ECE 356/COMPSI 356 Computer Network Architecture

Routing Wrap-Up.
Miscellaneous IP Topics.

Wednesday October 9th, 2019

Welcome Back from the Break!

Recap

- Last lecture:
 - Link state routing
 - > Inter-domain routing

Readings for this lecture: PD 3.2.7, 3.2.9, 4.1.3,
 sidebar on pg. 335

This Lecture

- Routing wrap-up and review
 - > Textbook material: PD 3.3.1-3.3.3
- Finishing up a collection of disjoint but important IP-related topics
 - Dynamic Host Configuration Protocol (DHCP)
 - ➤ Network Address Translation (NAT)
 - >IPv6
 - > IP tunnels

Routing: Key Points to Remember

- Difference between routing and forwarding
 - Routing protocols establish forwarding tables at routers
- Underlying routing protocols are distributed algorithms for determining paths from a source to a destination
 - > Connections to graph theory and foundational graph algorithms
 - Distributed decentralized operation is imperative
- Inter-domain and intra-domain routing
 - ➤ Internet as a collection of Autonomous Systems (ASs)
 - Each AS can run its own routing protocol. BGP runs in-between the ASs

Difference Between Distance-Vector and Link-State Routing

- In distance-vector routing:
 - > Each node talks only to its directly connected neighbors
 - Tells them everything it has learned
 - Distances to all neighbors
- In link-state routing:
 - Each nodes talks to all other nodes
 - > Tells them only what it knows for sure
 - State of its own links

Distance Vector Routing: Key Points to Remember (1/2)

- Routers talk only to directly connected neighbors
 - > Messages do not get propagated across the entire network
- Advertise learned distances to all nodes in the network: distance vectors
- Algorithms to know: distance vector algorithm

Distance Vector Routing: Key Points to Remember (2/2)

- Distance vector routing suffers from a count-to-infinity problem
 - One solution to it is split-horizon advertisement
- Routing Information Protocol (RIP) is a straightforward implementation of Distance Vector Routing
 - Used in Lab 3

Link State Routing: Key Points to Remember

- With link state routing, all nodes form the full picture of network connectivity
- Link state information is flooded across the network, using reliable flooding algorithms
- Algorithms to know: Dijkstra, forward search algorithms
- OSPF is a commonly deployed link state routing protocol
 - Supports authentication (why is it needed?)
 - Supports hierarchy (why is it needed?)

Inter-Domain Routing: Key Points to Remember

- Inter-domain routing connects different ASs. It is subject to both technical and economics/policy constraints
- In inter-domain routing, we find a path to a destination, rather than the shortest path
- BGP is the one inter-domain routing protocol used in the Internet
- BGP advertises complete paths to a destination, as a sequence of ASs

Lecture Outline

- Routing wrap-up and review
- Finishing up a collection of disjoint but important IP-related topics
 - Dynamic Host Configuration Protocol (DHCP)
 - Network Address Translation (NAT)
 - >IPv6
 - > IP tunnels

Dynamic Host Configuration (DHCP)

- How your laptop and mobile phone get IP addresses on a campus network
 - Why you did not need to find out many of the details of IP and IP forwarding until this class
 - Why your IP address can change once in a while
 - Widely used
- A network management protocol
 - Another network management protocol we already studied: ICMP
- A client-server protocol

Dynamic Assignment of IP Addresses

- Avoid manual IP configuration
 - > Inconvenient, error prone
 - ➤ Note that this is one of the themes of this class: static approaches exist, but are not practical in reality
- Dynamic assignment of IP addresses is desirable
- IP addresses are assigned on-demand
 - Examples to keep in mind: Duke visitors network, RDU WiFi

DHCP: An Introduction

- Designed in 1993
 - Precursor host configuration protocols existed since 1984
- DHCP uses a server an a series of relays
- DHCP client can acquire all IP configuration parameters
 - > Default router, network mask, DNS resolver
- Supports temporary allocation ("leases") of IP addresses
- Runs over UDP

