ECE 356/COMPSI 356 Computer Network Architecture Lecture 6: Ethernet & WiFi MAC Wednesday September 11, 2019

Duke

Lecture Outline

- Introduction to multiple-access links
- Ethernet: an introduction
- Ethernet Medum Access Control (MAC)
- Ethernet in practice
- WiFi Medium Access Control

Duke UNIVERSITY

Ethernet: An Introduction

- Most successful LAN technology of the last 20 years
- Developed in mid-1970s at Xerox PARC
- Speed: 10 Mbps multi-Gbps
 - Industry roadmap expects 800 Gbps after 2020
- Standard: 802.3, Ethernet II (DIX, stands for Digital-Intel-Xerox)
- Bus topology

Duke

How to Expand an Ethernet Segment: Repeaters (2/2)

- No more than four repeaters between any host
 - > <2500 meters
- < 1024 hosts
- Terminators are attached to each end of the segment
- Manchester encoding

Duke

Repeater

Host

Lecture Outline

- Introduction to multiple-access links
- Ethernet: an introduction
- Ethernet Medium Access Control (MAC)
- Ethernet in practice
- WiFi Medium Access Control

Duke

Ethernet Addresses

- A flat unique 6-byte address per adaptor
 > E.g., 00:13:E8:6D:8C:3D
- Each manufacture is given a unique prefix
 E.g.: 1C:5A:3E:??:??: Samsung Electronics
- An all 1s address is a broadcast address (FF:FF:FF:FF:FF)
- An address with first bit 1 but not broadcast is multicast

Dukeuniversity

Finding Ethernet Addresses of Your Device Interfaces

- Windows: ipconfig /all
- Linux/Unix: ipconfig -a
- Android: settings -> about phone -> phone status
- iPhone: settings -> general -> about
- Who manufactured your device?
 > hwaddress.com
 - macvendorlookup.com

Professor's Example										
 Android phone Wi-Fi MAC c0:ee:fb:: : macvendorlookup: 										
Company Address	OnePlus Tech (Shenzhen) Ltd 18F Tairan Building C, Tairan 8th Road Chegongmiao, Futian Shenzhen Guangdong 518040 CHINA									
Range	C0:EE:FB:00:00:00 - C0:EE:FB:FF:FF									

Transmitter Algorithm

- 1. The adaptor receives datagram from network layer, creates frame
- 2. If the adaptor senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits an entire frame without detecting another transmission, NIC is done with frame!
- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal (collision!)

Dukeuniversity

P-persistent Protocols

- Waits for the line to go idle, then: transmits with probability *p*, waits with probability *q* = *1-p*
- Accommodates contention for the channel
- Ethernet is 1-persistent

22

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

- An adaptor senses the signals on the line and compares it with its own
 - > If same, no collision; otherwise, collision
 - > Sends 32-bit jamming sequence after collision
- In the worst case, a sender needs to send 512 bits (46+14+4 = 64B) to detect collision
 > Why?

- Best case: A,B close by
- Worst case: A and B are at opposite ends of the network
- One-way delay is d
- A needs to send for 2d (round-trip delay) to detect collision
- 2d = 51.2 µs. On a 10 Mbps Ethernet, corresponds to 512 bits

Duke

(a)

(b)

(c)

(d)

-

- Five physical segments between any two nodes
- Four repeaters between the nodes.
- Each segment < 500m \rightarrow Total < 2500m

Maximum Distance to Minimum Frame Size

- Propagation delay for this maximum-extent Ethernet network is ~25.6 µs (5000 m / speed of light in copper)
- 2d = 51.2 µs (a factor of two for error margin)
 Protocol specification is twice as strict as it needs to be
- Minimum Ethernet packet frame is 512 bits (64B)
 - Header 14B, payload 46B, CRC 4B

Duke UNIVERSITY

Lecture Outline

- Introduction to multiple-access links
- Ethernet: an introduction
- Ethernet Medium Access Control (MAC)
- Ethernet in practice
- WiFi Medium Access Control

Ethernet Experience

- Work best under lightly loaded conditions
 > Over 30% utilization is considered heavy
- Used conservatively
 Fewer than 200 hosts, far shorter than 2500 m
- Very successful
 - ➤ Easy to maintain
 - Price: does not require a switch which used to be expensive

Duke UNIVERSITY

Lecture Outline

- Introduction to multiple-access links
- Ethernet: an introduction
- Ethernet Medium Access Control (MAC)
- Ethernet in practice
- WiFi Medium Access Control

Wireless Access Control: Additional Considerations

- Wireless nodes do not receive each node's transmissions
- Wireless nodes cannot transmit and receive at the same time on the same frequency
 - Strong signal generated by the transmitter "drowns out" weaker signals received from other nodes
- Uses collision avoidance instead of collision detection

Wireless Nodes Do Not All Hear Each Other: Hidden Node Problem

- A, C cannot hear each other
- Transmissions to B collide
 - A,C are not aware of a collision
 - A,C hidden with respect to one another

Wireless Nodes Do Not All Hear Each Other: Exposed Node Problem

- Simultaneously B can send to A, C can send to D
- C overhearing B's transmission does not mean C cannot transmit to D

802.11 (WiFi) Multiple Access with Collision Avoidance (1/2)

- Sender and receiver exchange control messages
- Sender → receiver: Request to Send (RTS)
 > Specifies the length of frame
- Receiver → sender: Clear to Send (CTS)
 ≻ Echoes length of frame

802.11 (WiFi) Multiple Access with Collision Avoidance (2/2)

- Sender → receiver: frame
- Receiver → sender: ACK
- Other nodes can send after hearing ACK

Dukeuniversity

Addressing Hidden and Exposed Node Problems

- Node sees CTS
 - Too close to receiver, cannot transmit
 - Addressing hidden terminals
- Node only sees RTS
 - Okay to transmit
 - Addressing exposed terminals

How to Resolve a Collision

- If no CTS, then RTS collide
- Exponential backoff to retransmit

Typically 802.11 Nodes Connect to Base Stations (Access Points)

- Base stations are called Access Points (APs)
- Each node associates with one AP
- APs connect via the distribution system

Duke UNIVERSITY

Communications Between Individual Nodes are via Access Points

 When A communicates with E, traffic flows from A to AP-1 to AP-3 to E

Node-Access Point Association (1/2)

- Active scanning
 - ➢ Node: a Probe
 - > All APs within reach: a Probe Response
 - > Node selects one of APs, send an Association Request
 - > AP replies with an Association Response
- Passive scanning
 - > AP sends a *Beacon* to announce itself
 - Node sends an Association Request

Duke UNIVERSITY

Node-Access Point Association (2/2)

- Nodes associate with APs when joining the network and when network conditions change
- E.g., when C moves, it will change its association from AP-1 to AP-2
- Happens many times as you walk across campus

802.11 Frame Format											
16	16	48	48	48	16	48	0–18,496	32			
Control	Duration	Addr1	Addr2	Addr3	SeqCtrl	Addr4	Payload	CRC	4 addresses		
 Same AP Addr1: dst Addr2: src Different APs ToDS and FromDS in control field set Add1: dst, Addr2: AP_dst Addr3: AP_src, Add4: src 											
Duke	VERSITY										

Lecture Summary

- Introduction to multiple-access links
- Ethernet: an introduction
- Ethernet Medium Access Control (MAC)
- Ethernet in practice
- WiFi Medium Access Control

Duke UNIVERSITY

Next Lecture

Wireless and mobile networking