ECE 590/COMPSI 590 Special Topics: Edge Computing

Edge Helping Higher-end Mobile Devices: Mobile Offloading

Wednesday January 22nd, 2018

DukeUNIVERSITY

1

Last Class Recap

- Edge and IoT devices
 - Common IoT architectures
 - > Role of the gateway
- Opportunities: edge for responsive IoT applications
 - > Hardware
 - > Algorithms
 - > Edge for system decisions

2

Upcoming Timelines: A Reminder

- This week:
 - Project team selection: Friday January 24th
 - ➤ Paper presentation slot sign-up: Friday January 24th
- 2.5 weeks from now:
 - Project proposal: Monday February 10th
 - Project proposal presentations: Wednesday February 12th

DukeUNIVERSITY

3

Does Anyone Have a Project Idea They Want to Run by the Group?

4

Lecture Outline

- Technology and Courage
- Higher-end mobile devices
- Cloudlets
 - > Current presence
 - ➤ Challenges
- · Mobile offloading
- · Future directions in mobile offloading

5

DukeUNIVERSITY

5

Quiz

6

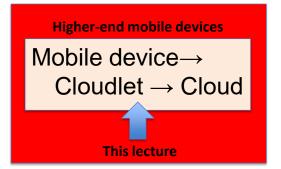
Technology and Courage

What did you think?

7

DukeUNIVERSITY

7


Edge for IoT Nodes vs. Edge For High-End Mobile Nodes

Low-end loT nodes

IoT nodes →

Gateway → Cloud

Last lecture

8

DukeUNIVERSITY

Core Approaches

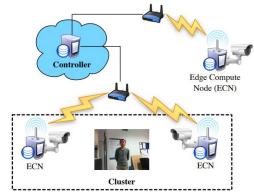
- Edge devices: cloudlets
- Core technique: mobile offloading

9

DukeUNIVERSITY

9

Higher-End Mobile Devices



- Mobile phones: prevalent use case
- AR/VR, drones, smart cars emerging use cases

10

Special Case: Camera Installations

- E.g., city, campus security cameras
 - > Very common
 - ➤ Of major practical importance
 - > Often not mobile devices
 - Many video-specific mechanisms

From: The Design and Implementation of a Wireless Video Surveillance System, Zhang et al, ACM MobiCom'15

11

DukeUNIVERSITY

11

Unlike IoT devices...

- Not as resource-constrained
 - > Fewer per-device customizations
 - ➤ Usually standard protocols

12

DukeUNIVERSITY

Unlike IoT devices...

- Complex, often high-volume, data
 - ➤ Variety of sensors accelerometers, video, audio, ...
- More complex operations
 - ➤ Thinking in full application pipelines, rather than individual tasks

13

DukeUNIVERSITY

13

Like IoT devices...

- Battery-limited
 - ➤ How long they last
 - ➤ How much heat they produce
- Usability limited by the batteries

Dukeuniversity

Mobile Device vs. a Server

- Isn't a mobile device a desktop in your pocket?
- Server > mobile device
 - ➤ Power constraints → 500 W of power on a high-end GPU, 10 W on a mobile SoC GPU
 - > Space constraints

15

Dukeuniversity

15

Cloudlets

- Local mini-clouds
- Envisioned properties:
 - ➤ Powerful, well-connected, and safe
 - Close at hand
 - ➤ Build on standard cloud technology

16

Duke

Existing and Possible "Cloudlets"

- On-site computing
- Targeted edge installations
- Resource scavenging

17

Dukeuniversity

17

On-Site Computing

- At universities
- ... and other medium and large organizations
 - ➤ Shrinking but not disappearing
 - ➤ Usually have low utilization

18

Targeted Installation: Chick-fil-A (1/2)

July 2018

19

Duke

19

Can Imagine Deploying More of These

- Especially for Augmented and Virtual Reality
- ... and for smart cities in general

21

Dukeuniversity

21

Resource Scavenging

- Finding unused devices around you
 - ➤ "Cyber foraging"
 - > "Uberization" of computing and storage

22

Resource Scavenging: Open Questions

- Open questions
 - ➤ Discovery, connectivity
 - > Security
 - ➤ Incentives, pricing

Smart city computing infrastructures, e.g.
 Barcelona deployments, try to address these

23

DukeUNIVERSITY

23

Cloudlet Challenges

- Mobile devices → supporting mobility
- Cloudlet →does not have the scale of the cloud

24

Cloudlets Helping Mobile Devices: Challenges: Rapid Service Provisioning

- A scenario: a student comes to Hudson Hall and needs to use our cloudlet
 - Service discovery
 - > Provisioning delay
 - ➤ Do not have the scale of the cloud: do we prioritize this user over others? Shift workloads with every user?

