



- Internetworking: an introduction
- Switching
- Types of switching
   Datagram switching
  - ➢Virtual circuit switching
    - ATM
  - ≻Source routing

Duke UNIVERSITY

#### Internetworking

- Previously we saw how to connect one node to another, or to an existing network. How do we build networks of global scale?
- How do we interconnect different types of networks to build a large global network?
- The foundation of the Internet

#### Next 6 Lectures: A Roadmap

- 1. Switching and bridging
- 2. Ethernet switches
- 3. Basic Internetworking (IP)
- 4. Routing Distance Vector-based
- 5. Routing Link State-based

# Lecture Outline

- Internetworking: an introduction
- Switching
- Types of switching
  - Datagram switching
  - Virtual circuit switching
    - ATM
  - ≻Source routing

#### Why Do We Need Switches?



- Problem: single link networks have limited scale
   > Ethernet < 1024 hosts, 2500 meters</li>
  - > Wireless limited by radio ranges
  - > Point-to-point links connect only two nodes

Duke UNIVERSITY

## Packet Switching

 A packet switch is a device with several inputs and outputs leading to and from the nodes that the switch interconnects

Hosts communicate without being directly connected

 Main responsibility: receive incoming packets on one of its links and to transmit them on some other link

9

#### Difference Between a Switch and a Hub

Video posted on Piazza



#### Switches Can Be Connected to Each Other to Build Larger Networks



## Switching Technologies

- Switching / forwarding: receiving incoming packets on one of switch links and transmitting them on some other link
- Problem: how does a switch decide on which output port to place each packet?
- Solution: looks at the packet header and makes a decision
  - Connectionless: datagram
  - Connection oriented: virtual circuit
  - Source routing

| Challenges                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Contention</li> <li>Input rate exceeds output rate <ul> <li>Multiple input ports may send to the same output port</li> <li>Switches queue packets until contention disappears</li> </ul> </li> <li>Congestion <ul> <li>When a switch runs out of buffer, it discards packets</li> <li>Too frequent packet loss is said to be congested</li> </ul> </li> </ul> |
| Duke University                                                                                                                                                                                                                                                                                                                                                        |

- Internetworking: an introduction
- Switching
- Types of switching
   Datagram switching
   Virtual circuit switching
  - Virtual circuit switching
    - ATM
  - ≻Source routing





#### Features of Datagram Switching (1/2)

- Connectionless
  - Hosts can send anytime. No need to wait for connection to set up
- Unknown network state
   Not sure whether a packet can reach the destination
- Independent forwarding
  - Packets can take different paths

Duke UNIVERSITY

## Features of Datagram Switching (2/2)

- Robust to failures
  - A failure of a switch may not disrupt communications
  - Switches can re-compute forwarding tables
- Commonly deployed



## Virtual Circuit Switching

- Connection-oriented model
- Two steps:
  - Set up a virtual circuit
  - Data transfer

#### Virtual Circuit Switching: Connection Setup Phase

- Set up *connection state* in each of the switches between the source and the destination
- VC table entry in each switch, for each VC:
  - A virtual circuit identifier (VCI)
  - An incoming interface
  - An outgoing interface
  - An outgoing VCI





## How to Establish Connection State

- Administrator-configured
  - Permanent virtual circuit (PVC)
  - > Administrators manually sets up VC tables
  - Does not suit large networks
- · Signaling to establish state
  - Switched virtual circuit (SVC)
  - > A host sends messages to dynamically setup or tear down a VC

#### VC Setup Protocol: Host A to Destination B (1/2)

- A host A sends a setup message to first hop switch, including the final destination address
  - Similar to a datagram packet
  - Message to get all the way to B
    - Assume switches know how to do it
- The switch picks an unused VCI to identify the incoming connection, and fills part of the VC table
  - > Why not let the host pick the VCI value?

Duke UNIVERSITY

#### VC Setup Protocol: Host A to Destination B (2/2)

- Every switch repeats the process until the packet reaches the destination B
- The destination B sends an ACK to inform its upstream switch the VCI for the connection





#### After VC Setup is Complete

- Data transmission can begin
- Unused connections need to be torn down

#### Duke UNIVERSITY

#### Characteristics of VC Switching

- Pros:
  - Data packets contain a small VCI, not the full destination addresses
- Cons:
  - Connection setup wait
  - > One switch failure tears down the entire connection
  - Connection sets up require routing algorithms
    - Setup packet is forwarded using a datagram algorithm

#### VC Allows Resource Reservation

- Pro: buffers can be allocated during the setup phase to avoid congestion
- An example (X.25)
  - > Buffers allocated during connection setup
  - Sliding window is run between pairs of nodes: hop-byhop flow control
  - Circuit is rejected if no more buffer

Duke UNIVERSITY

## Quality of Service (QoS)

- Connectionless network is difficult to allocate resources
  - Switches send packets independently
  - > How to associate one packet with other packets?
- Virtual circuit can be used to provide different QoS
   Allocate a fraction of link bandwidth to each circuit
- Examine QoS in detail in the second half of the course



- Internetworking: an introduction
- Switching
- Types of switching
  - Datagram switching
  - Virtual circuit switching
    - ATM
  - ≻Source routing

#### Asynchronous Transfer Mode

- ATM Cells: fixed-size packets
  - ≻5 bytes header
  - ≽48 bytes payload
- If payload smaller than 48B, uses padding
- If greater than 48B, breaks it

#### Duke UNIVERSITY

#### Why Small, Fixed-Length Packets?

- Cons: maximum efficiency 48/53=90.6%
- Pros:
  - Suitable for efficient high-speed hardware implementation
  - Many switching elements doing the same thing in parallel





#### History of ATM: Why 48 Bytes?

- It's from the telephone technology
- Thought data would be mostly voice
- A compromise
  - ➤ US wanted 64 bytes for efficiency
  - Europe wanted 32 bytes for simplifying echo cancellation
  - ≻ (64+32) / 2 = 48 bytes

Duke UNIVERSITY

#### History of ATM: Where Is It Now?

 Popular in the late 80s and early 90s due to its high speed

> Major telecommunication companies supported it

- Popularity faded. IP/Ethernet ruled
  - ➤ IP over ATM
  - DSL over ATM: DSL modem takes Ethernet frames and chop them into cells

- Internetworking: an introduction
- Switching
- Types of switching
   Datagram switching
  - ➢Virtual circuit switching
    - ATM

Source routing









#### Next Lecture

 Switches that are used to forward packets between local area networks
 >LAN switches
 >Bridges