ECE 356/COMPSI 356
Computer Network Architecture

TCP Congestion Control

Wednesday November 6th, 2019

Recap

» Last lecture:
» TCP reliable communications
» TCP flow control
» TCP connection establishment

* Readings for this lecture: PD 6.3

Lecture Outline

Understanding congestion
Principles of congestion control

Congestion control algorithm components:
» Slow start
» Congestion avoidance
» Fast recovery

Congestion control as a feedback control system

Recap:
Flow Control vs. Congestion Control

* Flow control: receiver controls sender so sender won't
overflow receiver’s buffer by transmitting too much, too
fast

« Congestion control: throttling the sender due to
congestion on the network

Understanding Congestion

$ 1)
- 7 |
ST ; ,.? S \

Y oY) -97/\;%/_2’ (i 4
Syp~ ‘ﬁg N /) |
=== Fairfax ,5\ o | @

o iﬁﬁ‘@‘
) 6\ 7 < ! 4 7
k‘ OO @Jy‘@’%/“g'@n cgp e ©
o . Springigd™ piedes)
° T ?
\G () '
“ 7\ | I o

« Like road congestion, if we could also lose cars in transit
5

Understanding Congestion

 Informally: “too many sources sending too
much data too fast for network to handle”

» Different from flow control

« Manifestations:
» Long delays (queuing in router buffers)
» Lost packets (buffer overflow at routers)
* An important and interesting problem
» Nodes make independent distributed decisions

The Causes and Costs of Congestion:
One Router, Infinite Buffers (1/2)

« Two senders, two
throughput: recelivers

unlimited Aout 4 One router, infinite
shared
output link buffers

7;}_})”]%_@!é /-J H Output link

original data: A;,

""" capacity: R
No

Host B retransmissions

The Causes and Costs of Congestion:

R/2 -
3 8
= S
i j
Ain RI2 N R2
Maximum per-connection * Large delays as arrival rate,
throughput: R/2 A @pproaches capacity

« Cost of congestion: large queuing delays experienced as
packet-arrival rates near link capacity 3

The Causes and Costs of Congestion:
One Router Finite Buffers (1/3)

I8 |n : original data

p g —).
“)'i: original data, plus out

retransmitted data

3
® Host == E

Host B

finite shared output] E
link buffers

« Sender retransmission of timed-out packets
» Application-layer input = application-layer output: A;, = A
» Transport-layer input includes retransmissions : A, = A,

The Causes and Costs of Congestion:
One Router, Finite Buffers (2/3)

+ ldealization: perfect B e e e RO
kn OWI ed g e 7 retransmitted data

M { '
> Sender sends only when e —H
router buffers available 3

Host B
R/24---ceem .

finite shared output —|
link buffers

7\‘out

The Causes and Costs of Congestion:
One Router, Finite Buffers (3/3)

Packets can be lost,
dropped at router due to
full buffers

Y7
R/3

Aout

g

[P hin - original data o
¢ L 21— /ooy
A - original data, plus
retransmitted data

® Host T ﬁ
finite shared output H

Host B

link buffers

» Cost of congestion: sender must perform
retransmissions in order to compensate for
dropped packets due to buffer overflow

The Causes and Costs of Congestion:
Multi-Hop Paths (1/3)

Host A

Four senders _ . original data Aout

\xHost B
Multihop paths “ A'.,: original data,
Timeout/retransmit ﬂ plus retransmg;etg
Senders compete for |

space on buffers

Host D

output link
buffers

|@ finite shared =%
- |
ﬂ i =S T

ENIINNNES —
| 1

lm

The Causes and Costs of Congestion:
Multi-Hop Paths (2/3)

* Q Wha,t haPPenS as 7\“in HostA Jin - original data Fout
and 7\‘in increase? CEim \'i: original data, plus

retransmitted data

finite shared output

link buffers

* A:asred A, increases,
all arriving blue pkts at

upper queue are HostD
PP€Er g q

dropped, blue

throughput = 0 i L& T/ 4 E

The Causes and Costs of Congestion:
o Multi-Hop Paths (3/3)

] HostA - 5
original data out, HostB

n«'” original data, plus
retransmitted data

ﬁ . - finite shared output
7 link buffers

7\‘OU'[

Host

« Cost of congestion: when a packet is dropped along the
path, the capacity used for it is wasted

History (1/2)

* The original TCP/IP design did not include
congestion control

» Recelver uses advertised window to do flow control

» No exponential backoff after a timeout

History (2/2)

|t led to congestion collapse in October 1986

» The NSFnet phase-l backbone dropped three orders
of magnitude from its capacity of 32 kbit/s to 40 bit/s
« 800x difference

» This continued until end nodes started implementing
Van Jacobson's congestion control between 1987 and
1988

Understanding Congestion:
Key Points to Remember

« Too many sources sending too much data too fast for
network to handle

» A network-level phenomenon
« Congestion control # flow control

« Costs of congestion include:
» Large queuing delays

» Retransmissions to compensate for packets dropped at
Intermediate routers

» Wasted work in forwarding packets that will be dropped

Lecture Outline

Understanding congestion
Principles of congestion control

Congestion control algorithm components:
» Slow start
» Congestion avoidance
» Fast recovery

Congestion control as a feedback control system

Congestion Control: Challenge

* Send at the “right” speed
» Fast enough to keep the pipe full
»But not to overload the network
»Share nicely with other senders

Congestion Control: Approach

 Each sender limits the rate at which it sends
traffic into its connection, as a function of
perceived network congestion
» Q: How does the sender limit the rate?
» Q: How does the sender perceive congestion?

