
ECE 356/COMPSI 356

Computer Network Architecture

TCP Congestion Control

Wednesday November 6th, 2019

Recap

• Last lecture:

➢TCP reliable communications

➢TCP flow control

➢TCP connection establishment

• Readings for this lecture: PD 6.3
2

Lecture Outline

• Understanding congestion

• Principles of congestion control

• Congestion control algorithm components:

➢Slow start

➢Congestion avoidance

➢Fast recovery

• Congestion control as a feedback control system

3

Recap:

Flow Control vs. Congestion Control

• Flow control: receiver controls sender so sender won’t

overflow receiver’s buffer by transmitting too much, too

fast

• Congestion control: throttling the sender due to

congestion on the network

4

Understanding Congestion

• Like road congestion, if we could also lose cars in transit
5

Understanding Congestion
• Informally: “too many sources sending too

much data too fast for network to handle”

➢Different from flow control

• Manifestations:

➢Long delays (queuing in router buffers)

➢Lost packets (buffer overflow at routers)

• An important and interesting problem

➢Nodes make independent distributed decisions
6

The Causes and Costs of Congestion:

One Router, Infinite Buffers (1/2)

7

unlimited

shared

output link

buffers

Host A

original data: lin

Host B

throughput:

lout

• Two senders, two

receivers

• One router, infinite

buffers

• Output link

capacity: R

• No

retransmissions

The Causes and Costs of Congestion:

One Router, Infinite Buffers (2/2)

8

• Maximum per-connection

throughput: R/2

R/2

R/2

l
o

u
t

lin R/2

d
e

la
y

lin

• Large delays as arrival rate,
lin, approaches capacity

• Cost of congestion: large queuing delays experienced as

packet-arrival rates near link capacity

9

• Sender retransmission of timed-out packets

➢ Application-layer input = application-layer output: lin = lout

➢ Transport-layer input includes retransmissions : lin
’ ≥ lin

The Causes and Costs of Congestion:

One Router, Finite Buffers (1/3)

10

• Idealization: perfect

knowledge

➢ Sender sends only when

router buffers available

The Causes and Costs of Congestion:

One Router, Finite Buffers (2/3)

R/2

R/2

l
o

u
t

lin

11

• Packets can be lost,

dropped at router due to

full buffers

The Causes and Costs of Congestion:

One Router, Finite Buffers (3/3)

R/2

R/2

l
o

u
t

l’
in

R/3

• Cost of congestion: sender must perform

retransmissions in order to compensate for

dropped packets due to buffer overflow

12

• Four senders

• Multihop paths

• Timeout/retransmit

• Senders compete for

space on buffers

The Causes and Costs of Congestion:

Multi-Hop Paths (1/3)

finite shared

output link

buffers

Host A lout Host B

Host C

Host D

lin : original data

l'in: original data,

plus retransmitted

data

The Causes and Costs of Congestion:

Multi-Hop Paths (2/3)
• Q: what happens as lin

and lin
’ increase?

• A: as red lin
’ increases,

all arriving blue pkts at

upper queue are

dropped, blue

throughput g 0

13

The Causes and Costs of Congestion:

Multi-Hop Paths (3/3)

• Cost of congestion: when a packet is dropped along the

path, the capacity used for it is wasted
14

C/2

C/2

l
o

u
t

lin
’

History (1/2)

• The original TCP/IP design did not include

congestion control

➢Receiver uses advertised window to do flow control

➢No exponential backoff after a timeout

History (2/2)

• It led to congestion collapse in October 1986

➢ The NSFnet phase-I backbone dropped three orders

of magnitude from its capacity of 32 kbit/s to 40 bit/s

• 800x difference

➢This continued until end nodes started implementing

Van Jacobson's congestion control between 1987 and

1988

Understanding Congestion:

Key Points to Remember
• Too many sources sending too much data too fast for

network to handle

➢ A network-level phenomenon

• Congestion control ≠ flow control

• Costs of congestion include:

➢ Large queuing delays

➢ Retransmissions to compensate for packets dropped at

intermediate routers

➢ Wasted work in forwarding packets that will be dropped
17

Lecture Outline

• Understanding congestion

• Principles of congestion control

• Congestion control algorithm components:

➢Slow start

➢Congestion avoidance

➢Fast recovery

• Congestion control as a feedback control system

18

Congestion Control: Challenge

• Send at the “right” speed

➢Fast enough to keep the pipe full

➢But not to overload the network

➢Share nicely with other senders

Congestion Control: Approach

• Each sender limits the rate at which it sends

traffic into its connection, as a function of

perceived network congestion

➢Q: How does the sender limit the rate?