Client Acquiring IP Configuration Parameters

- Host does not need to know the address of the DHCP server
- Newly booted or attached host sends a DHCPDISCOVER message to an IP broadcast address, 255.255.255.255
- This information needs to reach a DHCP server

Need for DHCP Relays

- How many DHCP servers do we need?
 - > Routers do not forward broadcast IP addresses
 - ➤ One per subnetwork! Too many
- Solution: relay agents
 - ➤ Configured with the DHCP server's IP address
 - ➤ One relay agent per subnetwork

Relay-to-Server Operations

 DHCP relay agent unicasts the message to DHCP server and waits for the response

IP Address Allocation in DHCP

Dynamic

- > IP addresses are *leased* to hosts
- Addresses returned to the common pool and reused when no longer needed by the host

Automatic

- Preferentially assign to hosts same IP addresses they previously had
- Manual (static) allocation
 - Mapping pre-defined by the administrator

DHCP: Associated Complexity

- Dynamic host IP addresses
 - MAC to IP mappings are not guaranteed to be constant
 - ➤ Users: cannot count on device IP staying the same
 - > Administrators: network troubleshooting complexity
- In practice, ISPs and companies try to keep MAC-IP mappings constant if possible, for manageability

DHCP: Key Points

- A ubiquitously deployed helper protocol that:
 - > Provides IP information to newly booted or connected hosts
 - > Allows assigning IP addresses *dynamically*
- Hosts not needing to know DHCP server address is achieved via:
 - > IP broadcasting
 - Use of relay agents
- Dynamic address allocation can be challenging for network administrators

This Lecture

- Routing wrap-up and review
- Finishing up a collection of disjoint but important IP-related topics
 - ➤ Dynamic Host Configuration Protocol (DHCP)
 - Network Address Translation (NAT)
 - >IPv6
 - > IP tunnels

Network Address Translation

- We are running out of IP addresses (only 2³² addresses in total). How can we work around it, without creating a new variant of IP?
 - > For address depletion, NAT is a work-around, not a fix
 - Widely deployed
 - Use every day on Duke network
- NAT is a router function where IP addresses (and possibly port numbers) of IP datagrams are replaced at the boundary of a private network

Network Address Translation: An Example

See For Yourself: Your IP Address as Seen from the Outside

Home network example: ipchicken.com

See For Yourself: Your IP Address as Seen by Your Computer

- Linux/MacOS: ifconfig
- Windows: ipconfig

```
C:\Users\Mar a>ipconfig
Windows IP Configuration
Ethernet adapter Ethernet:
   Connection-specific DNS Suffix . : lan
   IPv6 Address. . . . . . . . . . .
                                       fd81:2822:e5b5::fa7
                                        fd81:2822:e5b5:0:30cd:290d:225d:4322
   Temporary IPv6 Address. . . . . .
                                       fd81:2822:e5b5:0:24f8:1027:7d54:b779
   Temporary IPv6 Address. . . . . .
                                       fd81:2822:e5b5:0:31b8:b542:5b05:f93a
   Temporary IPv6 Address. .
                                       fd81:2822:e5b5:0:6cee:cf65:d68e:91ab
   Temporary IPv6 Address. .
                                        fd81:2822:e5b5:0:a941:e817:7360:9ab8
   Link-local IPv6 Address . . . . .
                                      : Te80::30ca:2901:225d:4322%7
                                     : 192.168.0.227
   IPv4 Address. . . . . . . . . . . . .
   Subnet Mask . . . . . . .
   Default Gateway . . . . . . . . : 192.168.0.1
```


See For Yourself: Your IP Address as Seen from the Outside

Duke network example: ipchicken.com

Duke Network Example: Your IP Address as Seen by Your Computer

- Linux/MacOS: ifconfig
- Windows: ipconfig

Private Network (1/2)

- Private IP network is an IP network that is not directly connected to the Internet
- Public IP address are assigned via Internet registries
- IP addresses in a private network can be assigned arbitrarily.
 - Not registered and not guaranteed to be globally unique

Private Network (2/2)

