 Computer Network Architecture

Basic Internetworking (IP)

Monday September 23, 2019

Recap

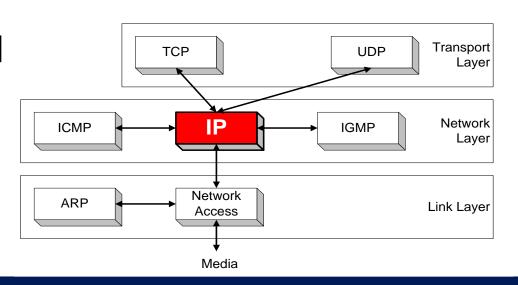

- Last lecture:
 - >Approaches to switching
 - > Ethernet switches
- Readings for this class: PD 3.2

Lecture Outline

- Internet protocol (IP)
- IP header format
- IP addressing
- IP forwarding
 - > Forwarding algorithm

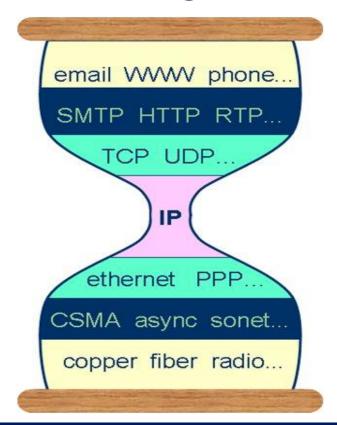
Inter-networking

- One level of indirection
 - Routers interface different networks
- Uniform addressing (IP)
- Routers send packets to their destination IP addresses



Difference Between a Switch and a Router

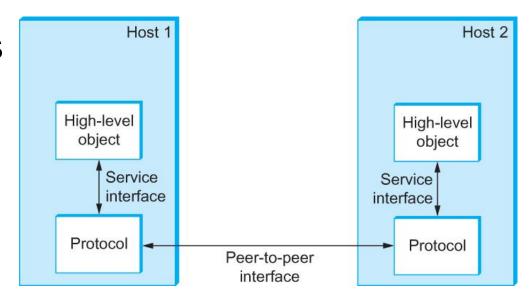
Video posted on Piazza


Internet Protocol

- IP (Internet Protocol) is a Network Layer Protocol
- IP's current version is Version 4 (IPv4)
 - > RFC 791
- IPv6 is also deployed

IP: The Thin Waist of the Hourglass

- IP is the waist of the hourglass of the Internet protocol architecture
- Multiple higher-layer protocols
- Multiple lower-layer protocols
- Only one protocol at the network layer
- Architecture avoids the N*M problem



A Simple Network 4 (Ethernet) H1 H2 H3 Internetwork R3 Network 2 (Ethernet) Network 3 (Point-point) R2 AP **H8** H5 H7 R1 R2 R3 **TCP TCP** H5 H6 IP IP IP IP IP Network 1 (Wireless) **ETH** 802.11 802.11 **ETH ETH** PPP PPP **ETH**

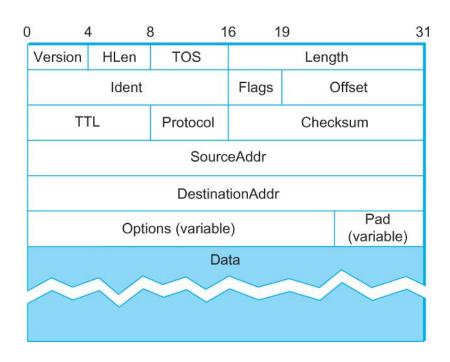
Recap: Protocol Peer and Service Interfaces

- Each protocol defines two different interfaces
 - > Service interface
 - > Peer interface

IP Service Model

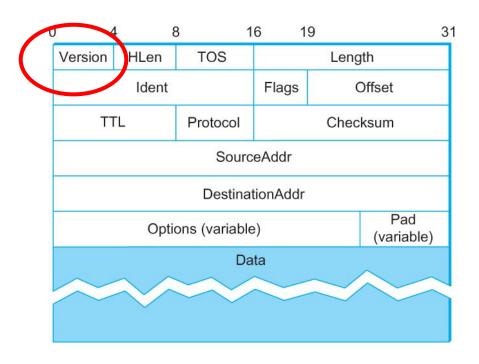
- Delivery service of IP is minimal
- IP provides an unreliable connectionless best effort service (datagram service)
 - > Unreliable, connectionless
 - > Best effort
- Consequences:
 - ➤ Loss, out of order, and duplicates must be handled at the upper layer

