9/25/2019

ECE 356/COMPSI 356
Computer Network Architecture

IP Fragmentation, ARP, and ICMP

Wednesday September 26, 2019

Recap

 Last lecture: IP protocol. IP addressing, IP
forwarding

 Materials for this lecture:

»PD 3.2: Fragmentation and Reassembly
»PD: 3.2.6, 3.2.8

9/25/2019

Lecture Outline

* |P fragmentation
« ARP
« ICMP

Need for IP Fragmentation and Reassembly

» Packets can go through different types of links
« Each network has some Maximum Transmission Unit
(MTU), the largest IP datagram that it can carry in a
frame
» Ethernet: 1500 bytes, FDDI: 4500 bytes

» Would be inefficient to always send the smallest packets
possible over all potentially encountered technologies

9/25/2019

IP Fragmentation and Reassembly:
Strategy (1/2)

« Fragmentation occurs in a router when it receives a
datagram that it wants to forward over a network which
has (MTU < datagram)

» Reassembly is done at the receiving host

> Not at the intermediate routers

IP Fragmentation and Reassembly:
Strategy (2/2)

« All the fragments carry the same identifier in the ldent
field

« Fragments are self-contained datagrams

» IP does not recover from missing fragments
» Fragments discarded if a part of the frame is missing

9/25/2019

An Example: an IP Datagram Traversing a
Sequence of Physical Networks

H5 H8
[80211] 1P 1400 | [ETH]IP] 1400 | [PPP]IP] 512 | [ETH]IP] 512]
[pPPIP] 512 [ETH]IP]| 512 |
[pPP]IP] 512 | [ETH]IP] 512]

IP Header Format: Fragmentation and
Reassembly Fields

0 4 8 16 19 31
- Identification, Flags, e
Fragment Oﬁset \TTL i Protocol g Checksum 1

» Fragmentation and SourceAddr
reassembly DestinationAddr
Options (variable) (vaFr)iZ?)Ie)
Data
P\ N

9/25/2019

» Unique datagram identifier
from a host

> Incremented whenever a
datagram is transmitted (in
some OS)

» Used by many researchers
for various purposes

C

IP Header Format: Identification

0 4 8 16 19 31
Versignjmblioae TOS Length
L 0
Ident gs ‘ Offset
Checksum
SourceAddr
DestinationAddr
: : Pad
Options (variable) (variable)
Data 7
P ,Y VU Y, O N
_ e \\/ // a4 il “\\/ il B

« 3 bits:
» First bit always setto 0
» DF bit (Do not fragment)
» MF bit (More fragments)

IP Header Format: Flags

4 8 16 19 31
Version | HLen ‘ TOS Length
Ident Offset
TTL ‘ Protocol Checksum
SourceAddr
DestinationAddr
. : Pad
Options (variable) (variable)
Data \
P P Vv S, ’l\w -
i ,/'/\\\////\\w . b . 4 R

9/25/2019

IP Header Format: Offset

0 4 8 16 19 31
Version | HLen ‘ TOS)angﬂi—\
Ident Flag Offset ‘>
o Fragment offset (13 b|ts) T ‘ Protocol Chackeam
SourceAddr
DestinationAddr
Options (variable) (var:izttj)le)
Data 7
e g O S

Example of Fragmentation

A datagram with size 2400 bytes must be fragmented according to an
MTU limit of 1000 bytes

Header length: 20 Header length: 20 Header length: 20 Header length: 20
Total length: 2400 Total length: 448 Total length: 996 Total length: 996
Identification: 0xa428 Identification: 0xa428 lIdentification: O0xa428 Identification: 0xa428
DFflag: O DFflag: O DFflag: O DFflag: O

MFflag: O MFflag: O MF flag: 1 MF flag: 1

Fragment offset: 0 Fragment offset: 244 Fragment offset: 122 fragment offset: 0

’ IP datagram ‘ ’ Fragment 3 ‘ ’ Fragment 2 ‘ ’ Fragment 1

uuuuuuuu

MTU: 4000 MTU: 1000

Router

12

9/25/2019

Determining the Length of Fragments (1/2)

« Maximum payload length = 1000 — 20 = 980 bytes

» Offset specifies the bytes in multiple of 8 bytes. So the
payload must be a multiple of 8 bytes

« 980 - 980 % 8 = 976 (the largest number that is less than 980
and divisible by 8)

« The payload for the first fragment is 976 and has bytes 0 ~
975 of the original IP datagram. The offsetis O

Determining the Length of Fragments (2/2)

* The payload for the second fragment is 976 and has bytes
976 ~ 1951 of the original IP datagram. The offsetis 976/ 8 =
122

» The payload of the last fragment is 2400 — 976 * 2 = 428
bytes and has bytes 1952 ~ 2400 of the original IP datagram.
The offset is 244

« Total length of three fragments: 996 + 996 + 448 = 2440 >
2400

> Why?

