
10/29/2019

1

ECE 356/COMPSI 356

Computer Network Architecture

How TCP Achieves Reliable

Operation

Monday October 28th, 2019

Recap

• Last lecture:

Transport control

UDP

• Readings for this lecture: PD 5.2.2 – 5.2.6

2

10/29/2019

2

Transport Layer Design Goals

• A process-to-process communication channel

 As if the hosts running processes were directly connected

 Upper-layer: application

 Lower-layer: network (IP)

3

• Implemented in end

systems

• Not implemented in

network routers

 Routers act only on

network-layer fields of

the datagram
4

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer:

End-to-End Protocols

10/29/2019

3

User Datagram Protocol (UDP)

• Minimal transport service: non-guaranteed datagram delivery

• “A no-frills, bare-bones transport protocol”

• “Almost a null protocol”

• Only provides:

 Multiplexing by port number

 Checksumming of data

• Has important advantages over TCP

• No connection setup: connectionless

UDP

IP IPIP IP IP

UDP

Applications Applications

5

Lecture Outline

• Transport Control Protocol (TCP)

TCP segment format (PD 5.2.2)

Adaptive retransmission intervals (PD 5.2.6)

Reliable data transfer (PD 5.2.4)

TCP flow control (PD 5.2.4)

TCP connection establishment and termination (PD 5.2.3)

• Next lecture: TCP congestion control

6

10/29/2019

4

Overview

TCP = Transmission Control Protocol

• Connection-oriented protocol

• Provides a reliable unicast end-to-end byte stream over an

unreliable internetwork

TCP

IP Internetwork

B
yt

e
 S

tr
e

a
m

B
yt

e
 S

tr
e

a
m

TCP

7

TCP Manages a Byte Stream

• One-way shown for simplicity; bi-directional in general

• Transmitting segments: carrying a segment of the byte stream
8

10/29/2019

5

Unique Design Challenges

• We’ve learned how to reliably transmit over a direct link

 Coding/encoding, framing, sliding window

• What’s new?

1. Process-to-process communication connection setup

2. Heterogeneity

 Bandwidth varies: how fast should the sender send?

RTT varies: when should a sender time out?

3. Out of order

4. Resource sharing

Many senders share a link in the middle of the network
9

TCP: Connection-Oriented

• Host processes must first “handshake” with each other

 Exchange messages

 Establish the parameters of data transfer

• Note: state is established in the end hosts, not the

intermediate routers

 Intermediate routers are oblivious to TCP connections

 Note the difference with circuit switching

• Full-duplex

• Point-to-point only: no broadcast, no multicast
10

10/29/2019

6

TCP: Key Points to Remember

• Connection-oriented unicast operation

• Reliable, in-order byte stream service

• Flow control: not to overrun a receiver

• Congestion control: not to congest the network

11

Lecture Outline

• Transport Control Protocol (TCP)

TCP segment format (PD 5.2.2)

Adaptive retransmission intervals (PD 5.2.6)

Reliable data transfer (PD 5.2.4)

TCP flow control (PD 5.2.4)

TCP connection establishment and termination

(PD 5.2.3)
12

10/29/2019

7

TCP Segment Format

TCP segments have a 20

byte header with >= 0 bytes

of data

 Note similarities and

differences with UDP header

13

TCP Ports (1/2)

• Same as UDP

• A port number

identifies the endpoint

of a connection

14

10/29/2019

8

TCP Ports (2/2)

• A pair <IP address, port number> identifies one endpoint of

a connection

• Two pairs <client IP address, client port number> and

<server IP address, server port number> identify a TCP

connection

TCP

IP

Applications

23 10480Ports:

TCP

IP

Applications

7 1680 Ports:

