ECE 590/COMPSI 590 Special Topics: Edge Computing

How Does Edge Help The Cloud?

Monday January 27th, 2020

DukeUNIVERSITY

1

Last Lecture: Recap

- · Higher-end mobile devices
- Cloudlets
 - > Current presence
 - > Challenges
- Mobile offloading
- Future directions in mobile offloading

2

Dukeuniversity

Class Outline

- Edge helping cloud
 - > Why edge makes sense for the cloud
 - > Background: latency and jitter
 - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- Telecom vision for the edge
 - > An infrastructure view of edge computing
 - > 5G and ETSI MEC

3

DukeUNIVERSITY

3

Quiz

4

Research Project Timelines: A Reminder

- Teams established: Friday January 24th
- Proposal due: Monday February 10th
- Progress report due: Friday March 20th
- Final presentations: weeks of March 29th, April 5th, and April 12th
- Final report due: Friday April 17th

5

DukeUNIVERSITY

5

Why do Amazon and Microsoft Want to Create Edge Services?

DukeUNIVERSITY

6

And Why Do Telecom Giants?

7

DukeUNIVERSITY

7

Class Outline

- Edge helping cloud
 - > Why edge makes sense for the cloud
 - > Background: latency and jitter
 - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- Telecom vision for the edge
 - > An infrastructure view of edge computing
 - > 5G and ETSI MEC

Ջ

Why do Amazon and Microsoft Want to Create Edge Services?

- First of all, not to be left out of the game
 - ➤ Most likely, you will have an IoT gateway, and you will run something on it

9

Dukeuniversity

9

Challenges in Cloud Interacting with IoT Nodes

- Some similar to serverless computing
 - ➤ Short requests from billions of devices
 - ➤ Difficult to right-size resources

10

Special Case: Cloud Company Owning the Datacenter and the Workloads

- Federated learning example
- Letting local devices do the work
 - > Datacenter does not have to
- Most likely not the primary motivation

11

Dukeuniversity

11

Fundamental Technical Reason: Challenges in Supporting Low-Latency Services

- Come up in context of existing latency-sensitive services
 - Responsive applications
 - ➤ Distributed data analytics

12

Class Outline

- Edge helping cloud
 - Why edge makes sense for the cloud
 - > Background: latency and jitter
 - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- · Telecom vision for the edge
 - ➤ An infrastructure view of edge computing
 - > 5G and ETSI MEC

13

DukeUNIVERSITY

13

Latency Components

- · Latency, in a distributed system:
 - Getting data to and from the execution point
 - > + service invocation time
 - > + service execution time

14

Latency with Edge and Cloud

- Cloud:
 - ➤ Globally **pooled** users → central server farm
- Edge:
 - ➤ Local users → local gateway/cloudlet

15

DukeUNIVERSITY

15

Latency with Edge and Cloud: Comparison (1/2)

- Cloud communication latency strictly greater than edge latency
 - Speed of light

From:http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

DukeUNIVERSITY

16

Latency with Edge and Cloud: Comparison (2/2)

- Cloud communication latency:
 - Affected by complex underlying global networking infrastructures
 - · Multiple hops, multiple switches in the way
- Cloud execution latency:
 - > Can be smaller than edge latency
 - Affected by complex datacenter sharing mechanisms

Providing latency guarantees is a challenge for the cloud

17

Dukeuniversity

17

Latency Requirements (1/2)

- Web world's take on latency:
 - ➤ Goes back to late 1960s work by Miller et al, on response time in man-computer conversational transactions
 - > 100 ms for a fluid computer response feeling
 - ➤ Loss of user attention after 5-10 s
- Web queries are optimized for 100 ms latency

18

Latency Requirements (2/2)

≤1ms

- Remote control / telepresence with real-time, synchronous haptic feedback
- Industrial moving robots
- Industrial closed loop control systems (e.g. 1ms cycles of polling data from sensors + actuators)
- Negotiated automatic cooperative-driving manoeuvres
- Smart grid: synchronous co phasing of power suppliers (< 1ms)

≤ 10ms

- Shared Haptic Virtual Environments: several users perform tasks that require fine-motor skills
- Tele-medical applications (e.g. telediagnosis, tele-rehabilitation)
- · Augmented reality
- Education: Haptic overlay trainer / learner for fine motor skills (e.g. for medical)
- Smart grid (3ms)
- Process automation (5ms)

