10/29/2019

ECE 356/COMPSI 356
Computer Network Architecture

How TCP Achieves Reliable
Operation

Monday October 28th, 2019

Recap

e Last lecture:

U Transport control
u UDP

» Readings for this lecture: PD 5.2.271 5.2.6

10/29/2019

Transport Layer Design Goals

Google Chrome

» A process-to-process communication channel

U As if the hosts running processes were directly connected
U Upper-layer: application
U Lower-layer: network (IP)

Transport Layer: i@
End-to-End Protocols &

e Implemented in end

systems ?é P
g physic‘al
* Not implemented Iin
network routers P
.e g physical network
U Routers act only on f= [datalink Y-
. q - physical _ physical
network-layer fields of =3 lé :

the datagram

10/29/2019

User Datagram Protocol (UDP)

Minimal transport service: non-guaranteed datagram delivery
A A -frlls, barecbones transport proto

Applications Applications

“Almost a null protocol”

Only provides:
U Multiplexing by port number
U Checksumming of data

Has important advantages over TCP
NoO connection setup: connectionless

Lecture Outline

e Transport Control Protocol (TCP)
U TCP segment format (PD 5.2.2)
U Adaptive retransmission intervals (PD 5.2.6)
U Reliable data transfer (PD 5.2.4)
U TCP flow control (PD 5.2.4)
U TCP connection establishment and termination (PD 5.2.3)

* Next lecture: TCP congestion control

10/29/2019

Overview

TCP = Transmission Control Protocol
« Connection-oriented protocol

* Provides a reliable unicast end-to-end byte stream over an
unreliable internetwork

(7]
=
)

_|
() { Byte Stream
jv)

TCP

LI
LI

IP Internetwork

TCP Manages a Byte Stream

,// Process \\-, / Process \
\ writes data |/ reads data)
N / \ 1

Socket Socket

TCP | Segment —p | Segment —b TCP

send receive

buffer buffer

* One-way shown for simplicity; bi-directional in general

« Transmitting segments: carrying a segment of the byte stream
8

10/29/2019

Unique Design Challenges

« Weve learned how to reliably transmit over a direct link
U Coding/encoding, framing, sliding window

e What s new?
1. Process-to-process communication A connection setup
2. Heterogeneity
U Bandwidth varies: how fast should the sender send?
U RTT varies: when should a sender time out?
3. Out of order
4. Resource sharing
U Many senders share a link in the middle of the network

TCP: Connection-Oriented

e Host processes must first
U Exchange messages
U Establish the parameters of data transfer

* Note: state is established in the end hosts, not the
intermediate routers
U Intermediate routers are oblivious to TCP connections
U Note the difference with circuit switching

* Full-duplex
» Point-to-point only: no broadcast, no multicast

10

10/29/2019

TCP: Key Points to Remember

Connection-oriented unicast operation
Reliable, in-order byte stream service
Flow control: not to overrun a receiver
Congestion control: not to congest the network

Lecture Outline

* Transport Control Protocol (TCP)
U TCP segment format (PD 5.2.2)
U Adaptive retransmission intervals (PD 5.2.6)
U Reliable data transfer (PD 5.2.4)
U TCP flow control (PD 5.2.4)

U TCP connection establishment and termination
(PD 5.2.3)

12

10/29/2019

TCP Segment Format

TCP segments have a 20
byte header with >= 0 bytes
of data

U Note similarities and
differences with UDP header

Source Port Destination Port

Length Checksum

UDP Header

0

4 10

16

31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen 0

Flags

AdvertisedWindow

Checksum

UrgPtr

Options (variable)

Data

/\\\\/\///’\/\/\
\// \/\/\/\ __ /\

/\/ \/.4—

13

TCP Ports (1/2)

e Same as UDP

e A port number
identifies the endpoint
of a connection

0

4 10

16

C SrcPort * DstPort >

SequenceNum

31

Acknowledgment

HdrLen

0

Flags

AdvertisedWindow

Checksum

UrgPtr

Options (variable)

10/29/2019

TCP Ports (2/2)

« Apair <IP address, port number> identifies one endpoint of
a connection

« Two pairs <client IP address, client port number> and
<server IP address, server port number> identify a TCP

connection
Applications Applications
PortsQB?lM Q ?16 Ports:
D
KR

TCP: Reliable Communications

0 4 10 16 31
* Via sequence numbers SicPort

and acknowledgements

DstPort

SequenceNum

Acknowledgment

HdrLen 0 Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)

