ECE 356/COMPSI 356 Computer Network Architecture Transport Protocols. UDP. Monday October 21st, 2019

Recap

- Last lecture: finishing up a collection of IP topics
- Readings for this lecture: PD 5.1, 5.2.1

3

Before: How to Deliver Packets from one Host to Another

- Direct link
 - > Encoding, framing, error detection, reliability
 - Multi-access control
- Multi-link network switching and forwarding
 - Datagrams, virtual circuit
 - Bridges, spanning tree algorithm
- Interconnecting multiple networks
 - > IP addressing, forwarding, routing
 - ARP, distance vector, link state, path vector
 - ➤ NAT, DHCP, tunnels, …

Duke university

Network Service Model

Best-effort

Makes its "best effort", but offers no guarantees
 May discard, reorder, duplicate messages

Does not guarantee integrity of data in the segments

Transport Control: Minimal Features

 Process-to-process delivery: transport layer multiplexing and demultiplexing

> Supporting multiple processes on the same host

Integrity checking
 > Error detection fields

 User Datagram Protocol (UDP) only provides these capabilities

10

Duke UNIVERSITY

Duke UNIVERSITY

Transport Control: Desirable Features

- Reliable delivery
- In-order
- No duplication
- Connection setup
- Not to send faster than a receiver can receive
- · Not to send faster than the network allows
- ...

Duke university

12

Design Choices

- How to achieve the desired process-to-process service model?
 - > Let applications handle it
 - Develop a set of libraries
 - > Enhance the network to provide the desirable features
 - Not considered a good idea
 - Place a service layer on top of IP to handle it
 - · This is chosen by the Internet design

Transport Control: Reliable Data Transfer

- Flow control
- Sequence numbers
- Acknowledgements
- Timers

Duke UNIVERSITY

Complex: will discuss at length

Transport Control: Congestion Control

- Prevents any one connection from swamping the links and routers with excessive amounts of traffic
- Aims to give each connection a fair share of bandwidth

14

Duke UNIVERSITY

Transport Protocols in the Internet

The most commonly used transport protocols are UDP and TCP

UDP: User Datagram Protocol

- Unreliable, connectionless
- Simple
- Unicast and multicast
- Useful only for few applications, e.g., multimedia applications
- Used by many services
 - Network management (SNMP), routing (RIP), naming (DNS), etc.

Duke UNIVERSITY

TCP: Transmission Control Protocol

- Reliable, connection-oriented
- Complex
- Only unicast
- Used for most Internet applications:
 - Web (HTTP), email (SMTP), file transfer (FTP), terminal (telnet), etc.

15

Transport Protocols: Key Points to Remember

- Create a process-to-process communication channel
- End to end protocols
 - Not implemented in network routers
- At minimum, provide process demultiplexing and error checking
 - ➤ UDP
- Can provide reliable in-order delivery, congestion control,

- Designed in 1980
- Minimal transport service: non-guaranteed datagram delivery

Applications

UDF

IP

- "A no-frills, bare-bones transport protocol"
- "Almost a null protocol"
- Only provides:
 - Multiplexing by port number
 - Checksumming of data
- No connection setup: connectionless

Duke UNIVERSITY

Applications

UDP

UDP Pseudo-Header

	IPv4 pseudo header format																																		
Offsets	Octet	0									1									2								3							
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	5 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
0	0		Source IPv4 Address																																
4	32		Destination IPv4 Address																																
8	64				Zer	oes					Protocol								UDP Length																
12	96		Source Port													Destination Port																			
16	128		Length													Checksum																			
20	160+		Dat													Data																			

- Make sure IP does not make a mistake and delivers a wrong packet to the UDP module
- If UDP length is odd, one pad byte of zero will be added to the end for a 16-bit checksum computation
- Jumping ahead: same mechanism used in TCP as well

Duke university

Demultiplexing: How to Find Out Application Ports

- Servers use well-known ports
 - ≻ DNS: 53
 - ≻ RIP: 520

Duke UNIVERSITY

- ≻ OLSR: 698
- A server learns a client's port from its packets

Isn't TCP Always Preferable?

- We already saw applications that run over UDP
 > DHCP, ICMP traceroute
- UDP has its advantages
- Do we always need reliability?
 - ➢ For file transfers, yes
 - For media streaming and real-time communications, no
 - Have no use for a video frame of a minute ago

27

Other Advantages of UDP

- No connection establishment
 - > No connection establishment *delay*
- No connection state
 - Server can support many more active clients
- Supports broadcast and multicast
- Small packet overhead
 - > UDP: 8 bytes
 - > TCP: 20 bytes

Duke <u>university</u>

UDP: Key Points to Remember

- Bare-bones transport protocol
 Only provides *demultiplexing by port numbers* and *checksumming*
- Has important advantages
 - ➢No retransmissions
 - >No connection establishment delay, no state

- Introduction to transport control protocols
- User Datagram Protocol (UDP)
- Transport Control Protocol (TCP)
 - TCP segment format

Dukeuniversity

TCP connection establishment and termination

Unique Design Challenges

- We've learned how to reliably transmit over a direct link
 Coding/encoding, framing, sliding window
- What's new?
 - 1. Process-to-process communication \rightarrow connection setup
 - 2. Heterogeneity
 - > Bandwidth varies: how fast should the sender send?
 - > RTT varies: when should a sender time out?
 - 3. Out of order
 - 4. Resource sharing
 - Many senders share a link in the middle of the network

35

TCP: Connection-Oriented

- Host processes must first "handshake" with each other
 - Exchange messages
 - Establish the parameters of data transfer
- Note: state is established in the end hosts, not the intermediate routers
 - Intermediate routers are oblivious to TCP connections
 - > Note the difference with circuit switching
- Full-duplex
- Point-to-point only: no broadcast, no multicast

36

Dukeuniversity

TCP: Key Points to Remember

- One of the key Internet protocols
- Connection-oriented, reliable communications