≤ 50ms

- Serious gaming (20ms)
- Cognitive assistance (20-40ms)
- Virtual reality
- Cooperative driving (20ms)
- UAV control (10 - 50ms)
- Remote robot control with hap feedback (25ms)

≤ 100ms

- Vehicle safety apps (mutual awareness of vehicles for warning/alerting)
- Assisted driving (cars make cooperative decisions, but driver stays in control)

From: Simone Mangiante, Through the Fog Workshop, Feb. 2017

19

DukeUNIVERSITY

19

Mean Latency and Jitter Both Matter

- Jitter: deviations from the mean
- Jitter is problematic for voice, gaming, video conferencing, control, augmented reality, ...

20

Class Outline

- Edge helping cloud
 - > Why edge makes sense for the cloud
 - > Background: latency and jitter
 - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- Telecom vision for the edge
 - ➤ An infrastructure view of edge computing
 - > 5G and ETSI MEC

21

DukeUNIVERSITY

21

Cloud Latency: Background

- Recognize latency magnitude as an issue
 - > E.g., Content Delivery Networks as one solution
- · Recognize jitter as an issue
 - ➤ E.g., for multi-player games, VoIP
 - Edge should be able to support applications with tighter latency requirements

22

Cloud Providers Viewpoint

- Client-specific latency performance requirements are difficult to satisfy
- · Hide the details of the underlying infrastructure
 - Can evolve it without getting locked into outdated design decisions
 - Avoid revealing trade secrets

From: Inferring the Network Latency Requirements of Cloud Tenants, Mogul et al, USENIX HotOS'15

23

Dukeuniversity

23

Latency Variability Sources (1/3)

- Shared Resources
 - > CPU cores
 - > Processor caches
 - > Memory bandwidth
 - > Network bandwidth
- In our measurements with AWS t2.micro, we have seen up to 11x increase in latency

From: The Tail at Scale, J. Dean et al, Communications of the ACM, 2013

24

Latency Variability Sources (2/3)

- Daemons
- Global resource sharing, across multiple machines
 - ➤ Network switches, shared file systems
- Maintenance activities
 - > E.g., log compaction

From: The Tail at Scale, J. Dean et al, Communications of the ACM, 2013

25

DukeUNIVERSITY

25

Latency Variability Sources (3/3)

- Queuing
 - > Intermediate servers, network switches
- Power limits
 - ➤ Throttling if power envelope is exceeded for a long time
- Energy management
 - Latency when moving from inactive to active states

From: The Tail at Scale, J. Dean et al, Communications of the ACM, 2013

26

There are Ways of Improving Cloud Latency Support

- E.g.,
 - ➤ For latency caused by shared network or CPU: isolated resources
- But:
 - ➤ All require additional resources
 - New applications need even tighter latencies

27

DukeUNIVERSITY

27

Possible Future Combined Edge-Cloud Architecture

- Latency-oriented reservation-based solutions on the edge
- Traditional sharing-oriented solutions on the cloud

28

Summary: Why Edge Makes Sense for the Cloud

- Capturing new business opportunities
- Overcoming IoT node management complexity
- Solving latency challenges

29

DukeUNIVERSITY

29

Class Outline

- Edge helping cloud
 - > Why edge makes sense for the cloud
 - > Background: latency and jitter
 - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- · Telecom vision for the edge
 - > An infrastructure view of edge computing
 - > 5G and ETSI MEC

30

Dukeuniversity

Telecom Providers (1/2)

- Phone, internet, TV
- Mobile wireless service

31

DukeUNIVERSITY

31

Telecom Providers (2/2)

Company +	Country +	Market value (\$ Bn) ♦	Revenue +	Profit +
China Mobile	China	213.8	88.8	20.5
AT&T	USA	200.1	127.3	7.3
Verizon Communications	USA	137.3	115.7	0.9
Vodafone	UK	135.7	74.4	11.1
América Móvil	Mexico	70.7	60.2	7.1
Telefónica	Spain	67.1	82.3	5.2
Telstra	Australia	58.4	25.8	3.5
Nippon Telegraph & Tel	Japan	58.2	127	5.6
Deutsche Telekom	Germany	48.8	76.7	-7
Softbank	Japan	47.2	38.78	3.8

From: https://en.wikipedia.org/wiki/Telecommunications_industry

32

Duke

32

Wireless

Interest in Edge

AT&T: 2020 will be year of the edge

by Monica Alleven | Jan 8, 2020 5:02am

Telefónica makes TV companies' dreams come true with edge computing

05 DECEMBER 2019

Verizon and AWS announce 5G Edge computing partnership

Brian Heater @bheater / 2:53 pm EST • December 3, 2019

33

DukeUNIVERSITY

33

Class Reading Materials Question

 Did you find the perspective on edge computing, as outlined in the Vodafone presentation, different from what we have been discussing?