Data

/\\/\ /\\/\

10/29/2019

 Identifies the first byte in
the segment

 Initial Sequence Number
of a connection is set
during connection
establishment

TCP Sequence Number

0 4 10 16 31
SrcPort DstPort
(SequenceNum)
Acknowledgment
HdrLen 0 Flags AdvertisedWindow

Checksum UrgPtr

Options (variable)
Data

» Acknowledgements are
piggybacked

 The AckNo contains
the next SegNo that a
host is expecting

« ACK is cumulative

TCP Acknowledgement

0 4

10

16 31

SrcPort

DstPort

SequenceNum

Acknowledgm@

HdrLen

0

Flags AdvertisedWindow

Checksum

UrgPtr

Options (variable)

//\/\ \//\»/n]
AN N

10/29/2019

Data for 1st segment
|

File

Data for 2nd segment

|

Sequence Numbers and ACKSs:
An Example (1/2)

0 1

1,000

1,999

499,999

number :

 Example: host Ais sending 500,000 bytes to host B, when

maximum-segment size is 1,000 bytes

U First sequence 0, S econd

U Acknowledgement number is the next number expected from host B
19

from host B

» Acknowledgements are cumulative:
i Areceived 0 — 535 and 900 — 1000: it puts 536 in the
acknowledgement

Sequence Numbers and ACKs:
An Example (2/2)

« Acknowledgement number is the next number expected

U E.g., host Areceived bytes 0 — 535 from host B, and is about to
send a segment: host A puts 536 in its acknowledgement field

10

10/29/2019

TCP Advertised Window (1/2)

« Used to implement flow
control

 Each side of the
connection advertises
the window size

* Window size is the
maximum number of
bytes that a receiver can
accept

0 4 10

16 31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen

0

Flags

Checksum

UrgPtr

Options (variable)

Data

TCP Advertised Window (2/2)

* Included in every
segment: dynamic

* Maximum window size
is 216-1= 65,535 hytes

U Problematic for high-
speed links

0 4 10

16 31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen

0

Flags

Checksum

UrgPtr

Options (variable)

11

10/29/2019

A Simplified TCP Process

Data (SequenceNum)

/___-—" ’—_‘—-“‘-‘
Sender Receiver

‘-_\-___ -./_..-"

Acknowledgment +
AdvertisedWindow

TCP Header Length

10 16 31

« Variable-length header SroPor DstPort
U Minimum: 20 bytes SequenceNum
« Header length: a 4-bit ~ Acknowtedgment

field {\Hdr_Le/f) 0 | Flags | AdvertisedWindow

» Length of header in 32- Checksum UrgPtr
bit words Options (variable)

PESY

24

12

10/29/2019

Bits

TCP Flag

URG: urgent data
(generally not used)\ source port # dest port #

ACK: ACK #

sequence number

valid \\Eolgnowledgement number

PSH: push data now

head
len

not
used_g

RISIF| receive window

(generally not used) —

C

sum Urg data pointer

RST, SYN, FIN:— |
connection estab.

options (variable length)

(setup, teardown
commands)

application
data
(variable length)

range:

TCP Flag Bits: URG, ACK, PSH

 URG: Urgent pointer is valid (not encouraged to use)
U If the bit is set, the following bytes contain an urgent message in the

SeqgNo <= urgent message < SegNo+urgent pointer
» ACK: Acknowledgement Number is valid
U Segment contains a valid ACK

 PSH: PUSH Flag (generally not used)

U Noaotification from sender to the receiver that the receiver should pass
all data that it has to the application.