Basic IP Router Functions

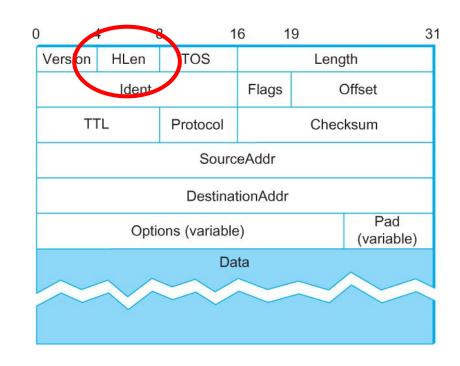

- Things you need to understand to do lab2
 - ➤ Internet protocol
 - IP header
 - IP addressing
 - IP forwarding
 - ➤ Address Resolution Protocol (ARP) next lecture
 - ➤ Error reporting and control next lecture
 - Internet Control Message Protocol (ICMP)

Lecture Outline

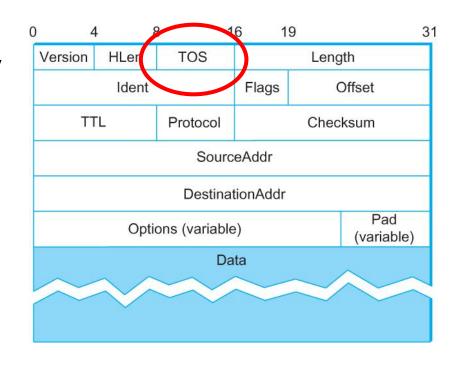
- Internet protocol (IP)
- IP header format
- IP addressing
- IP forwarding
 - > Forwarding algorithm


IP Header Format

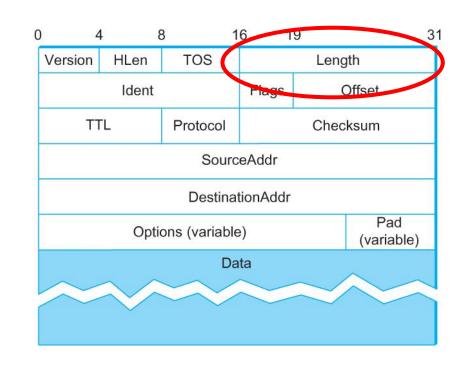
 20 bytes fixed length header + variable length options


IP Header Format: Version

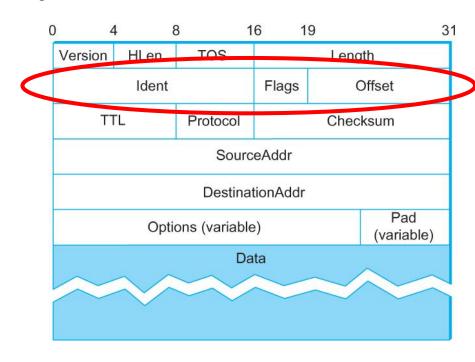
Version: v4


IP Header Format: Header Length

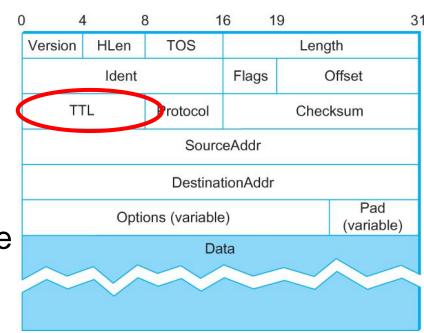
- Internet Header
 Length (IHL 4 bits): the length of header in 32-bit words
 - > 20 bytes if no options


IP Header Format: Type of Service

- Treat packets differently according to application needs
- Real-time, VoIP
- Will discuss later on