9/25/2019

Alternative to Fragmentation:
Path MTU Discovery

« Fragmentation slows down the router

» Would be more efficient for the host to send appropriately sized
packets in the first place

* How does a sender know the MTU of a path?
» A host only knows the MTU of its links

e Solution:

» Sends large packets with DF set

» If receives ICMP Fragmentation needed messages, reduces
maximum segment size

Lecture Outline

* |P fragmentation
« Address translation (ARP)
« |ICMP

9/25/2019

Need for the Address Translation
Protocol (ARP)

« How do we find out host’s Ethernet address after
knowing its IP address?

 The Internet is based on IP addresses

« Data link protocols (Ethernet, FDDI, ATM) may have
different MAC addresses

« The ARP protocol perform the translation between IP
addresses and MAC layer addresses

ARP

* Inthis lecture: ARP for broadcast LANSs, particularly
Ethernet LANS

» RFC 826

9/25/2019

Address Translation with ARP:
ARP Request

Argon
128.143.137.144
00:a0:24:71:e4:44

ARP request:

Router137
128.143.137.1
00:e0:f9:23:a8:20

What'’s the MAC address of
128.143.137.1

gl

« Argon broadcasts an ARP request

to all stations on the network:
“What is the hardware address
of 128.143.137.1?”

Address Translation with ARP:

ARP Reply

Argon
128.143.137.144
00:a0:24:71:e4:44

ARP Reply:
The MAC address of 128.143.137.1is
00:e0:f9:23:a8:20

A

L

Router137
128.143.137.1
00:e0:f9:23:a8:20

* Router 137 responds with an
ARP Reply which contains the
hardware address

10

9/25/2019

ARP Packet Format (1/9)

0 —r——" 8 —) 31
(- -
N Hardware type=1 A ProtocolType =0x0800
HLen=48 PLen=32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareAddr (bytes 4-5) | SourceProtocolAddr (bytes 0-1)

SourceProtocolAddr (bytes 2-3) | TargetHardwareAddr (bytes 0-1)
TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

« Physical network: Ethernet

Duke...vcoeins

ARP Packet Format (2/9)

0 8 16 =31
Hardware type=1 ~ ProtocolType =0x0800 .
HLen=48 PLen=32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareAddr (bytes 4-5) | SourceProtocolAddr (bytes 0-1)

SourceProtocolAddr (bytes 2-3) | TargetHardwareAddr (bytes 0-1)
TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

» Higher-layer protocol type: IP

Duke...cooir

11

9/25/2019

ARP Packet Format (3/9)

0 8 16 31
Hardware type =1 ProtocolType =0x0800
</HLen =48 PLen :%) Operation
T~ SouseeHaTOWareAddr (bytes 0-3)

SourceHardwareAddr (bytes 4-5)

SourceProtocolAddr (bytes 0-1)

SourceProtocolAddr (bytes 2-3)

TargetHardwareAddr (bytes 0-1)

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

« “Hardware” and “protocol” header lengths
» Ethernet 48 bits, IP 32 bits

ARP Packet Format (4/9)

0

8 16

31

Hardware type=1

ProtocolType = 0x0800

HLen=48

Plen=32 ¢~

Operation

~—

SourceHardwareAmr"('b‘yt: 0-3)

SourceHardwareAddr (bytes 4-5)

SourceProtocolAddr (bytes 0-1)

SourceProtocolAddr (bytes 2-3)

TargetHardwareAddr (bytes 2-5)

TargetHardwareAddr (bytes 0-1)

TargetProtocolAddr (bytes 0-3)

» Opcode: ARP request 1, ARP reply 2

12

9/25/2019

Duke...vcoeins

ARP Packet Format (5/9)

0 8

16

31

Hardware type=1

ProtocolType =0x0800

HLen=48 Plen=32

Operation

—

SourceHardwareAddr (bytes 0-3)

——

C

~SaurceHardwareAddr (bytes 4-5)

SourceProtocolAddr (bytes Q=4

D

SourceProtocolAddr (bytes 2-3)

TargetHardwareAddr (bytes 0-1)

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

* Source hardware address

Duke...cooir

ARP Packet Format (6/9)

0 8 16 31
Hardware type=1 ProtocolType =0x0800
HLen=48 PLen=32 Operation
e SourceHardwareAddr (bytes 0-3) —

<

~SourceHardwareAddr (bytes 4-5)

SourceProtocolAddr (bytes 0=1)—

SourceProtocolAddr (bytes 2-3)

TargetHardwareAddr (bytes 0-1)

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

 Source hardware address

13

9/25/2019

ARP Packet Format (7/9)