U Normally set by a sender when the sender s buffer is empty

26

13

10/29/2019

TCP Flag Bits: Connection Establishment

» RST: Reset the connection

U Receiver of a RST terminates the connection and
indicates higher layer application about the reset

« SYN: Synchronize sequence numbers

U Sent in the first packet when initiating a connection
 FIN: Sender is finished with sending

U Used for closing a connection

TCP Checksum

0 4 10 16 31
.. . SrcPort DstPort
e Similar mechanism as
S N
UDP equenceNum
Acknowledgment

« Cover TCP header, data,
and a pseudo-header Hdrlen| 0 | Flags

(Checksum) UrgPtr

Options (variable)

AdvertisedWindow

Data

14

10/29/2019

] 8 16 3

TCP Pseudo- Sowrce 17 tres

Destination IP address

B ——
H e ad e r zero Protocol 4, TCP Length :)
_ ——

\

* Interesting part: TCP length

U The length of the TCP segment, including both header and data
U Not a specific header field: it is computed

« If TCP length is odd, one pad byte of zero will be added to
the end for a 16-bit checksum computation

TCP URG Pointer

0 4 10 16 31
* Urgent Pointer: SrcPort DstPort
U Only valid if URG flag SequenceNum
IS set Acknowledgment
HdrLen 0 Flags AdvertisedWindow

Checksum C UrgPtr #

Options (variable)

Data

15

10/29/2019

TCP Segment Format:
Key Points to Remember

0 4 10 16 31
« Like UDP, provides for SrcPort | DstPort
demultiplexing and SequenceNum
ChECksummlng Acknowledgment
° AISO has dedlcated flelds fOI‘ HdrLen 0 Flags AdvertisedWindow
. . . . Checksum UrgPtr
U Reliable communications
U FIOW Control Options (variable)
U Connection establishment ,,,,,/:'::\—r—~/1\,,/,:;v?f\tit\//;;», A

Lecture Outline

* Transport Control Protocol (TCP)
U TCP segment format (PD 5.2.2)
U Adaptive timeout intervals (PD 5.2.6)
U Reliable data transfer (PD 5.2.4)
U TCP flow control (PD 5.2.4)

U TCP connection establishment and termination
(PD 5.2.3)

32

16

10/29/2019

Reliable Data Transfer in TCP

 Ensures that the data stream read out of the
TCP receive buffer is:

U Without gaps
U Without duplication
U In sequence

* Exactly the same byte stream that was sent

Same Core Principles as
What We Studied for Link
Layer Reliability

I

Seq=92, 8 bytes of data

» Differences include:
U Adaptive timeout values

U One timeout variable per
connection

/
ACK=100
X

—— timeout —*

Seq=92, 8 bytes of data

U Retransmissions triggered by
timeouts and duplicate
ACK=100
acknowledgements

/

17

10/29/2019

RTT Estimation and ...
Timeout —

e Reliable communications

requires timeouts and e
retransmissions Frame(7]

Timeout Frame[5]
 How should we set

timeout values?
U Assumed to be given before

Frame|8]

How to Set TCP Timeout Value?

» Definitely needs to be longer than RTT
U But RTT varies in practice
* |f timeout is too short:

U Premature timeout
U Unnecessary retransmissions

 [f timeout is too long:
U Slow reaction to segment loss
U Large average delays when the number of retransmissions is
large

18

10/29/2019

RTT Estimation and Timeout

e Set t1 meout to RTT +

e Two parts:
U Estimating RTT
U Calculating the additional margin

Estimating RTT

« SampleRTT: measured time from segment
transmission until ACK receipt
U Ignore retransmissions

« SampleRTT varies. We want estimated RTT to
be “smoother?”

» Solution: average several recent measurements,
not just current SampleRTT

19

10/29/2019

RTT Estimates:
Exponential Weighted Moving Average

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

 Influence of past sample decreases
exponentially fast
« Typical value: a = 0.125

U 1/8: efficient implementation due to the use of the
power of 2

39

Sample And Estimated RTT: An Example

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

g Iﬁ)

(@]

P | B PR

E L A i

|_

%
¢ SampleRTT
EstimatedRTT

43 50 57 64 71
time (seconds)

20

10/29/2019

AnSafety Margino
Variability in RTT

DevRTT = (1-b)*DevRTT + b*| SampleRTT-EstimatedRTT]|

» Also exponentially weighed

» Typical value: b = 0.25
U Also a power of 2: 1/4

Setting and Managing Timeout Interval

Timeoutinterval = EstimatedRTT + 4* DevRTT

estimated RTT safety margin

e [nitial value: 1s

 When a timeout occurs, Timeoutlnterval is doubled

U Goes back to the formula-based calculation after a segment is
received

21

10/29/2019

Adaptive Timeout Intervals:
Key Points to Remember

« Timeout interval is not fixed
U Itis set to a sender-estimated estimated RTT + a safety margin