- Generally, private networks use addresses from the following experimental address ranges (non-routable addresses):
 - > 10.0.0.0 10.255.255.255
 - ➤ 172.16.0.0 172.31.255.255
 - > 192.168.0.0 192.168.255.255
 - Private addresses only have meaning within a private network

```
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix .: wireless.duke.edu
Link-local IPv6 Address . . . . : fe80::11e:e957:7de1:ea8e%3
IPv4 Address . . . . . . . . . : 10.197.4.49
Subnet Mask . . . . . . . . . : 255.255.0.0
Default Gateway . . . . . . . : 10.197.0.1
```

How It Works

- Clever use of port manipulations for mapping public and private addresses
 - Not how ports were intended to be used
- NAT-enabled routers create NAT translation tables

How It Works: NAT Translation Table

Use of NAT: Pooling of IP Addresses

- Scenario: Corporate network has many hosts but only a small number of public IP addresses
- NAT solution:
 - Corporate network is managed with a private address space
 - > NAT device manages a pool of public IP addresses

Use of NAT: Load Balancing of Servers (1/2)

- Scenario: Balance the load on a set of identical servers, which are accessible from a single IP address
 - > Used by distributed service providers such as Google
 - > Commonly deployed

Use of NAT: Load Balancing of Servers (2/2)

- The servers are assigned private addresses
- NAT device acts as a proxy for requests to the server from the public network
- The NAT device changes the destination IP address of arriving packets to one of the private server addresses
- Balancing the load of the servers:
 - > E.g., assign the addresses of the servers in a round-robin fashion

Load Balancing of Servers

Use of NAT: Supporting Migration Between Network Service Providers

- Scenario: a corporate network changes its ISP
 - Change all IP addresses in the network?
- NAT solution:
 - > Assign private addresses to the hosts of the corporate network
 - NAT device has address translation entries which bind the private address of a host to the public address
 - ➤ Migration to a new network service provider merely requires an update of the NAT device. The migration is not noticeable to the hosts on the network

Concerns about NAT: Performance

- Modifying the IP header by changing the IP address requires that NAT boxes recalculate the IP header checksum
- Modifying port number requires that NAT boxes recalculate TCP checksum

 Theme in dealing with IP routers: want them to do as little work as possible

Concerns about NAT

- Port numbers were not meant for addressing hosts
- Architectural concern: hosts should be talking directly to each other, without intermediaries modifying IP addresses and port numbers
 - ➤ NAT is an example of a *middlebox*
 - ➤ A host in the public Internet often cannot initiate communication to a host in a private network
 - ➤ The problem is worse, when two hosts that are in a private network need to communicate with each other.
 - Difficult to deploy peer-to-peer applications such as Skype

NAT: Key Points

- Ubiquitously deployed method for remapping IP addresses from one space to another
 - > E.g., Duke network example
- How it works:
 - > NAT translation tables at the NAT routers
 - Clever use of ports for address mapping
- Used for: using a small number of public IPs, server load balancing, corporate network migration
- Concerns: TO FILL IN

Lecture Outline

- Routing wrap-up and review
- Finishing up a collection of disjoint but important IP-related topics
 - Dynamic Host Configuration Protocol (DHCP)
 - ➤ Network Address Translation (NAT)
 - > IPv6
 - > IP tunnels

Next-Generation IP: IPv6

- Core difference: larger address space
 - ➤ IPv4 → IPv6: 32-bit address → 128-bit address
- All OSs support it
- Duke networks support it
 - > To see for yourself:
 - Windows: ipconfig
 - Linux, MacOS: ifconfig