34

Mobile Offloading: Application View

- The view we have seen so far
- But, there is telecom piping underneath all of it

35

DukeUNIVERSITY

35

36

Mobile Offloading: Infrastructure View

(2/2)

- Infrastructure:
 - Pervasive
 - Expensive
 - Including real estate, laying and maintaining wires, ...
 - Mission-critical
- Over-the-top content (OTC) providers have it easy, in comparison

37

DukeUNIVERSITY

37

Telecom as an Infrastructure Layer

- Telecom as a utility
 - Commoditization of telecommunication services
 - > "Metered data" services, minutes of voice, number of texts
 - > Hard to differentiate offerings from different companies
- Connectivity services → connected experiences
 - ➤ Not exclusive to edge services
 - ... but very important in edge context

38

Last-Mile Delivery is Expensive

 Edge-based data processing can help

DukeUNIVERSITY

39

Class Outline

- Edge helping cloud
 - > Why edge makes sense for the cloud
 - > Background: latency and jitter
 - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- Telecom vision for the edge
 - > An infrastructure view of edge computing
 - > 5G and ETSI MEC

40

Duke

5G is Coming

· Pilot deployments, trials ongoing

42

Edge Computing is a Part of 5G

- One of the building blocks
- Offers:
 - ➤ Lower latency
 - > Reduced load on core network
- Idea: co-locate edge computing servers with cellular base stations

43

DukeUNIVERSITY

43

ETSI MEC (1/2)

- Standardization effort:
 - ➤ European Telecommunications Standards (ETSI)

 Multi-access Edge Computing (MEC)
- Since 2014

44

ETSI MEC (2/2)

Many participating companies

45

ETSI MEC: Example Standards

- Study on MEC support for V2x use cases
- UE identity API
- · System, host, and platform management
- Bandwidth management API
- UE application interface
- · Application lifecycle, rules and requirements management
- Radio Network information API
- Location API
- ...

46

Can Better Take Advantage of Existing Infrastructure

- Present in your zip code
- Present in your house
 In contrast to cloudlets

47

DukeUNIVERSITY

47

Recall: Cloudlet Challenges

- Mobile devices → supporting mobility
 - ➤ No related concepts in cloud computing

48

Telecom Edge vs. Cloudlet Edge (1/2)

- Existing pervasive infrastructure
- Minimal possible latency for cellular devices
- Know all about mobility
 - ➤ Have a concept of location can geo-locate without a GPS
 - Know how to handle handoff
 - However, computing handoff ≠ wireless hand-off

49

DukeUNIVERSITY

49

Telecom Edge vs. Cloudlet Edge (2/2)

- Different mentality than Amazon, Microsoft, Google
 - > Reliability-oriented
 - ➤ Slow to change
 - · Standards rather than iterative deployments
 - > Far less experience in creating developer ecosystems
- · For academic work: difficult to test your ideas

50

Recent Development: Partnerships with Amazon

- Verizon, Vodafone partnering with AWS on an AWS Wavelength execution
 - Write AWS applications, execute in local "Wavelength Zones"
 - Currently in private beta in limited markets

51

DukeUNIVERSITY

51

Recap

- Edge helping cloud
 - > Why edge makes sense for the cloud
 - > Background: latency and jitter
 - Challenges in supporting low-latency low-jitter solutions with modern cloud architectures
- Telecom vision for the edge
 - > An infrastructure view of edge computing
 - > 5G and ETSI MEC

52

Next Class

- Augmented and Virtual Reality on the Edge
- ML on the Edge

53

DukeUNIVERSITY

53

Next Class: Homework

- · Reading for the class
 - ➤ Google AI Blog: Federated Learning
- Work on your research project

54

Dukeuniversity