
ECE 356/COMPSI 356 Computer Network Architecture

Midterm Review

Monday October 14th, 2019

Duke UNIVERSITY

Midterm: Expectations

- Fundamental concepts
- Key algorithms / protocols

Duke UNIVERSITY

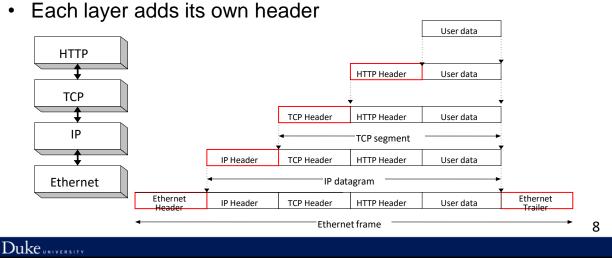
Midterm Policy

- In class on Wednesday October 23rd, 1:25 PM 2:40 PM
- Up to Wednesday October 16th lecture
- Closed book / notes
- No Internet
- Allowed:
 - ➤ A calculator
 - > One two-sided hand-written page, written by you (letter-size)

You Need to Know The Material Covered in Class


- Will not ask questions on material covered in the book but not in class
 - > E.g., SONET framing, Bluetooth, message format in BGP
- Will ask questions on lecture materials not covered in the book. Materials not covered in the book includes:
 - Wireless channel properties
 - ➢ 5G communications
 - ICMP functionality

≻ ...


Duke UNIVERSITY

Additional Study Materials

- HW1 solutions
- In-class quiz answers
 - > Make sure you understand everything you did not get right
- Lab2 concepts and materials
 - If you are working in a group, please make sure to understand the parts done by your lab partner

What We've Learned: Hardware, Physical Layer, and Low-level Link Layer Functionality

- Covered by HW 1
- Different types of physical links
- Delay, bandwidth, throughput, delay-bandwidth product
- Shannon-Hartley channel capacity theorem
- Encoding, framing, error detection, reliable transmission

Duke university

What We've Learned: Ethernet

- Most successful LAN technology in the last 20 years
- Flat unique 6-byte address, e.g., C0:EE:FB:6D:8C:3D
 Note how this is different from the IP address: no network prefix
- Multiple access on Ethernet: Carrier Sense Multiple
 Access with Collision Detection
 - Sensing whether the channel is idle
 - > Send jamming signal and wait after a collision
 - *Exponential backoff*: doubling the delay interval after each collision

What We've Learned: Wireless Communications (1/3)

- Properties of wireless links
 - Much more complex than wired links
 - > Attenuation, interference, multipath propagation
 - Signal to noise ratio, bit error rate

Duke UNIVERSITY

What We've Learned: Wireless Communications (3/3)

- IEEE 802.11: ubiquitously used
 - > Unlicensed spectrum bands, typically 2.4 GHz and 5 GHz
 - Infrastructure and ad hoc modes
 - Infrastructure mode AP-host relationships: hosts associate with access points
 - Multiple access: Carrier Sense Multiple Access with Collision Avoidance
 - Exchange control messages before transmitting information

Duke UNIVERSITY

What We've Learned: Wireless Communications (3/3)

- Cellular communications & 5G
 - Uses licensed spectrum
 - Cellular technology generations
 - 5G: first cellular generation designed for a diverse set of connected devices
 - > 5G's use of multiple frequency bands

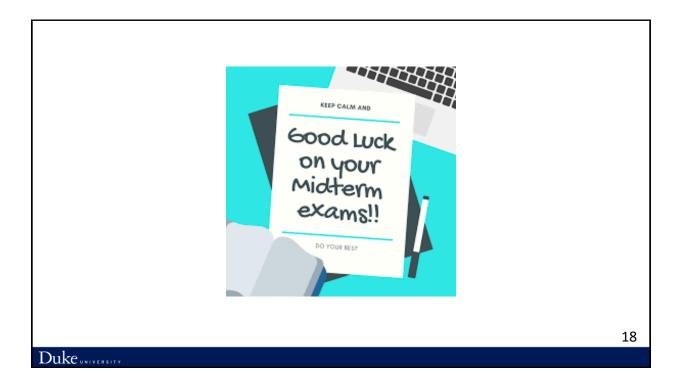
Duke university

What We've Learned: Switching

- Datagram and virtual circuit switching
 - Datagram: connectionless
 - Virtual circuit: set up the connection state before sending packets
 - ATM is an example technology
- Ethernet switches
 - Learn forwarding tables
 - Form a spanning tree

14

What We've Learned: IP Protocol (1/2)
 Delivering packets from a source to a destination across one or more IP networks > Addressing, routing
 Unreliable connection-less best effort service (datagram service)
 IP addressing > 32-bit globally unique identifier
 Network and host part of the IP address Classful vs. classless
CIDR notation, e.g., 128.143.137.144/24
Duke UNIVERSITY


What We've Learned: IP Protocol (2/2)

- Many details covered by Lab 2
- IP forwarding, longest prefix match
 > Routers forward according to network prefixes
- ARP
- ICMP

What We've Learned: Routing

See previous lecture for routing review materials

Duke