15

TCP: Reliable Communications

• Via sequence numbers

and acknowledgements

16

10/29/2019

9

TCP Sequence Number

• Identifies the first byte in

the segment

• Initial Sequence Number

of a connection is set

during connection

establishment

17

TCP Acknowledgement

• Acknowledgements are

piggybacked

• The AckNo contains

the next SeqNo that a

host is expecting

• ACK is cumulative

18

10/29/2019

10

• Example: host A is sending 500,000 bytes to host B, when

maximum segment size is 1,000 bytes
 First sequence number: 0, second one: 1,000, third one: 2,000…

 Acknowledgement number is the next number expected from host B

Sequence Numbers and ACKs:

An Example (1/2)

19

• Acknowledgement number is the next number expected

from host B
 E.g., host A received bytes 0 – 535 from host B, and is about to

send a segment: host A puts 536 in its acknowledgement field

• Acknowledgements are cumulative:
 A received 0 – 535 and 900 – 1000: it puts 536 in the

acknowledgement

Sequence Numbers and ACKs:

An Example (2/2)

20

10/29/2019

11

TCP Advertised Window (1/2)

• Used to implement flow

control

• Each side of the

connection advertises

the window size

• Window size is the

maximum number of

bytes that a receiver can

accept

21

TCP Advertised Window (2/2)

• Included in every

segment: dynamic

• Maximum window size

is 216-1= 65,535 bytes

 Problematic for high-

speed links

22

10/29/2019

12

A Simplified TCP Process

23

• Variable-length header

 Minimum: 20 bytes

• Header length: a 4-bit

field

• Length of header in 32-

bit words

TCP Header Length

24

10/29/2019

13

TCP Flag

Bits

25

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointer checksum

F S R P A U
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab.

(setup, teardown

commands)

• URG: Urgent pointer is valid (not encouraged to use)

 If the bit is set, the following bytes contain an urgent message in the

range:

SeqNo <= urgent message < SeqNo+urgent pointer

• ACK: Acknowledgement Number is valid

 Segment contains a valid ACK

• PSH: PUSH Flag (generally not used)

 Notification from sender to the receiver that the receiver should pass

all data that it has to the application.

 Normally set by a sender when the sender’s buffer is empty

TCP Flag Bits: URG, ACK, PSH

26

10/29/2019

14

• RST: Reset the connection

Receiver of a RST terminates the connection and

indicates higher layer application about the reset

• SYN: Synchronize sequence numbers

Sent in the first packet when initiating a connection

• FIN: Sender is finished with sending

Used for closing a connection

TCP Flag Bits: Connection Establishment

27

• Similar mechanism as

UDP

• Cover TCP header, data,

and a pseudo-header

TCP Checksum

28

10/29/2019

15

TCP Pseudo-

Header

• Interesting part: TCP length

 The length of the TCP segment, including both header and data

 Not a specific header field: it is computed

• If TCP length is odd, one pad byte of zero will be added to

the end for a 16-bit checksum computation

29

• Urgent Pointer:

Only valid if URG flag

is set

TCP URG Pointer

30

10/29/2019

16

TCP Segment Format:

Key Points to Remember

• Like UDP, provides for

demultiplexing and

checksumming

• Also has dedicated fields for

 Reliable communications

 Flow control

 Connection establishment

31

Lecture Outline

• Transport Control Protocol (TCP)

TCP segment format (PD 5.2.2)

Adaptive timeout intervals (PD 5.2.6)

Reliable data transfer (PD 5.2.4)

TCP flow control (PD 5.2.4)

TCP connection establishment and termination

(PD 5.2.3)
32

10/29/2019

17

Reliable Data Transfer in TCP

• Ensures that the data stream read out of the

TCP receive buffer is:

Without gaps

Without duplication

 In sequence

• Exactly the same byte stream that was sent

33

Same Core Principles as

What We Studied for Link

Layer Reliability

• Differences include:

 Adaptive timeout values

 One timeout variable per

connection

 Retransmissions triggered by

timeouts and duplicate

acknowledgements

 34

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X ti
m

e
o
u
t

ACK=100

10/29/2019

18

• Reliable communications

requires timeouts and

retransmissions

• How should we set

timeout values?
 Assumed to be given before

35

RTT Estimation and

Timeout

How to Set TCP Timeout Value?