» Q: Which algorithm does the sender use to change its
send rate?

How Does the Sender Limit Transmission

Rate?
« CongestionWindow S S . it
SrcPort DstPort
* Counterpart to flow control’'s —
Adve I’tl SedW| n d OW Acknowledgment

> But, unlike it, is not explicitly signaled Heten 0 | Flags | AdvertisedWindow

« Maximum number of bytes in Checksum T
transit: min(CongestionWindow,

Options (variable)

Data

AdvertisedWindow) D
» Window-based congestion control

How Does a Sender Perceive Congestion?

* Packet loss Is a congestion signal

* Loss events: familiar retransmission triggers
» Timeout of a retransmission timer
Nothing is getting through?
» Recelpt of three duplicate ACKs
Something is passing through the channel

Congestion Detection:
Wireless Network Complications

 Recall that wireless networks are much more
error prone than wired networks

* |n wireless networks, loss # congestion
» Could be due to weaker signal, interference
» A large number of packets can get lost

e TCP can slow down to a crawl

TCP for Wireless:
Active Area of Research

« One option: splitting the connection into wired and
wireless segments
» Creating a middlebox
» Deviating from end-to-end transport layer architecture
« Another option: distinguish between congestion and bit

errors
» Other congestion clue: explicit congestion notification
» Another one: increasing RTT values

How Does a Sender Know There is No
Congestion?

* Receiving acknowledgements

 Increase congestion window size when
acknowledgements are received
» Acknowledgements arrive slowly — slow increase
» Acknowledgements arrive quickly — fast increase

« “Self-clocking” mechanism

Algorithm: Additive Increase
Multiplicative Decrease (1/2)

« Bandwidth probing

« Sender increases transmission rate (window size),
probing for usable bandwidth, until loss occurs

» Additive increase: increase cwnd by 1 MSS every RTT until
loss detected

» Multiplicative decrease: cut cwnd in half after loss

Algorithm: Additive Increase
Multiplicative Decrease (2/2)

AIMD “sawtooth
behavior”: probing
for bandwidth

()]
_ N
TR
2 =2
o 3
9 c
S5 =

[
- o
°0 4

()]
98
z 2
O 5
(&]

additively increase window size ...
... until loss occurs (then cut window in half)

Multiple Flavors of TCP

« TCP Tahoe, Reno, Vegas, BBR, CUBIC, ...
 Different feedback signals
 Different specifics of sawtooth patterns

Lecture Outline

Understanding congestion
Principles of congestion control

Congestion control algorithm components:
» Slow start

» Congestion avoidance

» Fast recovery

Congestion control as a feedback control system

Host A Host B

TCP Slow Start (1/2) g
« When connection begins, increase W

rate exponentially until first loss
event W

> Initially cwnd = 1 MSS

« More in modern TCP variants /

» Double cwnd every RTT 4 Segments

«—RTT—

time

Host B

Host A
TCP Slow Start (1/2) = E
* Done by incrementing cwnd for ,Tt W
!

every ACK received

» Incrementing per ACK, not per %’

segment count

> Same if acknowledging less than /

1 MSS, or many consecutive Ur segments
transmissions

« Summary: initial rate is slow
but ramps up exponentially fast

time

Switching from Slow Start to Congestion

Avoldance

Q: when should the exponential increase stop?
» Switch to linear increase: congestion avoidance

A: when cwnd gets to 1/2 of its value before timeout

Implementation:

> Variable ssthresh

» On loss event, ssthresh is set to 1/2 of cwnd just before
loss event

An Example of
Slow Start/Congestion Avoidance

For ssthresh = 8 MSS

14
12 -
8 ssthresh a /
Z /
£ %o
T £4 /
)
—
O ! !
LS LN P> L

Roundtrip times

Slow Start: Reacting to Losses

16 —
* Timeout 14
E 12 o
» ssthresh < cwnd/2 2240 el TCP Reno
c E ssthresh el \ e
> cwnd < 1 MSS § g e 7| |
o0& 6 : T st
> Slow start begins anew I hresh
] 5_ f_,{;— danoe IIII f,l”/
* 3 dupllcate ACKS 0 T I T 1 1 I T T 1 1 |
i 01 2 3 45 6 7 8 9 10 111213 14 15
> FaSt retransm": Transmission round