25

DukeUNIVERSITY

25

Cloudlets Helping Mobile Devices: Challenges: Service Handoff

- A scenario: the student moves from Hudson Hall to CIEMAS
 - >Do we transfer their workload state?
 - ➤ Do we de-provision their Hudson Hall services?

26

Cloudlets Helping Mobile Devices: Challenges

- Platform challenges
 - ➤ Challenges similar to wireless hand-off
- Workload allocation and scheduling challenges

27

DukeUNIVERSITY

27

Lecture Outline

- · Higher-end mobile devices
- Cloudlets
 - > Current presence
 - Challenges
- · Mobile offloading
- · Future directions in mobile offloading
- Challenges

28

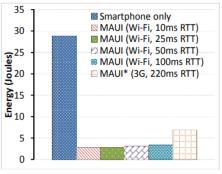
How Edge Helps: Mobile Offloading

- Executing code <u>not</u> on the mobile device
- E.g., image, video, audio, other sensor data processing
 - > Face detection, person identification
 - ➤ Language translation, speaker identification
 - Activity tracking, gesture recognition

 All offload processing to the cloud

29

Duke


29

Goals: Reducing Mobile Device Energy Consumption (1/3)

- · Need to have:
 - Energy to {transmit data + receive results} < energy to {execute the operation on the mobile device}</p>
- · Design principles:
 - ➤ Pick the most compute-intensive parts of the operation
 - > Reduce the size of what is transmitted: data and results
- Order-of-magnitude mobile energy savings possible

30

Example: Face Recognition with MAUI

ONE RUN FACE RECOGNITION

From: MAUI: Making Smartphones Last Longer with Code Offload, Cuervo et al., ACM MobiSys'10.

31

DukeUNIVERSITY

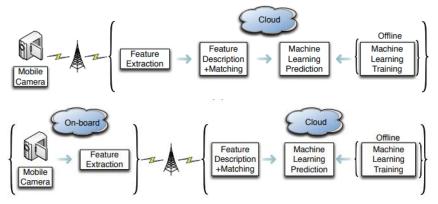
31

Goals: Reducing Mobile Device Energy Consumption (2/3)

- Not minimizing total energy:
 - Combined server + mobile energy spending can be higher than mobile-only energy spending
- System heterogeneity principle:
 - Server energy spending is not as important as mobile device energy spending
 - > Server grade does not factor into energy minimization objective

32

Goals: Reducing Mobile Device Energy Consumption (3/3)


- Often: transmit partially processed, rather than raw, data
 - Energy to {extract features + transmit extracted features + receive results} < energy to {transmit data + receive results}</p>
 - Energy to {extract features + transmit extracted features + receive results} < energy to {execute the operation on the mobile device}</p>

33

DukeUNIVERSITY

33

Local Feature Extraction Can Reduce the Amount of Data Transmitted

From: A Hybrid Approach To Offloading Mobile Image Classification, Hauswald et al, IEEE ICASSP'14.

34

DukeUNIVERSITY

Goals: Minimizing Task Completion Time

- Need to have:
 - Time to {transmit data + execute operation on the server + receive the results} < time to {execute the operation locally}</p>
- · More demands on the server:
 - > Need to offload to a much more capable device

35

DukeUNIVERSITY

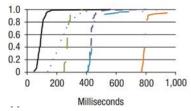
35

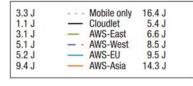
Mobile Offloading: Need for Scheduling Mechanisms

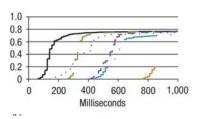
- Time, energy vary with network connectivity
- Need to make decisions for different conditions
 - > Different ways of placing different parts of operations
 - > Offline versus online
 - Joint scheduling of different operations
 - Scheduling that takes into account different local processors and the cloud

36

Role of the Edge (1/2)


- Short transmission distance helps both transmission energy and latency
 - > Better performance of existing offloading scenarios
 - ➤ Offloading equations "work out" in more cases
- Potentially, additional privacy


37


DukeUNIVERSITY

37

Role of the Edge (2/2)

Augmented reality

Face recognition

From: The Emergence of Edge Computing, by M. Satyanarayanan, IEEE Computer, 2017. Adapted from The Impact of Mobile Multimedia Applications on Data Center Consolidation, by Ha et al, 2013.

