ECE 356/COMPSI 356 Computer Network Architecture
Network Security
Monday December 2nd, 2019

Network Security Concepts (1/2)

Confidentiality

- Do you want to send your credit card #, login password over the Internet in plaintext?
- Traffic confidentiality: knowing that communication has taken place might give away information as well

Integrity

- Data integrity: Imagine an Amazon transaction. Do you want your payment to be modified from \$10.0 to \$100?
- Replay attack: You do not want the same transaction confirmation to be sent multiple times!
 - Encryption does not prevent replay attacks
- Timeliness: delay a stock purchase

5

Duke UNIVERSITY

Network Security Concepts (2/2)

Authenticity

- > Entity authentication: who are you talking to? Phishing attack
- > Message authentication: who sent this message?

Availability

- Denial of service attacks
- Non-repudiation
 - You've clicked the confirmation button!

Breaking an Encryption Scheme

- Cipher-text only attack: Trudy has ciphertext she can analyze
- Two approaches:
 - Brute force: search through all keys
 - Statistical analysis

- Known-plaintext attack: Trudy has plaintext corresponding to ciphertext
 - E.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o,
- Chosen-plaintext attack: Trudy can get ciphertext for chosen plaintext

Duke

Block Ciphers (2/2)

- In practice:
 - Use functions that simulate randomly permuted tables
 - > Use keys to customize the transformations
- E.g., DES:

Duke UNIVERSITY

17

- Multiple rounds of expansion permutation (duplicating some of the bits), key mixing, substitution, permutation
- Brute-force attacks: cycle through all keys
 - Key of length n: 2ⁿ possible keys

Symmetric Key Crypto: DES

DES: Data Encryption Standard

- US encryption standard, first published in 1977
- 56-bit symmetric key, 64-bit plaintext input
- Weakness: small key size
 - > Concerns about the key size were raised early on
- Making DES more secure:
 - > 3DES: encrypt 3 times with 3 different keys

Duke

AES: Advanced Encryption Standard

- Symmetric-key NIST standard, replaced DES (Nov 2001)
- Processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- A machine that could crack DES in 1 second would take 149 trillion years for AES

Duke UNIVERSITY

Public Key Cryptography

Symmetric key crypto

- Requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never "met")?

- Public key crypto

- Radically different approach [Diffie-Hellman76, RSA78]
- Sender, receiver do not share secret key
- Public encryption key known to all
- Private decryption key known only to receiver

21

Duke UNIVERSITY

RSA: Getting Ready	
 Message: just a bit pattern Bit pattern can be uniquely represented by an integer number 	
 Thus, encrypting a message is equivalent to encrypting a number 	
Example:	
m= 10010001. This message is uniquely represented by the decimal number 145.	
To encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext)	25
Duke	
25	

$$\begin{split} & \underbrace{Why\kappa_{B}^{*}(\kappa_{B}^{+}(m)) = m = \kappa_{B}^{+}(\kappa_{B}^{*}(m)) ?}_{B} \end{split}$$
 follows directly from modular arithmetic:

$$(m^{e} \mod n)^{d} \mod n = m^{ed} \mod n \\ &= m^{de} \mod n \\ &= (m^{d} \mod n)^{e} \mod n \end{split}$$
32

RSA in Practice: Session Keys

- Exponentiation in RSA is computationally intensive
- DES is at least 100 times faster than RSA
- Use public key crypto to establish secure connection, then establish second key – symmetric session key – for encrypting data

Session key, K_S

- Bob and Alice use RSA to exchange a symmetric key K_S
- Once both have K_S, they use symmetric key cryptography

Authentication Protocols: Key Points to Remember

- · Verify that you are talking to the person you believe
- Typically run before communication protocols
- Approach: shared secret key + a nonce
 > Use of a nonce prevents a replay attack

Lecture Outline

- What is network security?
- Principles of cryptography
- Authentication
- Message integrity
- Securing e-mail

Duke UNIVERSITY

51

- Securing TCP connections: SSL
- Operational security: firewalls and IDS

Cryptographic Hash Functions

Cryptographic hash function has to have an additional property

It should be computationally infeasible to find any two different messages x and y such that H(x) = H(y)

• Many-to-1

Hash function properties:

 Produces fixed-size message "fingerprint" that can be used to verify that the message has not been tampered with

Duke UNIVERSITY

Message Authentication Codes and Digital Signatures: Key Points to Remember

- Create "checksums" of documents using cryptographic hash functions
 - Internet checksum and the CRC are <u>not suitable for these</u> <u>calculations</u>
 - It needs to be difficult to find any two different messages x,y such that H(x) = H(y)
- · MAC calculations rely on a shared secret
- Digital signatures use public-private keys

Certification Authorities (1/2)

- Certification authority (CA): binds public key to particular entity, E
- So-called trusted 3rd party
- Commercial entities

. . .