• Definitely needs to be longer than RTT

 But RTT varies in practice

• If timeout is too short:

 Premature timeout

 Unnecessary retransmissions

• If timeout is too long:

 Slow reaction to segment loss

 Large average delays when the number of retransmissions is

large

36

10/29/2019

19

RTT Estimation and Timeout

• Set timeout to RTT + “safety margin”

• Two parts:

Estimating RTT

Calculating the additional margin

37

Estimating RTT

• SampleRTT: measured time from segment

transmission until ACK receipt

 Ignore retransmissions

• SampleRTT varies. We want estimated RTT to

be “smoother”

• Solution: average several recent measurements,

not just current SampleRTT
38

10/29/2019

20

RTT Estimates:

Exponential Weighted Moving Average

• Influence of past sample decreases

exponentially fast

• Typical value: = 0.125

1/8: efficient implementation due to the use of the

power of 2
39

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

40

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T

T
 (

m
ill

is
e

c
o

n
d

s
)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

SampleRTT

EstimatedRTT

time (seconds)

Sample And Estimated RTT: An Example

10/29/2019

21

“Safety Margin”: Based on the

Variability in RTT

• Also exponentially weighed

• Typical value: = 0.25

Also a power of 2: 1/4

41

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

Setting and Managing Timeout Interval

• Initial value: 1s

• When a timeout occurs, TimeoutInterval is doubled

 Goes back to the formula-based calculation after a segment is

received
42

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

10/29/2019

22

Adaptive Timeout Intervals:

Key Points to Remember

• Timeout interval is not fixed

 It is set to a sender-estimated estimated RTT + a safety margin

 Both are dynamic metrics, recalculated with each recorded RTT

• Estimated RTT is calculated based on exponential

averaging of sample RTT values

• Safety margin is calculated based on the variability in the

RTT

43

Lecture Outline

• Transport Control Protocol (TCP)

TCP segment format (PD 5.2.2)

Adaptive timeout intervals (PD 5.2.6)

Reliable data transfer (PD 5.2.4)

TCP flow control (PD 5.2.4)

TCP connection establishment and termination

(PD 5.2.3)
44

10/29/2019

23

Reliable Data Transfer in TCP

• Familiar reliable communication mechanisms

Cumulative acknowledgements

• New: previously assumed that an individual

timer is associated with each transmitted packet

TCP uses a single retransmission timer

• New: retransmissions triggered by:

Timeout events

Duplicate ACKs
45

3 Types of TCP Sender Events

• Data received from the application

• Timeout

• ACK received

46

10/29/2019

24

TCP Sender Events:

Data Received from an Application

• Create segment with seq #

Seq # is byte-stream number of first data byte in

segment

• Pass the segment to IP

• Start timer if not already running

Think of timer as for oldest unacked segment

Expiration interval: TimeOutInterval

47

TCP Sender Events:

Timeout and ACK Received

• Timeout:

Retransmit segment that caused timeout

Restart timer

• ACK Received:

 If ack acknowledges previously unacked segments:

• Update what is known to be ACKed

• Start timer if there are still unacked segments

 48

10/29/2019

25

TCP Retransmission

Scenarios (1/3)

• Retransmission due to a

lost ACK

• Segment times out, and is

retransmitted

• New (duplicate) data ignored

• ACK retransmitted

49

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X ti
m

e
o
u
t

ACK=100

TCP Retransmission

Scenarios (2/3)

• Cumulative ACKs

• Both ACKs do not make it

back in time

• Segment 92 is retransmitted

• Both segments are

acknowledged

 If ACK arrives before the new

timeout value, segment 100 is

not retransmitted 50

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8

bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

10/29/2019

26

TCP Retransmission

Scenarios (3/3)

• Cumulative ACKs

• ACK 100 is lost

• ACK 120 arrives before timeout

• Host A knows that everything

was received

 No data is retransmitted

51

X

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Doubling Timeout

Interval After a Timeout

• Set to twice the previous value

 Rather than deriving from RTT

measures

• Double for each successive

timeout

 Similar to exponential backoff

• A form of congestion control

 Assume that losses are due to

network being overloaded
52

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X ti
m

e
o
u
t

ACK=100

10/29/2019

27

TCP ACK Generation

Event at receiver TCP receiver action

Arrival of in-order segment with expected

seq #. All data up to expected seq #

already ACKed.

