
GazeGraph: Graph-based Few-Shot Cognitive Context Sensing
from Human Visual Behavior

Guohao Lan, Bailey Heit, Tim Scargill, Maria Gorlatova
Duke University, Durham, North Carolina

{guohao.lan, bailey.heit, ts352, maria.gorlatova}@duke.edu

ABSTRACT
In this work, we present GazeGraph, a system that leverages human
gazes as the sensing modality for cognitive context sensing. Gaze-
Graph is a generalized framework that is compatible with different
eye trackers and supports various gaze-based sensing applications.
It ensures high sensing performance in the presence of heterogene-
ity of human visual behavior, and enables quick system adaptation
to unseen sensing scenarios with few-shot instances. To achieve
these capabilities, we introduce the spatial-temporal gaze graphs
and the deep learning-based representation learning method to ex-
tract powerful and generalized features from the eye movements
for context sensing. Furthermore, we develop a few-shot gaze graph
learning module that adapts the ‘learning to learn’ concept from
meta-learning to enable quick system adaptation in a data-efficient
manner. Our evaluation demonstrates that GazeGraph outperforms
the existing solutions in recognition accuracy by 45% on average
over three datasets. Moreover, in few-shot learning scenarios, Gaze-
Graph outperforms the transfer learning-based approach by 19% to
30%, while reducing the system adaptation time by 80%.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting theory, concepts and paradigms.

KEYWORDS
Eye tracking, cognitive context sensing, few-shot learning.
ACM Reference Format:
Guohao Lan, Bailey Heit, Tim Scargill, Maria Gorlatova. 2020. GazeGraph:
Graph-based Few-Shot Cognitive Context Sensing from Human Visual Be-
havior. In The 18th ACM Conference on Embedded Networked Sensor Systems
(SenSys ’20), November 16–19, 2020, Virtual Event, Japan. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3384419.3430774

1 INTRODUCTION
Recently, human visual behavior has emerged as a new sensing
modality to capture cognitive contexts, such as attention, emotion,
and knowledge acquisition of the user [1]. Specifically, as eye move-
ment is strongly related to the cognitive processes of visual per-
ception [2], such as visual memory [3], emotion [4], and mental

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7590-0/20/11. . . $15.00
https://doi.org/10.1145/3384419.3430774

workload [5], gaze-based sensing has extended the current mo-
bile sensing spectrum with a new cognitive dimension and has
opened the gates to the world of cognition-aware applications [4–
10]. Indeed, the industry has seized this opportunity and released
a smorgasbord of commercial products that are integrated with
eye tracking for cognitive-aware computing. For instance, gaming
laptops from Alienware are enhanced with eye trackers to capture
the user’s visual attention and awareness in game playing and use
them as metrics for professional game training [11], while driver
monitoring systems in BMW and Volvo cars use eye tracking to cap-
ture the driver’s attention [12] and identify subconscious driving
behavior [13]. Although much exciting research has been done in
gaze-based context recognition [4–10, 14, 15], two practical aspects
have been largely overlooked in existing solutions.

First, existing works heavily rely on hand-crafted features to
analyze the eye movement patterns [3–9]. However, human visual
behavior is highly heterogeneous across subjects [8, 16, 17], visual
stimuli [14, 15], and eye tracking devices. For instance, eye move-
ments involved in reading articles are diverse among subjects and
reading materials (e.g., the layout and salience content) [15]. Due to
this intrinsic diversity, hand-crafted features devised for a specific
gaze-sensing condition, i.e., for specific subjects, visual stimuli, and
eye tracking hardware, are difficult to generalize to new conditions.
This is known as the domain shift problem [18], which significantly
degrades the performance of existing gaze-based recognition solu-
tions for ‘in the wild’ scenarios.

Second, to improve the recognition accuracy, one might think of
leveraging deep neural networks (DNNs), e.g., the convolutional
neural networks (CNN) [19] or the long short-term memory net-
works (LSTM) [20], owing to their superior feature learning and
classification performance [21]. Such capabilities, however, rely on
the availability of abundant gaze instances that cover diverse sens-
ing conditions. Unfortunately, the countless possible gaze-sensing
conditions as well as the rising privacy concerns about eye move-
ment data [22–24] make the collection of a large-scale gaze dataset
infeasible, and thus significantly limit the efficiency of applying
DNNs directly to gaze-based sensing problems. Indeed, when inves-
tigating the accuracy of an LSTM-based classifier on two cognitive
context recognition tasks [14, 15], we observe a 60% accuracy drop
when limited training samples are available (Section 3.2.2).