38

DukeUNIVERSITY

Lecture Outline

- Higher-end mobile devices
- Cloudlets
 - Current presence
 - > Challenges
- Mobile offloading
- · Future directions in mobile offloading

39

DukeUNIVERSITY

39

Future Directions: "Offload Shaping"

- · Adapting operations for offloading
- · A form of creative pre-processing
 - Changing application pipelines specifically for offloading
- Some examples from: The Case for Offload Shaping, by Hu et al, ACM HotMobile'15

40

Offload Shaping: Object Recognition in Video Captures (1/2)

- Object recognition works poorly on blurry frames
 - Can drop blurry frames before transmitting them to the cloud/cloudlet for processing

	Send all	Drop blurry
Bytes transferred	0.51M	0.34M
Glass energy (J)	429(2)	292(3)
Server CPU usage (normalized)	1.00(0.01)	0.81(0.01)

41

DukeUNIVERSITY

41

Offload Shaping: Object Recognition in Video Captures (2/2)

- Results from similar frames are likely to be the same
 - Discard frames that are sufficiently similar

	No	Drop	Improve-
	shaping	similar	ment
Bytes transferred	0.51M	0.23M	55%
Frames recognized	$171_{(2)}$	189(1)	11%
Glass power (W)	1.82(0.01)	1.83(0.01)	-1%
E2E latency (ms)	920(8)	393(2)	57%
Glass energy (J/frame)	$1.66_{(0.01)}$	0.72(0.01)	57%
Server CPU usage (normalized)	1.00(0.01)	0.27(0.01)	73%

42

Offload Shaping

- (+) Holistic view of the entire system
 - ➤ Fixing inefficiencies that become obvious when we think about the system beginning-to-end
- (-) Solutions likely to be application-specific
 - > E.g., blur detection in one of the previous examples

43

DukeUNIVERSITY

43

Opportunities: Providing Local Context

- Information about local conditions
 - > Pre-programmed
 - ➤... or learned
- Historic data, predictions

44

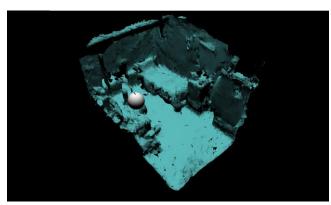
Opportunities: Providing Local Context

- Especially when context is large
- Opportunities for behavior specialization

45

DukeUNIVERSITY

45

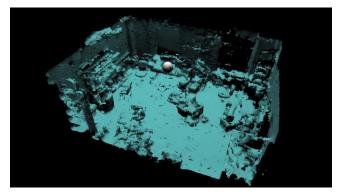

Side Note: Context Awareness in Applications is Not New

- Traces back to early 1990s
- E.g.:
 - ➤ Active badge location system
 - ➤OS updates only when a phone is plugged in and is on WiFi

46

Large Local Context: 3D Maps of the Environment for AR/VR (1/2)

- Massive amounts of information and processing
 - Useful to not regenerate for all users
 - Useful to not fetch from the cloud


Mesh representing a student dorm room

47

Duke UNIVERSITY

47

Large Local Context: 3D Maps of the Environment for AR/VR (2/2)

Mesh representing a lab

48

What Could Hudson Hall and CIEMAS Cloudlets Tell Us?

Opportunities for behavior specialization

49

Dukeuniversity

49

Opportunities: Thinking Across Multiple Devices and Multiple Applications

New paradigms

- Without the cloudlets, nearby devices have no exposure to each other's actions
 - ➤ No single "choke point"

50

Dukeuniversity

Opportunities: Thinking Across Multiple Devices and Multiple Applications

 Same application likely to be invoked on different devices served by one cloudlet

51

Duke UNIVERSITY

51

Class Recap

- · Higher-end mobile devices
- Cloudlets
 - > Current presence
 - > Challenges
- Mobile offloading
- Future directions in mobile offloading

52

Next Class: Edge Helping the Cloud

- Why do cloud computing companies want to create edge services?
- Why do telecom companies want to create edge services?

53

DukeUNIVERSITY

53

Reading Material for the Next Class

- Commoditization of the wireless industry
- Vodafone perspective on edge computing

54

Homework

Work on your research project
 And on your proposal specifically

55

DukeUNIVERSITY