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK.

Arrival of in-order segment with expected

seq #. One other segment has ACK

pending.

Immediately send single cumulative

ACK, ACKing both in-order segments.

Arrival of out-of-order segment

higher-than-expect seq. #s. Gap detected.

Immediately send duplicate ACK,

indicating seq. # of next expected byte.

Arrival of segment that partially or

completely fills gap.

Immediate send ACK, provided that

segment starts at lower end of gap.

53

TCP Fast Retransmit (1/2)

• Time-out period often relatively long

Long delay before resending lost packet

• Detect lost segments via duplicate ACKs

Sender often sends many segments back-to-back

 If segment is lost, there will likely be many duplicate

ACKs

54

10/29/2019

28

TCP Fast Retransmit (2/2)

• If sender receives 3 ACKs for same data (“triple

duplicate ACKs”) resend unacked segment with

smallest seq #

Likely that unacked segment is lost

Do not wait for timeout

55

TCP Reliable Data Transfer:

Key Points to Remember
• TCP uses cumulative acknowledgements and

retransmissions to ensure reliable in-order data transfer

 Similar to what we have seen for link-layer reliability before

• Uses one retransmission timer per connection

• Doubles timeout interval after a timeout

 Form of congestion control

• Uses duplicate acknowledgements to retransmit

segments before timeouts
56

10/29/2019

29

Lecture Outline

• Transport Control Protocol (TCP)

TCP segment format (PD 5.2.2)

Adaptive retransmission intervals (PD 5.2.6)

Reliable data transfer (PD 5.2.4)

TCP flow control (PD 5.2.4)

TCP connection establishment and termination

(PD 5.2.3)
57

Flow Control:

Definition (1/2)

• TCP hosts set up

receive buffers for

the data, on both

sides of a

connection

58

application

process

TCP socket

receiver buffers

TCP

code

IP

code

application

OS

Receiver protocol stack

Application may

remove data from

TCP socket buffers ….

… slower than

TCP

receiver is

delivering

(sender is

sending)

from sender

10/29/2019

30

Flow Control: Definition (1/2)

• Flow control: receiver controls sender so sender won’t

overflow receiver’s buffer by transmitting too much, too

fast

• Congestion control: throttling the sender due to

congestion on the network

59

Flow Control: Use Receive Window Size

• Same concept as we’ve

seen for link layer flow

control

• Explicitly signaled in

segment headers

60

10/29/2019

31

TCP Flow Control (1/2)

• Receiver “advertises” free

buffer space by including

rwnd value in TCP header of

receiver-to-sender segments

 RcvBuffer size set via socket

options (typical default is 4096

bytes)

61

buffered data

free buffer space rwnd

TCP segment payloads

to application process

Receiver-side buffering

TCP Flow Control (2/2)

• Sender limits amount of

unacked (“in-flight”) data to

receiver’s rwnd value

• Guarantees receive buffer

will not overflow

62

buffered data

free buffer space rwnd

TCP segment payloads

to application process

Receiver-side buffering

10/29/2019

32

Window Probes

• What if a receiver advertises a window size of

zero?

Problem: Receiver can’t send more ACKs as sender

stops sending more data

• Design choices

Receivers send duplicate ACKs when window opens

Sender sends periodic 1 byte probes

Flow Control:

An Interactive Demonstration

• A visualization of the

process is available at:

 https://media.pearsoncmg.c

om/aw/ecs_kurose_compnet

work_7/cw/content/interactiv

eanimations/flow-

control/index.html

64

https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html
https://media.pearsoncmg.com/aw/ecs_kurose_compnetwork_7/cw/content/interactiveanimations/flow-control/index.html

10/29/2019

33

No Flow Control in UDP: What Happens?

