ECE 356/COMPSI 356 Computer Network Architecture

Final Review

Monday December 9th, 2019

1

Duke UNIVERSITY.

One of the Course Goals: Understand the Technology You Use Every Day

- **Client-server communications**
 - Physical layer packet exchange
 - TCP session
 - HTTP request/response mechanisms
- Behind-the-scenes support mechanisms for end-to-end communications
 - Intra-domain and inter-domain routing
 - Queuing policies
 - Congestion avoidance
- Wireless communications, security, multimedia, sending e-mails, ...

3

Duke UNIVERSITY

3

Key Network Architectures Principle Protocol stack: layering Each protocol is implemented email WWWV phone. independently SMTP HTTP RTP > Each protocol is responsible for a specific TCP UDP subtask IP Protocols are grouped in a hierarchy Protocol *peer* and *service* interfaces ethernet PPP

Encapsulation and decapsulation Each layer adds its own header

DukeUNIVERSITY

Course Grading

- Final: 20%
- In-class quizzes: 5%
- Homeworks: 20%
- Labs: 40%
- Midterm: 15%

Duke

What We've Learned: Routing

- Please review October 9th routing wrap-up lecture
- Also routing material on midterm, Lab 3
- Intra-domain routing
 Link state routing
 Distance vector routing
- Inter-domain routing

DukeUNIVERSITY

What We've Learned: UDP

- A bare-bones protocol that only provides
 > Demultiplexing by port numbers
 > Checksumming of data
- Has important advantages
 > HW exercises on TCP vs. UDP for different scenarios
- DNS, RIP, some multimedia applications run over UDP

14

What We've Learned: **TCP** Connection Establishment TCP connection needs to Passive participant Active participant (client) (server) be set up and torn down SYN, SequenceNum=x Allocate and deallocate SYN+ACK, SequenceNum=y resources on both ends of Acknowledgment=xthe communication ACK, Acknowledgment=y+1

 Mechanism: three-way handshake

Duke

What We've Learned: TCP Flow Control

- Receiver controls sender so sender won't overflow receiver's buffer by transmitting too much, too fast
- Buffer space *explicitly signaled* in segment headers
 > Highly dynamic

	Data (SequenceNum)	
	Sender	
	Acknowledgment + AdvertisedWindow	17
DukeUNIVERSITY		
17		

What We've Learned: TCP Reliable Data Transfer (1/2) 4 10 16 31 Sequence numbers and SrcPort DstPort acknowledgements SequenceNum SequenceNum identifies Acknowledgment the first byte in the HdrLen 0 AdvertisedWindow Flags segment Acknowledgement Checksum UrgPtr contains the next Options (variable) SequenceNum that a host Data is expecting Duke

What We've Learned: Queuing

- Router-enforced resource allocation
 - > <u>Scheduling policy</u>: which packet gets sent
 - > Drop policy: which packet gets dropped
- Default queueing approach: FIFO with drop tail
- Priority queuing: multiple FIFO queues for packets with different priority levels
 - May starve low-priority packets
- Fair queuing: a queue for each flow
 Shares available bandwidth fairly between the flows

23

23

Duke UNIVERSITY

What We've Learned: Router-Based Congestion Avoidance (1/2)

- Congestion avoidance rather than reaction to congestion
- Routers can *explicitly* notify sources about congestion
 > DECbit, Explicit Congestion Notification (DECbit)
- Random Early Detection (RED)
 - > Routers *implicitly* notify sources by dropping packets
 - > Drop packets at random, as a function of the level of congestion
 - Probability to drop flow's packet is ~ proportional to the flow's share of bandwidth

24

Duke

What We've Learned: DNS

- Map an easy-to-remember name to an IP address
- Needs to be very fast
- *Distributed database* implemented in hierarchy of many *name servers*
- Rely on a 3-level server hierarchy, plus local servers
 - Root servers
 - Top-level domain servers (TLD)
 - Authoritative servers
- Uses caching to reduce client latency and network loads

28

Dukeuniversity