Professor's Example

```
C:\Users\Maria>ipconfig
                 Windows IP Configuration
                 Ethernet adapter Ethernet:
                    Connection-specific DNS Suffix
                                                    fd81:2822:e5b5::fa7
                    IPv6 Address. . . . .
IPv6
                                                    fd81:2822:e5b5:0:30cd:290d:225d:4322
                    IPv6 Address. . . . .
                    Temporary IPv6 Address.
                    Temporary IPv6 Address.
                                                     fd81:2822:e5b5:0:6cee:cf65:d68e:91ab
                    Temporary IPv6 Address.
                                                     fd81:2822:e5b5:0:a941:e817:7360:9ab8
                    Link-local IPv6 Address_
                                                    food: 20cd: 20cd: 225d: 4322%7
IPv4
                    IPv4 Address. . . . .
                                                    192.168.0.227
                    255.255.255.0
                                                    192.168.0.1
                    Ethernet adapter Ethernet 2:
                    Media State . . . . . . . . . . . . . Media disconnected
                    Connection-specific DNS Suffix .:
```


We Are Running Out of IP Addresses. Now What?

- There are more humans than IPv4 addresses
 - Humans on the planet: ~ 7 bln
 - $> 2^{32} = 4,294,967,296 (~ 4.3 bln) addresses with IPv4$
- Many machines need IP addresses, too
 - > Internet of Things
- We increase the address space
 - ➤ IPv4 → IPv6: 32-bit address → 128-bit address
 - > 340,282,366,920,938,463,463,374, 607,431,768,211,456 addresses with IPv6. *5*10*²⁸ addresses per every human

"If the Earth were made entirely out of 1 cubic millimetre grains of sand, then you could give a unique [IPv6] address to each grain in 300 million planets the size of the Earth."

History

- In early 90s, IPv4 was running out of addresses
- Changing to a larger address space requires many changes
 - Core IP header changes → a whole new version of the IP protocol
- IETF solicited other desired features
- Chose one for IPv6 (RFC 2460) in 1998

IPv6: New Features

• Large address space (128-bit)

- Hierarchical addressing and routing, autoconfiguration
- Built-in security, better support for QoS
- New protocols for neighboring node interactions
- Extensibility
- Simplified header format

IPv6 Addresses

- 128 bits long
- Classless: similar to CIDR
- Inherently hierarchical
 - Parts represent the interface, parts represent the network

Recap: IPv4 Addresses

- Dotted decimal notation
- Each byte is identified by a decimal number in the range [0...255]:

10000000	10001111	10001001	10010000	
1 st Byte	2 nd Byte	3 rd Byte	4 th Byte	
= 128	= 143	= 137	_ = 144	
128.143.137.144				

IPv6 Addresses: Semicolon-separated Hexadecimal Notation

- x:x:x:x:x:x:x, where each x is a 16-bit hex number
 - > E.g., 2001:0db8:85a3:0000:0000:8a2e:0370:7334
- Compared to IPv4:
 - > Twice more bits per separated item
 - > Twice more items

IPv6 Addresses: Making Them Easier to Read

- Contiguous 0s are compressed
 - > 2001:0db8:85a3:0000:0000:8a2e:0370:7334 becomes 2001:0db8:85a3::8a2e:0370:7334
 - > Can only be used for one set of consecutive 0s
- First or last zeros can be omitted
 - > 2001:ODB8:AC10:FE01:0000:0000:0000:0000 becomes 2001:ODB8:AC10:FE01::
 - > Extreme example: loopback address
 - > 0000:0000:0000:0000:0000:0000:0001 becomes ::1

IPv6 Headers: Longer but Simpler (1/3)

Recall: IPv4 header

- Variable length
 - > 20 bytes if there are no options
- Options: unordered collection of <type, length, value> tuples
 - ➤ In IPv6, header extensions in a pre-specified order
 - Routers can quickly determine relevant ones

51

IPv6 Headers: Longer but Simpler (3/3)

Recall: IPv4 header

Fragmentation

- Not in IPv6
- IPv6 forces MTU path discovery

Checksum

- > Not in IPv6
- Prioritizing faster processing by the routers

IPv6 Header: Longer but Simpler (3/3)

- IPv6: 40-byte "base" header
 - ➤ Longer: compared to 20 bytes
 - Largely taken up by the long addresses

Extension headers (fixed order, mostly fixed length)

IPv6 Header: Fields (1/2)

- Version: 6
 - Putting "4" in this field does not make it an IPv4 packet
- Traffic class: similar to TOS field: can be used to give priority to certain datagrams
- Flow label: if want to treat e.g., audio, video as complete flows