➢Q: How does the sender perceive congestion?

➢Q: Which algorithm does the sender use to change its

send rate?

20

How Does the Sender Limit Transmission

Rate?

• CongestionWindow

• Counterpart to flow control’s

AdvertisedWindow

➢ But, unlike it, is not explicitly signaled

• Maximum number of bytes in

transit: min(CongestionWindow,

AdvertisedWindow)

➢ Window-based congestion control
21

How Does a Sender Perceive Congestion?

• Packet loss is a congestion signal

• Loss events: familiar retransmission triggers

➢ Timeout of a retransmission timer

• Nothing is getting through?

➢ Receipt of three duplicate ACKs

• Something is passing through the channel

22

Congestion Detection:

Wireless Network Complications

• Recall that wireless networks are much more

error prone than wired networks

• In wireless networks, loss ≠ congestion

➢Could be due to weaker signal, interference

➢A large number of packets can get lost

• TCP can slow down to a crawl

23

TCP for Wireless:

Active Area of Research

• One option: splitting the connection into wired and

wireless segments

➢ Creating a middlebox

➢ Deviating from end-to-end transport layer architecture

• Another option: distinguish between congestion and bit

errors

➢ Other congestion clue: explicit congestion notification

➢ Another one: increasing RTT values

24

How Does a Sender Know There is No

Congestion?

• Receiving acknowledgements

• Increase congestion window size when

acknowledgements are received

➢ Acknowledgements arrive slowly → slow increase

➢ Acknowledgements arrive quickly → fast increase

• “Self-clocking” mechanism

25

Algorithm: Additive Increase

Multiplicative Decrease (1/2)

• Bandwidth probing

• Sender increases transmission rate (window size),

probing for usable bandwidth, until loss occurs

➢Additive increase: increase cwnd by 1 MSS every RTT until

loss detected

➢Multiplicative decrease: cut cwnd in half after loss

26

Algorithm: Additive Increase

Multiplicative Decrease (2/2)

27

c
w
n
d
:

T
C

P
 s

e
n

d
e

r

c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

AIMD “sawtooth

behavior”: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Multiple Flavors of TCP

• TCP Tahoe, Reno, Vegas, BBR, CUBIC, …

• Different feedback signals

• Different specifics of sawtooth patterns

28

Lecture Outline

• Understanding congestion

• Principles of congestion control

• Congestion control algorithm components:

➢Slow start

➢Congestion avoidance

➢Fast recovery

• Congestion control as a feedback control system

29

TCP Slow Start (1/2)

• When connection begins, increase

rate exponentially until first loss

event

➢ Initially cwnd = 1 MSS

• More in modern TCP variants

➢ Double cwnd every RTT

Host A

R
T

T

Host B

time

TCP Slow Start (1/2)

• Done by incrementing cwnd for

every ACK received

➢ Incrementing per ACK, not per

segment count

➢ Same if acknowledging less than

1 MSS, or many consecutive

transmissions

• Summary: initial rate is slow

but ramps up exponentially fast

31

Host A

R
T

T

Host B

time

Transport Layer

3-32

Q: when should the exponential increase stop?