0 8 16 31
Hardware type=1 ProtocolType =0x0800

HLen=48 PLen=32 Operation

SourceHardwareAddr (bytes 0-3)

<mHardwareAddr (bytes 4-5) | SourceProtocolAddr (bytes U=t~

~SourceProtocolAddr (bytes 2-3) | TargetHardwareAddr (byLeﬂ;i-)—>

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

» Source protocol address

ARP Packet Format (8/9)

0 8 16 31
Hardware type=1 ProtocolType =0x0800

HLen=48 PLen=32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareAddr (bytes 4-5) | SourceProtocolAddr (bytes 0-1)

<45UurceProtocolAddr (bytes 2-3) | TargetHardwareAddr (byleS =49~
— TargetHardwareAddr (bytes 2-5) "]

TargetProtocolAddr (bytes 0-3)

» Target hardware address
» Request: empty, reply: target Ethernet address

14

9/25/2019

ARP Packet Format (9/9)

0 8 16 31
Hardware type=1 ProtocolType =0x0800

HLen=48 PLen=32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareAddr (bytes 4-5) | SourceProtocolAddr (bytes 0-1)

SourceProtocolAddr (bytes 2-3) | TargetHardwareAddr (bytes 0-1)
TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

» Target protocol address
» Request: target IP address, reply: destination IP address

128.12;9%]7.144An Example (1/2) Routerl37

128.143.137.1
00:a0:24:71:e4:44 00:e0:f9:23:a8:20

ARP request:
What'’s the MAC address of »{c— = comossos
128.143.137.1 w w w

T T T

W

M

* ARP Request from Argon is broadcasted:
» Source addr in Ethernet header: 00:a0:24:71:e4:44
» Destination addr in Ethernet header: FF:FF.FF:FF.FF:FF
« Source hardware address: 00:a0:24:71:e4:44
» Source protocol address: 128.143.137.144
» Target hardware address: 00:00:00:00:00:00
» Target protocol address: 128.143.137.1

15

9/25/2019

Argon Router137
128.143.137.144 A E r r ‘ I 2/2 128.143.137.1
00:a0:24:71:.e4:44 n Xa p e 00:e0:f9:23:a8:20

ARP Reply:

The MAC address of 128.143.137.1 s

00:e0:f9:23:a8:20

W

*
TR T

* ARP Reply from Router137 is unicasted:

» Source addr: 00:e0:f9:23:a8:20

» Dst addr: 00:a0:24:71:e4:44
» Source hardware address: 00:e0:f9:23:a8:20
» Source protocol address: 128.143.137.1
» Target hardware address: 00:a0:24:71:e4:44
» Target protocol address: 128.143.137.144

ARP: Comments

* ARP requests: broadcast
» Other hosts learn the source IP/MAC mapping

* ARP replies: unicast

16

9/25/2019

ARP Table / ARP Cache

« Since sending an ARP request/reply for each IP
datagram is inefficient, hosts maintain a cache (ARP
Cache) of current entries

» Entries expire after a time interval

 Linux, Windows, macQOS: arp -a

Putting it Together: IP Forwarding Logistics,
Lab 2 (1/2)

1. Sanity-check
» Meets minimum length and has correct checksum

2. Update header

» Decrement the TTL by 1, and compute the packet checksum over
the modified header

3. Next hop IP lookup

» Find out which entry in the routing table has the longest prefix
match with the destination IP address

17

9/25/2019

Putting It Together: IP Forwarding Logistics,
Lab 2 (2/2)

4. Next hop MAC lookup
» Check the ARP cache for the next-hop MAC address
corresponding to the next-hop IP. If it's there, send it. Otherwise,
send an ARP request for the next-hop IP (if one hasn't been
sent within the last second), and add the packet to the queue of
packets waiting on this ARP request.

5. Error reporting

Lecture Outline

* |P fragmentation
« Address translation (ARP)
* Error reporting (ICMP)

18

9/25/2019

Error Reporting

* Internet Control Message Protocol (ICMP)
> lll-formatted packets
>TTL ==
» ARP receives no reply
» No protocol or application running at the destination
» No routing table match
> ...

Location in the Protocol Stack

» The Internet Protocol relies on several other protocols to
perform necessary control and routing functions:
» Control functions (ICMP)
» Multicast signaling (IGMP)
» Setting up forwarding tables (RIP, OSPF, BGP, PIM, ...)