IP Header Format: Length

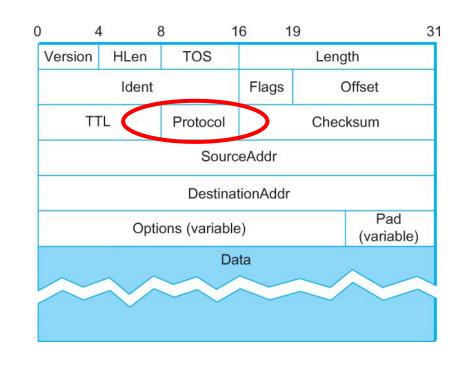
- 16 bits
- Packet length in bytes, including the header
 - ➤ Maximum size: 65,535 bytes
 - ➤ May not be supported by lower-layer protocols → fragmentation and reassembly


IP Header Format: Fragmentation and Reassembly Fields

- Identification, Flags, Fragment offset
 - Fragmentation and reassembly

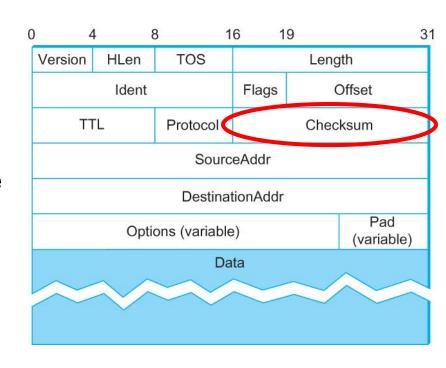
IP Header Format: Time to Live (TTL)

- Specifies the longest path before a datagram is dropped
 - Ensure that a packet is eventually dropped when a routing loop occurs
- Sender sets the value
 - ➤ Default: 64
- Each router decrements the value by 1
- When the value reaches 0, the datagram is dropped

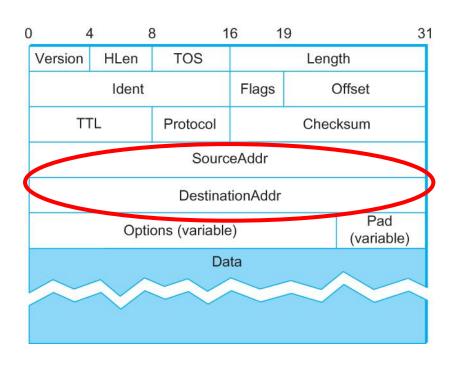


IP Header Format: Protocol

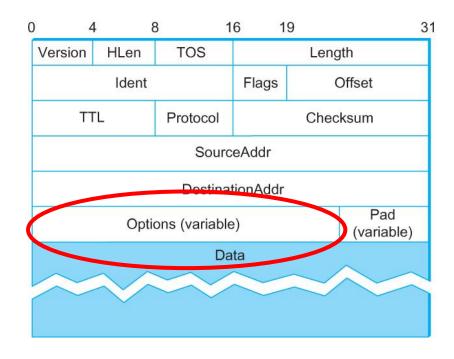
- 1 byte
- Specifies the higher-layer protocol
- De-multiplexing to higher layers


➤ 6: TCP

➤ 17: UDP


IP Header Format: Header Checksum

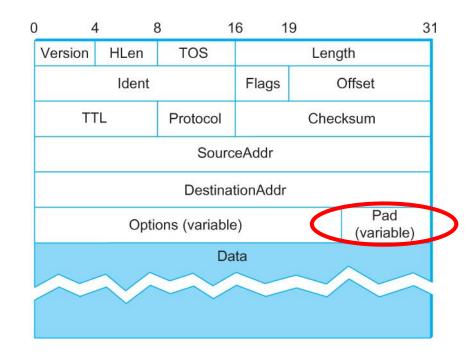
- 16 bits
- IP checksum
 - Not as strong as CRC, but easier to calculate in hardware
- Header only
- Must be computed at every hop
 - ➤ Why?


IP Header Format: Addresses

- Source & destination IP addresses
 - ➤ 32 bit address length in IPv4

IP Header Format: Options (1/2)

- Used infrequently
- IP options increase routers processing overhead
- Not included in IPv6


IP Header Format: Options (2/2)

- Record Route: each router that processes the packet adds its IP address to the header
- Timestamp: each router that processes the packet adds its
 IP address and time to the header
- (loose) Source Routing: specifies a list of routers that must be traversed
- (strict) Source Routing: specifies a list of the only routers that can be traversed

IP Header Format: Padding

 Padding bytes are added to ensure that header ends on a 4byte boundary

Lecture Outline

- Internet protocol (IP)
- IP header format
- IP addressing
- IP forwarding
 - > Forwarding algorithm

What is an IP Address?