IPv6 Header: Fields (2/2)

Similar to IPv4:

- Payload length: size of the payload. Same as "length" in IPv4
- Next header: e.g., UDP, TCP. Same as "protocol" in IPv4 header
- ➤ Hop limit: decremented on forwarding. Same as TTL

IPv6 Adoption: Reasons for a Delay (1/2)

- Started to be discussed in early 1990s
 - > When IP addresses were classful
 - ➤ 1993: Introduction of CIDR

IPv6 Adoption: Reasons for a Delay (2/2)

- With CIDR, IP address exhaustion became a less urgent issue
- Proliferation of NAT also helped delay address exhaustion
- IPv6 has been somewhat slow in gaining adoption, but it has picked up in late 2000s

IPv6 Usage in Most Popular Websites: Alexa Internet

- Alexa Internet list of most popular websites
 - > www.alexa.com/topsites
 - Subsidiary of Amazon
 - Not related to Amazon Alexa
- Finds most popular websites based on a combination of page views and unique site visits
- As of June 2019
 - > 26% of Alexa Top 1000 web servers support IPv6
 - > 29% of users reach Google services with IPv6

IPv6 Usage by Major Companies

- Verizon Wireless an important pioneer
- As of 2018, 80% of the traffic from Verizon Wireless used IPv6
- Since 2018, Facebook has been eliminating IPv4 in datacenters

IPv6: Key Points

- Ipv6 offers a much larger address space than IPv4
- Sufficiently different from IPv4
 - > Has new features
 - > Rethinks some of the design decisions
- Has been slower to be adopted than originally expected, but is in sufficiently wide use already

Lecture Outline

- Routing wrap-up and review
- Finishing up a collection of disjoint but important IP-related topics
 - Dynamic Host Configuration Protocol (DHCP)
 - ➤ Network Address Translation (NAT)
 - > IPv6
 - > IP tunnels

IP Tunnels

- How you "VPN" into Duke network
- A technique used in many scenarios
 - ➤ Virtual private networks (VPNs), IPv4-v6 transition, Mobile IP, Multicast, Non-IP forwarding, IPsec

Virtual Private Networks

Need IP tunnels

What is a Tunnel?

- A "pseudowire", or a virtual point-to-point link
 - > Arbitrary number of networks in the middle
- The head router encapsulates a packet in an outer header destined to the tail router

Virtual Interface

- A router adds a tunnel header for packets sent to a virtual interface
- In this example:
 - > First add a header addressed to R2
 - ➤ Then forward according to established forwarding rules
 - Here, send to the Default interface ether1

NetworkNum	nextHop	
10.0.0.0/8	ether0	
20.0.0.0/8	tun0	
Default	ether1	

 All other routers forward the packet like a regular packet destined for R2

Tunnel Applications

Internet VPN

- Security
 - ➤ E.g., VPNs

Remote / roaming users

Carrying non-IP traffic across IP networks

IP in IP Tunneling: IPv4-v6 Transition

IP Tunnel Performance Issues

- Tunnels need to be set up
- Increases the length of the packets
 - > Extra headers
 - > Particularly inefficient for short packets
- Tunnel entry and exit routers need to do more than simply forward packets
 - Potential for slow-down

IP Tunnels: Key Points

- If you've used Duke VPN, you've used IP tunnels
- Create virtual point-to-point connections across global networks
- To achieve it, we use:
 - Packet encapsulation
 - Tunnel-specific virtual interface at an entry router
- Pros: security
- Performance issues: higher overhead, slow-down on some routers

Lecture Summary

- Rounded off our discussion of IP
- Ubiquitously deployed "helpers":
 - Dynamic Host Configuration Protocol (DHCP)
 - Network Address Translation (NAT)
- Next-generation version of IP
 - Sufficiently different from IPv4
 - Deployed, but has not yet overtaken IPv4
- Commonly used way of creating private networks on top of public ones

Next Lecture

- Transport control
 - ➤ Moving up the stack

