

Outline of This Class

- Quiz
- · Projects, research paper presentations
- "You and Your Research"
- Edge and IoT devices
 - Common IoT architectures
 - Role of the gateway
- Opportunities: edge for responsive IoT applications
 - Hardware
 - Algorithms
 - Edge for system decisions

Duke UNIVERSITY

Outline of This Class

- Projects and research paper presentations
- "You and Your Research"
- Edge and IoT devices
 - Common IoT architectures
 - Role of the gateway
- Opportunities: edge for responsive IoT applications
 - Hardware
 - Algorithms
 - Edge for system decisions

Duke UNIVERSITY

Bestimination of the second second

Presenting a Research Paper: Logistics (1/2)

- First presentations: Wednesday January 29th
- 25% of the grade
 - More than many midterms
 - > High bar: a well-developed, polished presentation
 - Expected to invest significant amounts of time and energy into preparation
 - Feel free to ask TA/instructor whether what you plan to present is sufficiently polished

8

7

Duke UNIVERSITY

Presenting a Research Paper: Logistics (2/2)

- 20 minute presentation, 10 minute Q&A
 - Please practice your timing
- Before the presentation:
 - One week before your presentation: enter paper title into the spreadsheet
 - 3 days before your presentation: prepare two quiz questions, send them to me

Duke UNIVERSITY

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

11

Presenting a Research Paper: 3 Components to Grading

- Presentation skills
- Knowledge base
- Critical thinking
- Side note: format similar to Duke ECE PhD program qualifying exams

Duke

Participating in the Seminar Skim the paper being presented Quiz questions will be based on the papers Participate in the Q&A: ask at least one question

Outline of This Class

- Projects and research paper presentations
- "You and your research"
- Edge and IoT devices
 - Common IoT architectures
 - Roles of IoT gateways
- Opportunities: edge for responsive IoT applications
 - Hardware
 - Algorithms

Duke

15

Edge for system decisions

15

Edge for Responsive vs. Datacollection Applications

- Responsive applications: reacting to conditions
- Data collection applications:

> E.g., environmental monitoring

- ➤ E.g., model training
- ➤ Will cover later on

Duke UNIVERSITY

Properties of IoT Nodes

- Tightly constrained design space
- Reduced energy consumption
- (Extremely) low computing capability

Duke UNIVERSITY

Other Architectures: Low-Power Wide Area Communications • Long-range connectivity specifically for the IoT • Narrowband IoT – cellular standards • Low-power wide-area networking solutions: SigFox, LoRa

Duke UNIVERSITY

- Zigbee Light Link communications
 - Low-power
 - Low data rate
 - Short distance
- Hue Bridge: "the heart of the system"

Duke

Samsung Smart Things Hub Example

 Lights, speakers, locks, thermostats, sensors

• Z-Wave, Zigbee

 "The brain of the smart home"

Gateways are Not Particularly Computationally Capable

- For instance:
 - MacBook Air: 1.8GHz dual-core Intel Core i5, Turbo Boost up to 2.9GHz
 - Samsung SmartHub: 528 MHz ARM Cortex-A7
- All different
 - Raspberry Pis are a reasonable approximation for many cases

26

Duke UNIVERSITY

Duke

Gateways: Mobile Phones or Tables

Toys, accessories

Duke

Outline of This Class

- Projects and research paper presentations
- Edge and IoT devices
 - Common IoT architectures
 - Roles of IoT gateways
- Opportunities: edge for responsive IoT applications
 - Hardware
 - Algorithms
 - Edge for system decisions

35

Responsive Applications

- Currently:
 - Conveying simple commands
 - Performing simple actions
- It isn't doing anything intelligent, usually

Towards Responsive Edge Intelligence (1/2)	е
 Running Deep Neural Networks (DNNs) and other complex algorithms on the edge Large Computationally expensive Recall that gateways are not particularly powerful 	
	39
Dukeuniversity	
39	

Towards Responsive Edge Intelligence (2/2)

- Hardware solutions
- Algorithmic solutions:
 - Edge-only
 - Edge+cloud ("fog")

Duke

Solutions: Algorithms that Take Advantage of the Hierarchical Structure of the System

 Algorithms that are split between IoT devices, gateways, and the cloud

Duke UNIVERSITY

Opportunities: Self-Adaptive IoT: Intelligent System Operation (1/2)

- Currently:
 - Simple fixed rules
 - Manual setup
- Opportunities: Intelligence for System Design
 - Gateways can easily collect a lot of local and remote information on system behavior and properties

45

Duke UNIVERSITY

Opportunities: Self-Adaptive IoT: Intelligent System Operation (2/2)

- Using gateways to:
 - > Monitor and probe local and remote conditions
 - Make intelligent choices
 - > One possibility: reinforcement learning
- E.g., automatic protocol selection, automatic parameter settings
- Starting to appear for the cloud → interesting to extend it to the edge

46

Duke UNIVERSITY