➢ Switch to linear increase: congestion avoidance

A: when cwnd gets to 1/2 of its value before timeout

Implementation:

➢ Variable ssthresh

➢ On loss event, ssthresh is set to 1/2 of cwnd just before

loss event

Switching from Slow Start to Congestion

Avoidance

An Example of

Slow Start/Congestion Avoidance

For ssthresh = 8 MSS

0

2

4

6

8

10

12

14

t=
0

t=
2

t=
4

t=
6

Roundtrip times

C
w

n
d

 (
in

se

gm
e

n
ts

)

ssthresh

Transport Layer

3-34

Slow Start: Reacting to Losses

• Timeout

➢ssthresh ← cwnd/2

➢cwnd ← 1 MSS

➢Slow start begins anew

• 3 duplicate ACKs

➢Fast retransmit

➢Enters fast recovery stage TCP Tahoe example

TCP Congestion Avoidance

• On entry to congestion

avoidance stage, cnwd is 1/2 the

value of what it was when

congestion was last encountered

➢ Congestion could be just around the

corner

• Conservative growth approach:

increase the value of cwnd by 1

MSS every RTT
35

0

2

4

6

8

10

12

14

t=
0

t=
2

t=
4

t=
6

Roundtrip times

C
w

n
d

 (
in

se

gm
e

n
ts

)

ssthresh

TCP Congestion Avoidance: Exiting

• On a timeout:

➢ cwnd set to 1 MSS

➢ ssthresh set to 1/2 cwnd when timeout occurred

➢ To slow start state

• On a triple duplicate ACK:

➢ Fast retransmit

➢ cwnd ← cwnd/2 + 3 MSS

➢ ssthresh ← cwnd/2

➢ To fast recovery state
36

TCP Fast Recovery

• Recommended, but not required

• Avoiding slow start

➢The value of cwnd is increased by 1 MSS for every

duplicate ACK received for the missing segment that

caused TCP to enter fast recovery state

• When ACK arrives for the missing segment:

➢ cwnd ← ssthresh

➢ Enter congestion avoidance

Transport Layer

3-38

Evolution of TCP Congestion Window:

Triple Duplicate ACK

• After a triple duplicate ACK:

➢ ssthresh ← cwnd/2

• TCP Tahoe: cwnd ← 1

• TCP Reno: cwnd ← cwnd/2

+ 3 MSS

• TCP Tahoe: no fast recovery; TCP Reno: fast recovery

Congestion Control Mechanisms:

Key Points to Remember

39

• Congestion window

follows a sawtooth

pattern

➢Grows first exponentially,

then linearly, until a loss

event occurs

Macroscopic Behavior of TCP

• Avg. TCP throughput as function of window size, RTT?

➢ Ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs

➢ Avg. window size (# in-flight bytes) is ¾ W

➢ Avg. throughput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Lecture Outline
• Understanding congestion

• Principles of congestion control

• Congestion control algorithm components:

➢Slow start

➢Congestion avoidance

➢Fast recovery

• Congestion control as a feedback control

system
41

Proof of Optimality

• AIMD was developed based on engineering

insight and experimentation

• Ten years after, theoretical analysis showed that

the congestion control algorithm is optimal

➢Stable

➢Fair

42

Why Does it Work?

• A feedback control system

• The network uses feedback y to adjust users’ load x_i

Goals of Congestion Avoidance

• Efficiency

• Fairness

• Distributedness

➢ A centralized scheme requires complete knowledge of the
state of the system

• Convergence

➢ The system approach the goal state from any starting state

Metrics to Measure Convergence

• Responsiveness

• Smoothness

46

The Sawtooth Behavior of TCP

• For every ACK received

➢ Cwnd += 1/cwnd *MSS

• For every packet lost

➢ Cwnd /= 2

RTT

Cwnd

TCP Congestion Control:

Key Points to Remember (1/3)

• Network congestion is problematic. It leads to:

➢ Delays

➢ Segment losses

➢ Wasted work of the network

• TCP employs window-based congestion control

➢ Maximum number of bytes in transit: min(CongestionWindow,

AdvertisedWindow)

➢ Sender probes the network by injecting more and more data in it

➢ Backs off when encountering losses
47

TCP Congestion Control:

Key Points to Remember (2/3)

48

c
w
n
d
:

T
C

P
 s

e
n

d
e

r

c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

AIMD “sawtooth

behavior”: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Congestion Control:

Key Points to Remember (3/3)

49

• Algorithm component:

➢ Slow start: exponential

growth of cwnd

➢ Congestion avoidance: linear

growth of cwdn

➢ (Recommended) fast

recovery: avoiding slow start

in case of duplicate ACKs

Next Lecture

• Network resource allocation

➢Queue management

➢Congestion avoidance

50