U Both are dynamic metrics, recalculated with each recorded RTT

« Estimated RTT is calculated based on exponential
averaging of sample RTT values

« Safety margin is calculated based on the variability in the
RTT

Lecture Outline

* Transport Control Protocol (TCP)
U TCP segment format (PD 5.2.2)
U Adaptive timeout intervals (PD 5.2.6)
U Reliable data transfer (PD 5.2.4)
U TCP flow control (PD 5.2.4)

U TCP connection establishment and termination
(PD 5.2.3)

44

22

10/29/2019

Reliable Data Transfer in TCP

« Familiar reliable communication mechanisms
U Cumulative acknowledgements

* New: previously assumed that an individual
timer is associated with each transmitted packet
U TCP uses a single retransmission timer

* New: retransmissions triggered by:
U Timeout events
U Duplicate ACKs

45

3 Types of TCP Sender Events

» Data received from the application
e Timeout
 ACK received

23

10/29/2019

TCP Sender Events:
Data Received from an Application

» Create segment with seq #

U Seq # is byte-stream number of first data byte in
segment

e Pass the segment to IP
« Start timer if not already running

U Think of timer as for oldest unacked segment
U Expiration interval: TimeOutinterval

TCP Sender Events:
Timeout and ACK Received

e Timeout:
U Retransmit segment that caused timeout
U Restart timer

» ACK Received:

U If ack acknowledges previously unacked segments:
» Update what is known to be ACKed
« Start timer if there are still unacked segments

24

10/29/2019

TCP Retransmission l Hosts
: = =3

Scenarios (1/3) i

« Retransmission due to a I SersR By e 8
lost ACK é y A/ACK:100/

o Segment times out, and is l ——
retransmitted Seqm92 8bylesgldaa

* New (duplicate) data ignored ACKo1OR

e ACK retransmitted —

TCP Retransmission Host oste

\

Scenarios (2/3) < =

SendBase=92

/

e Cumulative ACKs

 Both ACKs do not make it
back in time

« Segment 92 is retransmitted
» Both segments are Seq=92, 8

acknowledged SendBase=100 bytes of data

.. . SendBase=120
U If ACK arrives before the new

timeout value, segment 100 is .

not retransmitted SendBase=120

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

\

ACK=100
ACK=120

—— timeout ——

/

ACK=120

\

50

25

10/29/2019

I
o

4
>
I
o)

a
W

TCP Retransmission
Scenarios (3/3)

e Cumulative ACKs

i
¢
‘»‘

/

Seq=92, 8 bytes of data

/
/

Seg=100, 20 bytes of da

ACK=100
X<
ACK=120

i

e ACK 100 is lost
e ACK 120 arrives before timeout

* Host A knows that everything
was received

\

———— timeout —

A

Seq=120, 15 bytes of data

\

U No data is retransmitted

Doubling Timeout
Interval After a Timeout

o
]
—
>
T
o
20
Blev)

1

» Set to twice the previous value T Seq=92, 8 bytes of data
U Rather than deriving from RTT g ACKe10d
measures g Nl
e Double for each successive l
timeout

. .. . Seq=92, 8 bytes of data
U Similar to exponential backoff

« Aform of congestion control ACK=100

U Assume that losses are due to —
network being overloaded

52

26

10/29/2019

TCP ACK Generation

Arrival of in-order segment with expected Delayed ACK. Wait up to 500ms

seq #. All data up to expected seq # for next segment. If no next segment,
already ACKed. send ACK.

Arrival of in-order segment with expected Immediately send single cumulative
seq #. One other segment has ACK ACK, ACKing both in-order segments.
pending.

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. #s. Gap detected. indicating seq. # of next expected byte.
Arrival of segment that partially or Immediate send ACK, provided that
completely fills gap. segment starts at lower end of gap.