Duke UNIVERSITY

63

64

> Symantec, Comodo, GoDaddy, GlobalSign, DigitCert,

Lecture Outline

- · What is network security?
- Principles of cryptography
- Authentication
- Message integrity
- Securing e-mail
- Securing TCP connections: SSL
- Operational security: firewalls and IDS

73

Duke UNIVERSITY

73

Secure Sockets Layer (SSL)

- Originally designed by Netscape
- Widely deployed security protocol
 - Supported by almost all browsers, web servers

≻Https

≻ Billions \$/year over SSL

Provides

- ➤ Confidentiality
- > Integrity
- Authentication

- Original goals:
 - >Web e-commerce transactions
 - Encryption (especially credit-card numbers)
 - > Web server authentication
 - Optional client authentication
 - Minimum hassle in doing business with new merchant
- Available to all TCP applications
 - Secure socket interface

Duke

Toy SSL: A Simple Secure Channel

- Handshake: Alice and Bob use their certificates, private keys to authenticate each other and exchange shared secret
- Key derivation: Alice and Bob use shared secret to derive set of keys
- *Data transfer:* data to be transferred is broken up into series of records
- Connection closure: special messages to securely close connection

76

Toy: Sequence Numbers

- Problem: attacker can capture and replay record or reorder records
 - > TCP sequence numbers are not encrypted
- Solution: put sequence number in the MAC calculations
 - MAC = MAC(M_x, sequence number)
 - Note: no sequence number field

Duke UNIVERSITY 81

SSL: Cipher Suites

- Cipher suite
 - Public key algorithm
 - Symmetric encryption algorithm
 - MAC algorithm
- SSL supports several cipher suites
- Negotiation: client, server agree on cipher suite
 - Client offers choice
 - > Server picks one

Real SSL: Handshake (1/4)

Purpose

- 1. Server authentication
- 2. Negotiation: agree on crypto algorithms
- 3. Establish keys
- 4. Client authentication (optional)

83

Duke UNIVERSITY

Real SSL: Handshake (2/4)

- 1. Client sends list of algorithms it supports, along with client nonce
- 2. Server chooses algorithms from list; sends back: choice + certificate + server nonce
- Client verifies certificate, extracts server's public key, generates pre_master_secret, encrypts with server's public key, sends to server
- 4. Client and server independently compute encryption and MAC keys from pre_master_secret and nonces
- 5. Client sends a MAC of all the handshake messages
- 6. Server sends a MAC of all the handshake messages

Bob (Amazon) thinks Alice made two separate orders for the same thing. Solution: Bob sends different random nonce for each connection. This causes encryption keys to be different on the two days. Trudy's messages will fail Bob's integrity check

	Clos	sing	an	SSL Conned	ctior	า
 Pro > So > > 	oblem: 1 Attacker One or b lution: Indicate Use type	forges T forges T ooth side closure field: Ty	tion at FCP com s thinks in an SS ype 0 for	tack nection close segment there is less data than the SL fragment r data; type 1 for closure	re actua	Illy is
	Туре	Version	Length	Data	MAC	
Duke	T Y			Encrypted		
87						

Lecture Outline

- What is network security?
- Principles of cryptography
- Authentication
- Message integrity
- Securing e-mail
- Securing TCP connections: SSL
- Operational security: firewalls and IDS

89

Firewall Goals

- All traffic from outside to inside, and vise versa, passes through the firewall
- Only authorized traffic, as defined by the local access policy, will be allowed to pass
- The firewall itself is immune from penetration

Three types of firewalls:

- Stateless packet filters
- Stateful packet filters
- Application gateways

Duke UNIVERSITY

91

Stateless Packet Filtering: Example

- Example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23
 - *Result:* all incoming, outgoing UDP flows and telnet connections are blocked
- Example 2: block inbound TCP segments with ACK=0.
 - Result: prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside

Duke

93

Stateless Packet Filtering: More Examples

Policy	Firewall Setting
No outside Web access.	Drop all outgoing packets to any IP address, port 80
No incoming TCP connections, except those for institution's public Web server only.	Drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80
Prevent Web-radios from eating up the available bandwidth.	Drop all incoming UDP packets - except DNS and router broadcasts.
Prevent your network from being used for a smurf DoS attack.	Drop all ICMP packets going to a "broadcast" address (e.g. 130.207.255.255).
Prevent your network from being tracerouted	Drop all outgoing ICMP TTL expired traffic

Access Control Lists

ACL: table of rules, applied top to bottom to incoming packets: (action, condition) pairs

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

Duke UNIVERSITY

95

Stateful Packet Filtering (1/2)

- Stateless packet filter: heavy handed tool
 - Admits packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

- Stateful packet filter: track status of every TCP connection
 - Track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
 - > Timeout inactive connections at firewall: no longer admit packets

Duke

S	state	eful F	Pack	et	Filte	erin	g (2	2/2)
ACL au admittin	gmenteo Ig packe	to indica t	ate need t	o cheo	ck conne	ection st	ate tab	ole befo
	action	source address	dest address	proto	source port	dest port	flag bit	check conxion
	allow	222.22/16	outside of 222.22/16	ТСР	> 1023	80	any	
	allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	X
	allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
	allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		X

Limitations of Firewalls

- *Tradeoff:* degree of communication with outside world, level of security
- Offer only perimeter defense
- *IP spoofing:* router cannot know if data "really" comes from claimed source
- Many highly protected sites still suffer from attacks

Intrusion Detection Systems (1/3)

- Packet filtering:
 - > Operates on TCP/IP headers only
 - > No correlation check among sessions
- IDS: intrusion detection system
 - Deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
 - > Examine correlation among multiple packets
 - · Port scanning
 - · Network mapping
 - DoS attack

Duke

99

Intrusion Detection Systems (2/3)

- Signature-based systems
 - Compare traffic against a set of attack signatures
 - Con: cannot detect attacks that have not been seen before
- Anomaly-based systems
 - > Compare traffic to traffic under "normal operation"
 - > Subject of much machine learning research

Dukeuniversity