- An IP address is a unique global identifier for a network interface
 - > An IP address uniquely identifies a network location
- Routers forwards a packet based on the destination address of the packet
- Uniqueness ensures global reachability

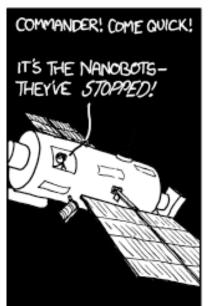
IP Versions

- IPv4 (32-bit)
 - ➤ Classful IP addresses (obsolete, but important to understand)
 - ➤ Classless inter-domain routing (CIDR) (RFC 854, current standard)
- IP Version 6 addresses (128-bit)

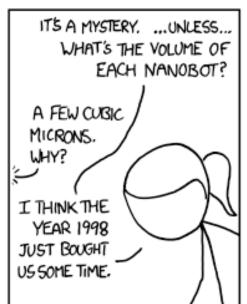
Dotted Decimal Notation

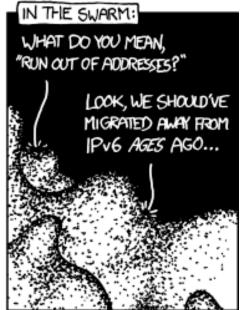
 Each byte is identified by a decimal number in the range [0...255]:

10000000	10001111	10001001	10010000
1 st Byte	2 nd Byte	3 rd Byte	4 th Byte
= 128	= 143	= 137	_ = 144
128.143.137.144			




Will We Run Out of IP Addresses?


- Yes!
 - Especially since address space is not well-utilized
- This is the reason for IPv6
 - ➤ More on IPv6 in mid-October
- 32-bit address → 128-bit address
 - > 4,294,967,296 (~ 4.3 bln) addresses with IPv4
 - > 340,282,366,920,938,463,463,374, 607,431,768,211,456 addresses with IPv6. *5*10*²⁸ addresses per every human



"If the Earth were made entirely out of 1 cubic millimetre grains of sand, then you could give a unique [IPv6] address to each grain in 300 million planets the size of the Earth"

What is the IP Address of google.com?

- Linux and MAC OS: traceroute google.com
- Windows: tracert google.com

Structure of an IP Address

network prefix host number

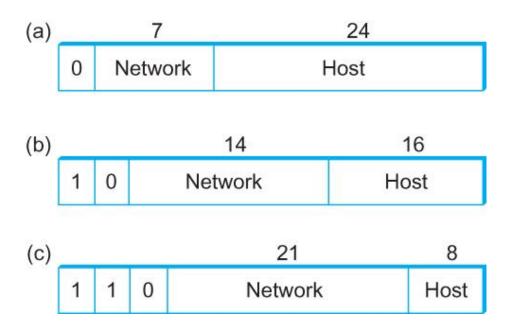
- An IP address has a structure
 - > Network prefix identifies a network
 - > Host number identifies a specific host interface
- Improves the scalability of routing
 - > Scales better than flat addresses

How Long is a Network Prefix?

- Before 1993: The network prefix is implicitly defined
 - Class-based addressing
- After 1993: The network prefix is indicated by a netmask

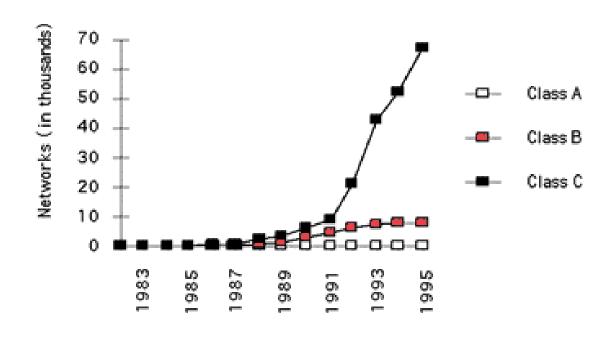
Before 1993: Class-based Addressing

- The Internet address space was divided up into classes:
 - Class A: Network prefix is 8 bits long
 - > Class B: Network prefix is 16 bits long
 - > Class C: Network prefix is 24 bits long
 - Class D: Multicast address
 - Class E: Reserved



Classful IP Addresses (Until 1993)