TCP Fast Retransmit (1/2)

» Time-out period often relatively long
U Long delay before resending lost packet
» Detect lost segments via duplicate ACKs

U Sender often sends many segments back-to-back

U If segment is lost, there will likely be many duplicate
ACKs

27

10/29/2019

TCP Fast Retransmit (2/2)

» If sender receives 3 ACKs for same data (triple

duplicate ACKs) resend unacked segment with
smallest seq #

U Likely that unacked segment is lost
U Do not wait for timeout

TCP Reliable Data Transfer:
Key Points to Remember

 TCP uses cumulative acknowledgements and
retransmissions to ensure reliable in-order data transfer
U Similar to what we have seen for link-layer reliability before

« Uses one retransmission timer per connection
* Doubles timeout interval after a timeout
U Form of congestion control

» Uses duplicate acknowledgements to retransmit
segments before timeouts

56

28

10/29/2019

Lecture Outline

* Transport Control Protocol (TCP)
U TCP segment format (PD 5.2.2)
U Adaptive retransmission intervals (PD 5.2.6)
U Reliable data transfer (PD 5.2.4)
U TCP flow control (PD 5.2.4)

U TCP connection establishment and termination
(PD 5.2.3)

57

application

Flow Control: Application may roce
remove data fromT|—

Definition (1/2) TCP socket [buriasls

TCP socket | o
. sl ower| f&gevgRdulfers
. TCP_hosts set up Tep ——
receive buffers for receiver is -
the data, on both delivering code
; f’ (sender is
sides o a sending) | @ T
connection P L
i X
1 ‘vf

from sendqlr

y
Receiver Erotocol stack 58

29

10/29/2019

Flow Control: Definition (1/2)

e Flow control: recei ver control s s
overfl ow receiver’'s buffer
fast

« Congestion control: throttling the sender due to
congestion on the network

Flow Control: Use Receive Window Size

0 4 10 16 31
e Same concept SrcPort DstPort
seen for link layer flow SequenceNum
COﬂthl Acknowledgment
* EXpIICItly Slgnaled In HdrLen 0 Flags @msedWmd)
Segment headers Checksum UrgPtr
Deta (Sequencenm) Options (variable)
/"f—-’——_‘—\"“h
Sender __ Receiver Data o~
--____ T - P - //\/ /;\/ . / \\/f\ /\ S
Acknowledgment + [“/ e =
AdvertisedWindow 60

30

10/29/2019

TCP Flow Control (1/2)

_ . to application process
e Receil ver advertlseSffree

buffer space by including f
rwnd value in TCP header of
receiver-to-sender segments rwnT

i} . . d free buffer space
U RcvBuffer size set via socket
options (typical default is 4096 '

bytes)

buffered data

TCP segment payloads

Receiver-side buffering
61

TCP Flow Control (2/2)

to application process
« Sender limits amount of

unacked (“fi Ini ght ") dal ,ifereddata
r eceirnwnvalues T
d

e Guarantees receive buffer rw free buffer space
will not overflow 4l '

=]

TCP segment payloads

Receiver-side buffering
62

31

10/29/2019

Window Probes

 What if a receiver advertises a window size of
Zero?

UProbl e m: Receiver <can
stops sending more data

» Design choices
U Receivers send duplicate ACKs when window opens
U Sender sends periodic 1 byte probes

Flow Control:
An Interactive Demonstration

: Pause Faster Slower Reset

e Avisualization of the File Size
process is available at: Buffer Size

Host A

U https://media.pearsoncmg.c
om/aw/ecs _kurose compnet
work _7/cw/content/interactiv
eanimations/flow- oKs

Host B

0 KB

control/index.html - -

ACK = 2048 WIN=0

32

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html

10/29/2019

No Flow Control in UDP: What Happens?

* Segments may be lost at the receiver due to
buffer overflow

« Typical implementation: UDP appends segments
in a finite-sized buffer at the receiving process

 If the process does not read the segments fast
enough, the buffer will overflow and the
segments will be dropped

TCP Flow Control:
Key Points to Remember
* Receiver controls sender by explicitly stating

how much space is available in the receive
buffer

U Information included in segment headers
U Highly dynamic

» Approach guarantees that receive buffer will not
overflow

33

10/29/2019

Lecture Outline

* Transport Control Protocol (TCP)
U TCP segment format (PD 5.2.2)
U Adaptive retransmission intervals (PD 5.2.6)
U Reliable data transfer (PD 5.2.4)
U TCP flow control (PD 5.2.4)

U TCP connection establishment and
termination (PD 5.2.3)

67

Recap:
Setting Up TCP

Sockets

accept ()

Blocks until connection

e TCP is connection-oriented
from client

i Processes must f|rSt 1 Cannection establishment
‘handshake” with[=each ot

U Agree to establish connection] Deta (request)
U Agree on connection parameters
Process request
!
i) Data (reply) @U 0
o0]

34

10/29/2019

Impact of site performance on overall site conversion rate....