» Enters fast recovery stage TCP Tahoe example

TCP Congestion Avoidance

« On entry to congestion
avoidance stage, cnwd is 1/2 the

H
N

(Y
N

value of what it was when 10— //
. A
congestion was last encountered g /
> Congestion could be just around the = §4 //
corner g %2

/

o

« Conservative growth approach:
Increase the value of cwnd by 1
MSS every RTT

I
N 2 SN N

Roundtrip times

TCP Congestion Avoidance: Exiting

 On a timeout:
» cwnd setto 1 MSS
» ssthresh set to 1/2 cwnd when timeout occurred
» To slow start state

 On atriple duplicate ACK:
» Fast retransmit
» cwnd «— cwnd/2 + 3 MSS
» ssthresh « cwnd/2
» To fast recovery state

TCP Fast Recovery

« Recommended, but not required
« Avoiding slow start

» The value of cwnd is increased by 1 MSS for every
duplicate ACK received for the missing segment that
caused TCP to enter fast recovery state

 When ACK arrives for the missing segment:
» cwnd « ssthresh

» Enter congestion avoidance

Evolution of TCP Congestion Window:
Triple Duplicate ACK

16
_— p » After a triple duplicate ACK:
£Z10-) TepReno > ssthresh « cwnd/2
c E ssthresh A \ e
¢ 8 :‘ ““““ /AN '., « TCP Tahoe: cwnd « 1
2 °7 T sthesh
5w S\ /T« TCP Reno: cwnd « cwnd/2
2 A L + 3 MSS
Or—T 171 17 1T T 17 1

[T T 1
01 2 3 45 6 7 8 910111213 14 15

Transmission round

« TCP Tahoe: no fast recovery; TCP Reno: fast recovery

3-38

Congestion Control Mechanisms:
Key Points to Remember

16 —
« Congestion window .

Ty | "f#'l enc

follows a sawtooth €8 10- el TR
c E g [ssthresh -~ o
pattern %3 :_ 7T _
" - ?; = / ' /" ssthresl

> Grows first exponentially, &4} fom, |
then linearly, until a loss N L

event occurs 0 1I ﬁ 3' J |5 é Tlr‘ Els El:l 1'0 1'1 1'2 1'3 1':1 1

Transmission round

Macroscopic Behavior of TCP

* Avg. TCP throughput as function of window size, RTT?
» lgnore slow start, assume always data to send

« W: window size (measured in bytes) where loss occurs
» Avg. window size (# in-flight bytes) is 3% W
» Avg. throughput is 3/4W per RTT

W
RTT

AW

avg TCP thruput =

W —
bytes/sec

W/2 —

/

/

12%

/

Lecture Outline

Understanding congestion
Principles of congestion control

« Congestion control algorithm components:
» Slow start
» Congestion avoidance
» Fast recovery

« Congestion control as a feedback control
system

Proof of Optimality

« AIMD was developed based on engineering
Insight and experimentation

« Ten years after, theoretical analysis showed that
the congestion control algorithm is optimal
» Stable

> Fair

Why Does it Work?

Network

« Afeedback control system
* The network uses feedback y to adjust users’ load 2.x_i

Goals of Congestion Avoidance

« Efficiency
 Fairness
* Distributedness

» A centralized scheme requires complete knowledge of the
state of the system

 Convergence
» The system approach the goal state from any starting state

Metrics to Measure Convergence

A 'f/- Responsiveness

i

; . -
Goal - ——=-X -/ Smoothness ResponSIVeneSS
¥ * Smoothness
Total
load on
the
network

Time
Fig. 3. Responsiveness and smoothness.

The Sawtooth Behavior of TCP

Cwnd

" RTT

« For every ACK received
» Cwnd += 1/cwnd *MSS

« For every packet lost
> Cwnd /=2 46

TCP Congestion Control:
Key Points to Remember (1/3)

* Network congestion is problematic. It leads to:
» Delays
» Segment losses
» Wasted work of the network

« TCP employs window-based congestion control

» Maximum number of bytes in transit: min(CongestionWindow,
AdvertisedWindow)

» Sender probes the network by injecting more and more data in it
» Backs off when encountering losses

TCP Congestion Control:
Key Points to Remember (2/3)

additively increase window size ...
... until loss occurs (then cut window in half)

N4

AIMD “sawtooth
behavior”: probing
for bandwidth

cwnd: TCP sender
congestion window size

time

TCP Congestion Control:
Key Points to Remember (3/3)

 Algorithm component:

» Slow start: exponential
growth of cwnd

» Congestion avoidance: linear
growth of cwdn

» (Recommended) fast
recovery: avoiding slow start
In case of duplicate ACKs

1 1T T 1 1T T T 1T T T T 1
34 5 6 7 8 9 10 111213 14 15
Transmission round

Next Lecture

* Network resource allocation
»Queue management
» Congestion avoidance