• Segments may be lost at the receiver due to

buffer overflow

• Typical implementation: UDP appends segments

in a finite-sized buffer at the receiving process

• If the process does not read the segments fast

enough, the buffer will overflow and the

segments will be dropped

65

TCP Flow Control:

Key Points to Remember

• Receiver controls sender by explicitly stating

how much space is available in the receive

buffer

 Information included in segment headers

Highly dynamic

• Approach guarantees that receive buffer will not

overflow
66

10/29/2019

34

Lecture Outline

• Transport Control Protocol (TCP)

TCP segment format (PD 5.2.2)

Adaptive retransmission intervals (PD 5.2.6)

Reliable data transfer (PD 5.2.4)

TCP flow control (PD 5.2.4)

TCP connection establishment and

termination (PD 5.2.3)
67

Client

Recap:
Setting Up TCP

Sockets

• TCP is connection-oriented

• Processes must first

“handshake” with each other

 Agree to establish connection

 Agree on connection parameters

68

10/29/2019

35

TCP

Performance

is Critical to

Business

69

Recap:

Segment

Header

Flags

70

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointer checksum

F S R P A U
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab.

(setup, teardown

commands)

10/29/2019

36

• RST: Reset the connection

Receiver of a RST terminates the connection and

indicates higher layer application about the reset

• SYN: Synchronize sequence numbers

Sent in the first packet when initiating a connection

• FIN: Sender is finished with sending

Used for closing a connection

Recap: TCP Flag Bits: Connection

Management

71

TCP Connection Establishment

• TCP uses a three-

way handshake

to open a

connection

72

10/29/2019

37

Three-way Handshake: Step 1

• Client sends a special segment: no data, SYN

bit set to 1

 “SYN segment”

• Picks a randomly chosen initial sequence

number client_isn and sends it over

73

Three-way Handshake: Step 2

• SYN segment arrives to the server

• Server allocates TCP buffers and variables

• Sends a “connection granted” segment

 No application-layer data

 SYN bit set to 1

 Acknowledgement is set to client_isn+1

 Chooses its own initial sequence number server_isn, puts it in

the sequence number field

 “SYNACK” segment

74

10/29/2019

38

Three-way Handshake: Step 3

• SYN bit set to zero in all subsequent packets

75

• Client receives SYNACK segment

• Client allocates buffers and variables

• Client sends to server another segment:

 Acknowledgement: server_isn+1

 SYN bit is set to 0

 May carry payload

Dress Up as a TCP

Packet

• A 3-way handshake example

76

• More protocol jokes:

https://twitter.com/PPathole/st

atus/1187371220238508035

https://twitter.com/PPathole/status/1187371220238508035
https://twitter.com/PPathole/status/1187371220238508035

10/29/2019

39

TCP Connection Termination

• Need to de-allocate buffers and variables

• Each end of the data flow must be shut down independently

• If one end is done it sends a FIN segment. The other end sends ACK

• Four messages to completely shut down a connection

 FIN

ACK

ACK

FIN

A B

77

TCP Connection Management:

Key Points to Remember

• Need to allocate resources

on both ends of the

communication

• Connection established via

a three-way handshake

• Connections need to be

torn down, to deallocate the

resources
78

10/29/2019

40

Lecture Summary (1/2)

• TCP segment header has

dedicated fields for:

 Demultiplexing by port numbers

 Checksumming

 Reliable communications

 Flow control

 Connection establishment

79

Lecture Summary (2/2)

• Core mechanisms discussed:

Reliable data transfer, including adaptive

timeout values

TCP flow control

TCP connection establishment and

termination

80

10/29/2019

41

Next Lecture

• TCP congestion control

81