Baseline — 1 in 2 site visits had response time > 4 seconds
I ‘ : P * Sharp decline in conversion rate as average site load time increases from 1 to 4 seconds
* Overall average site load time is lower for the converted population (3.22 Seconds) than the non-
converted population (6.03 Seconds)

Performance
IS Critical to
Business

o1 M'M 34 45 58 67 T8 8D 80 1011 1192 1293 1594 1415 18
Load Time (Seconds)

Page Performance & Site Conversion ~ Feb 2012

Walmart B

. — 32bits >
Recap URG: urgent data

(generally not used) source port # | dest port #
Segment ™

ACK: ACK # \ Sequencé number

Header valid \\Mowledgement number
head| not . .
Fla S PSH: push data now .Z"; ,,Zgﬂ_DAIE’RSF receive window
g (generally not Used) - C sSum Urg data pointer

RST, SYN, FIN:— |
connection estab.
(setup, teardown
commands)

options (variable length)

application
data
(variable length)

35

10/29/2019

Recap: TCP Flag Bits: Connection
Management

» RST: Reset the connection

U Receiver of a RST terminates the connection and
indicates higher layer application about the reset

» SYN: Synchronize sequence numbers

U Sent in the first packet when initiating a connection
* FIN: Sender is finished with sending

U Used for closing a connection

TCP Connection Establishment

Active participant Passive participant
« TCP uses a three- (eer o
way handshake
to open a

connection

36

10/29/2019

Three-way Handshake: Step 1

» Client sends a special segment: no data, SYN
bit setto 1

u “SYN segment”

* Picks a randomly chosen initial sequence
number client_isn and sends it over

Three-way Handshake: Step 2

* SYN segment arrives to the server
e Server allocates TCP buffers and variables

« Sends a “connection granted
No application-layer data
SYN bitsetto 1

Acknowledgement is set to client_isn+1

Chooses its own initial sequence number server_isn, puts it in
the sequence number field

UASYNACKO segment

|
|
|
|

37

10/29/2019

Three-way Handshake: Step 3

Client receives SYNACK segment
Client allocates buffers and variables

Client sends to server another segment:
U Acknowledgement: server_isn+1
U SYN bitis setto O
U May carry payload

SYN bit set to zero in all subsequent packets

Dress Up as a TCP | Jestan
PaC ket Dress up as a TCP packet for Halloween...

Them: what are you dressed as?

You: are you ready for me to tell you?

» A 3-way handshake example

Them: | am ready for you to tell me

* More protocol jokes:
https://twitter.com/PPathole/st
atus/1187371220238508035 Them: ok

You: | am a TCP packet

You: ok | am going to tell you

Replying to @PPathole

,"“ Kah Zuhl List @kazoolist - Oct 25

| dressed up as UDP packet last year. Them: ...
No one acknowledged me. You: | am a TCP packet
Q 1 O 6

Them: ok

38

https://twitter.com/PPathole/status/1187371220238508035
https://twitter.com/PPathole/status/1187371220238508035

10/29/2019

TCP Connection Termination

Need to de-allocate buffers and variables

Each end of the data flow must be shut down independently

If one end is done it sends a FIN segment. The other end sends ACK
Four messages to completely shut down a connection

A FIN B
ACK

FIN

ACK

TCP Connection Management:
Key Points to Remember

Need to allocate resources Active participant Passive participant
(client) (server)

on both ends of the |

communication

Connection established via
a three-way handshake

Connections need to be
torn down, to deallocate the
resources

39

10/29/2019

0 4 10 16 31
« TCP segment header has SrcPort | DstPort

dedicated fields for: SequenceNum

U Demultiplexing by port numbers Aeknpwiedgment

u Checksumming HdrLen 0 Flags AdvertisedWindow

U Reliable communications Checksum UrgPtr

i Flow control Options (variable)

0 Connection establishment paa
T’;:/:iA,\::f:/s‘\f/’l/\::Af\/)'\:::«—::;//’“' :jf]

Lecture Summary (2/2)

e Core mechanisms discussed:

U Reliable data transfer, including adaptive
timeout values

u TCP flow control

U TCP connection establishment and
termination

40

10/29/2019

Next Lecture

 TCP congestion control

41