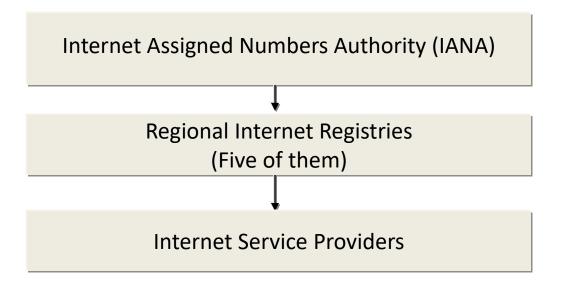
- Each IP address contained a key which identifies the class:
 - > Class A: IP address starts with "0"
 - > Class B: IP address starts with "10"
 - > Class C: IP address starts with "110"
 - > Class D: IP address starts with "1110"
 - > Class E: IP address starts wit "11110"


Classful IP Addresses: Class A,B,C Examples

Problems with Classful IP Addresses (1/2)

- Fast growing routing table size
 - > Each router must have an entry for every network prefix
 - > A,B too large, C too small
 - $\sim 2^{21} = 2,097,152$ class C networks
 - ➤ In 1993, the size of routing tables started to outgrow the capacity of routers
- Local admins must request another network number before installing a new network at their site

Problems with Classful IP Addresses (2/2)



Solution: Classless Inter-domain Routing (CIDR)

- Network prefix is of variable length
 - No rigid class boundary
- Addresses are allocated hierarchically
- Routers can aggregate multiple address prefixes into one routing entry
- Hierarchy is the key

Hierarchical IP Address Allocation

- American Registry for Internet Numbers (ARIN)
- RIPE, APNIC, LACNIC, AfriNIC

CIDR Network Prefix Has Variable Length

	128	143	137	144
Addr	10000000	10001111	10001001	10010000
	255	OFF	255	0
Mask	<u>255</u> 11111111	255 11111111	255 1111111	0000000

- A network mask specifies the number of bits used to identify a network in an IP address
 - ➤ Example above: 24-bit mask
 - ➤ Network prefix 128.143.137/24

CIDR Notation

- CIDR notation of an IP address:
 - E.g., 128.143.137.144/24
 - > /24 is the prefix length
 - The first 24 bits are the network prefix of the address
 - The remaining 8 bits are available for specific host addresses

CIDR Network Prefix: Another Example

	128	143	31	144
Addr	10000000	10001111	00011111	10010000
	055	0==	0.40	•
	<u> </u>	<u> </u>	240	<u> </u>
Mask	11111111	11111111	11110000	0000000

- A 20-bit mask example
 - ➤ Network prefix 128.143.16/20

CIDR Notation: Blocks of Addresses

- CIDR notation can nicely express blocks of addresses
 - An address block [128.195.0.0, 128.195.255.255] can be represented by an address prefix 128.195.0.0/16
 - ➤ How many IP addresses are there in a /x address block?
 - 2 (32-x)

Example: Address Allocation

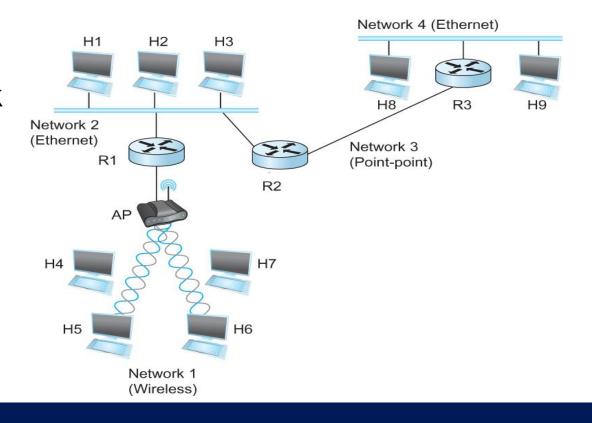
- Duke network operators receive a /16 address prefix 152.3.0.0/16 from ARIN
- Allocate address prefixes to three departmental networks
 - > ME must have at least 50 hosts
 - > ECE and CS must have at least 100 hosts
- Smallest address prefix to each department?