‘ RIP D ‘ OSPF H ‘ BGP H ‘ PIM H Routing
ICMP IGMP I Control
~___ N

19

9/25/2019

ICMP: An Overview

 The Internet Control Message Protocol (ICMP) is a
helper protocol that supports IP with facility for:
» Simple queries
» Error reporting
« ICMP messages are encapsulated as IP datagrams
» Often considered part of IP, but architecturally lies above it

IP header ICMP message

A

IP payload

v

ICMP Message Format

bit# O 15 |16 23 |24 31

type code checksum

additional information
or
0x00000000

4 byte header:

* Type (1 byte): type of ICMP message
* Code (1 byte): subtype of ICMP message

* Checksum (2 bytes): similar to IP header checksum. Checksum is calculated
over the entire ICMP message

If there is no additional data, there are 4 bytes set to zero
- Each ICMP message is at least 8 bytes long

20

9/25/2019

ICMP Query Message

ICMP Request

ICMP Reply

A

Host or router

ICMP query:
* Request sent by host to a router or host
* Reply sent back to querying host

Example of ICMP Queries

Type/Code: Description _
The ping command
8/0 Echo Request uses Echo Request/
0/0 Echo Reply Echo Reply
13/0 Timestamp Request

14/0 Timestamp Reply

21

9/25/2019

ICMP Error Message

[— IP datagram » IP datagram
is discarded
LE ICMP Error |
RN -
L

Message

Host Host or router

« ICMP error messages report error conditions
» Typically sent when a datagram is discarded

» Error message is often passed from ICMP to the application
program

ICMP Error Message

< ICMP Message

4——from IP datagram that triggered the error—p-

IP header ICMP header IP header 8 bytes of payload

type code checksum

Unused (0x00000000)

* ICMP error messages include the complete IP header and
the first 8 bytes of the payload (typically: UDP, TCP)

22

9/25/2019

Example: ICMP Port Unreachable

RFC 792: If, in the destination host, the IP module cannot
deliver the datagram because the indicated protocol module
or process port is not active, the destination host may send a
“destination unreachable” message to the source host.

Client

/

Re
at qUesta serViCe
aport 89 No process is

 ’ waiting at

port
ynre

Server port 80

ach*‘b‘e

Common ICMP Error Messages

Type | Code Description
3 0-5 | Destination Notification that an IP datagram could not be
unreachable | forwarded and was dropped. The code field contains
an explanation.

5 0-3 | Redirect Informs about an alternative route for the datagram
and should result in a routing table update. The code
field explains the reason for the route change.

11 0,1 | Time Sent when the TTL field has reached zero (Code 0)
exceeded or when there is a timeout for the reassembly of
segments (Code 1)
12 0, 1 | Parameter Sent when the IP header is invalid (Code 0) or when
problem an IP header option is missing (Code 1)

23

9/25/2019

14 . . ”
Some Subtypes of the "Destination Unreachable
Code Description Reason for Sending
0 Network No routing table entry is available for the destination network.
Unreachable
1 Host Unreachable | Destination host should be directly reachable, but does not
respond to ARP Requests.
2 Protocol The protocol in the protocol field of the IP header is not supported
Unreachable at the destination.
3 Port Unreachable The transport protocol at the destination host cannot pass the
datagram to an application.
4 Fragmentation IP datagram must be fragmented, but the DF bit in the IP header
Needed is set. (MTU discovery)
and DF Bit Set
5 Source route failed | The source routing option has failed.

ICMP Applications

* Ping
»ping www.duke.edu
* Traceroute
»traceroute nytimes.com

« MTU discovery

24

9/25/2019

Ping: Echo Request and Reply

ICMP Echo
Host W Host

or ~ or
Router " £CHO REP router
IC

* Pings are handled directly by the kernel

« Each ping is translated into an ICMP Echo Request
* Pinged host responds with an ICMP Echo Reply

Traceroute

* Linux and MAC OS: traceroute google.com
« Windows: tracert google.com

25

9/25/2019

Traceroute Algorithm

« Sends out UDP packets with TTL=1, 2, ..., n, with an
unlikely port number, starts timers for them
» Standard implementation: 3 packets for each TTL value
« Each router on the path sends ICMP “Time exceeded”
message (type 11, code 0)
» Includes the name and the address of the router
» Sender calculates the round-trip time
» Destination replies with a “Port unreachable” ICMP
message (type 3, code 3). The process stops.

C:\Usersimaria>tracert nytimes.com

Tracing route to nytimes.com [151.181.129.164]
over a maximum of 38 hops:

1 ms 1 ms 1

2 ms 7 ms 18

2 ms 2 ms
5 ms 3 ms 4
8 ms 9 ms 11
1 ms ms 11
12 ms ms 11
96 ms 38 ms 17
ms 17

17 ms 18 ms 16

e complete.

26

9/25/2019

Path MTU Discovery Algorithm

« Send packets with DF bit set

* If receive an ICMP error message, reduce
the packet size

Summary

* |P fragmentation
 ARP
« |ICMP

27

9/25/2019

Next Lecture

 Introduction to Lab 2
* Routing: Dynamic Routing Protocol

28