Lecture Outline

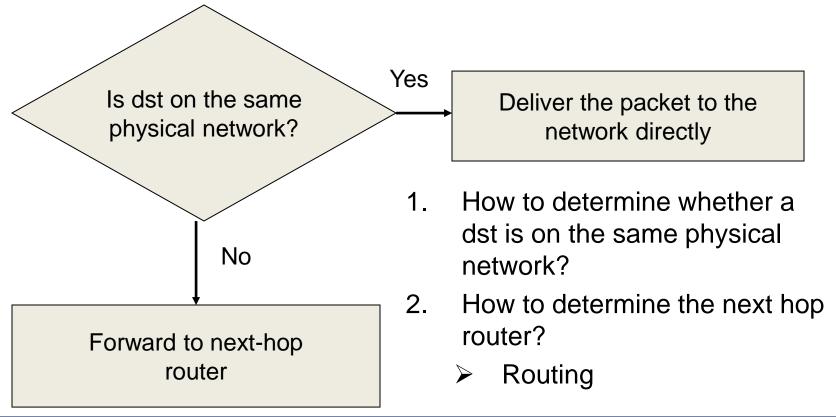
- Internet protocol (IP)
- IP header format
- IP addressing
- IP forwarding
 - > Forwarding algorithm

Forwarding of IP Datagrams

- There are two distinct processes to delivering IP datagrams:
 - Forwarding (data plane): How to pass a packet from an input interface to the output interface?
 - Routing (control plane): How to find and setup the forwarding tables?


Forwarding: Key Principles

- Each IP datagram contains the IP destination address
- The "network part" of an IP address identifies a single physical network
- All hosts and routers that share the same network part of their address are connected to the same physical network
- Each physical network on the Internet has at least one router that connects this network to other physical networks



Forwarding Basics

- Routers forward according to network prefixes
- All interfaces on the same network have the same network prefixes

Forwarding Algorithm

Detailed Forwarding Algorithm

- If (networkNum == networkNum of one of my interfaces)
 - Deliver packet over the interface
- Else
 - > if (NetworkNum is in my forwarding table) then
 - Deliver to the NextHop router
 - > Else
 - Deliver packet to the default router

How Does a Host/Router Determine the Network Number of a Destination Address?

- Destination address & network mask = NetworkNumOfDestination
- If (NetworkNumOfDestination == my NetworkNum) then
 - Send through my direct interfaces

Forwarding Table Lookup

- Forwarding table lookup: use the IP destination address as a key to search the routing table
- Result of the lookup is the IP address of a next hop router, and/or the name of a network interface

Destination address	Next hop/ interface
network prefix	IP address of next hop
or host IP address	router
Or	or
loopback address or	Name of a network
default route	interface

Type of Forwarding Table Entries (1/2)

Network route

- ➤ Destination addresses is a network address (e.g., 10.0.2.0/24)
- Most entries are network routes

Host route

- ➤ Destination address is an interface address (e.g., 10.0.1.2/32)
- Used to specify a separate route for certain hosts

Type of Forwarding Table Entries (2/2)

Default route

Used when no network or host route matches

Loopback address

- Routing table for the loopback address (127.0.0.1)
- The next hop lists the loopback (lo0) interface as outgoing interface

Unified Forwarding Algorithm

Observation:

- A directly connected physical network can be an entry in the forwarding table
- A default route can be an entry
- 1. Look up destination address in the forwarding table using longest prefix match
- 2. Forward the packet to the next hop indicated by the matched entry

The Longest Prefix Matching Algorithm

- 1. Search for a match on all 32 bits
- 2. Search for a match for 31 bits

.

32. Search for a match on 0 bits

Host route, loopback entry

→ 32-bit prefix match

Default route is represented as 0.0.0.0/0

→ 0-bit prefix match

Why Longest Prefix Match?

- Longest → smallest network
- Network prefixes may be aggregated

An Example

Destination address	Next hop
10.0.0.0/8	eth0
128.143.0.0/16	R2
128.143.64.0/20	R3
128.143.192.0/20	R3
128.143.71.0/24	R4
128.143.71.55/32	R3
0.0.0.0/0 (default)	R5

The longest prefix match for 128.143.71.21 is for 24 bits with entry 128.143.71.0/24

 Datagram will be sent to R4

 Note how this improves scalability

128.143.71.21

Lecture Summary

- Internet protocol (IP)
- IP header format
- IP addressing
- IP forwarding
 - > Forwarding algorithm

Next Lecture

- IP fragmentation
- Address Resolution Protocol (ARP)
- Internet Control Message Protocol (ICMP)