To move beyond these limitations, we present GazeGraph, a
generalized gaze-based sensing framework that is compatible with
different eye trackers and supports various cognitive context sens-
ing applications. It promises high recognition performance in the
presence of heterogeneity of human visual behavior, and enables
quick system adaptation to unseen sensing scenarios with few-shot
instances. These capabilities are made possible by a suite of novel
techniques devised in this work.

https://doi.org/10.1145/3384419.3430774
https://doi.org/10.1145/3384419.3430774

SenSys ’20, November 16–19, 2020, Virtual Event, Japan G. Lan et al.

First, GazeGraph incorporates the spatial-temporal gaze graph
(Section 6) and the gaze graph classifier (Section 7.1). The former
is a novel data modeling technique that converts the original eye
movement sequence into a spatial-temporal graph. The constructed
graph pays selective attention to the gazes in the sensing window
and preserves the eye movement patterns that are embedded in
the original signal in both temporal domain (through modeling
the local pairwise relation between adjacent gazes) and spatial
domain (through the construction of a 𝑘-hop neighbor graph). The
gaze graph classifier leverages a deep neural network to extract
a low-dimensional data representation of the constructed graph
for classification. The obtained representation is sensitive to minute
eye movement details embedded in the graph, but insensitive to large
irrelevant variations that result from the diversity of visual behavior.
As demonstrated (Section 7.1), the two techniqueswe devised lead to
significant accuracy improvements over conventional hand-crafted
feature-based methods [14, 15] and over an LSTM-based classifier.
GazeGraph also exhibits a strong generalization capability across
eye trackers and applications (e.g., compatible with three types of
eye trackers and supports two gaze-based sensing applications).

Second, to enable fast system adaptation with few gaze instances
required, we frame the task as a few-shot learning problem [25, 26],
that is: how to train the gaze graph classifier such that it can quickly
adapt to new sensing conditions (e.g., new subjects) after a few
learning iterations (e.g., ten gradient steps) with a small number
of instances from the new conditions (e.g., five instances per class).
Specifically, we borrow the principles of ‘learning to learn’ from
meta-learning [26–31], and design the few-shot gaze graph learn-
ing module (Section 7.2) to identify a good model initialization for
the gaze graph classifier in training. Evaluation on three datasets
(Section 8.3) indicates that, in scenarios with few-shot instances,
GazeGraph achieves significant improvement in both recognition
accuracy and system adaptation time over the state-of-the-art trans-
fer learning-based approach [32, 33].

Our major contributions are summarized as follows:

• We introduce a novel approach that models human visual behav-
ior as graphs for gaze-based cognitive context sensing. We develop
the spatial-temporal gaze graph and the CNN-based gaze graph
classifier to improve the recognition performance and to ensure a
better generalization capability across different eye trackers and
gaze-based sensing applications.
• We formulate the gaze-based recognition task as a few-shot learn-
ing problem and design a few-shot gaze graph learning module to
ensure good recognition performance and fast system adaptation
in new gaze-sensing scenarios with few training instances.
• We conduct a comprehensive evaluation of GazeGraph on three
datasets, two public and one collected by ourselves, which covers
three types of eye trackers and two gaze-based sensing applications.
The results demonstrate that GazeGraph outperforms the conven-
tional feature-based method and an LSTM-based classifier by 45%
and 20% on average over three datasets. Moreover, in 5-shot and 10-
shot scenarios, GazeGraph outperforms the transfer learning-based
approach by 30% and 19% on average, respectively, while reducing
the system adaptation time by 80%.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 provides the background and the moti-

vation. Section 4 presents the system overview. The design details
of the signal processing pipeline, the spatial-temporal gaze graph,
and the few-shot graph learning model are given in Sections 5, 6,
and 7, respectively. We present the evaluation in Section 8, discuss
the limitations and future work in Section 9, and conclude the pa-
per in Section 10. The dataset collected in this work is available at
https://github.com/GazeGraphResource/GazeGraph.

2 RELATEDWORK
Cognitive context recognition. GazeGraph is related to a rich
body of work on eye tracking-based cognitive context sensing,
including sedentary activity recognition [6, 14, 34, 35], reading be-
havior analysis [7, 8, 15, 36], and emotion recognition [4]. All these
works heavily rely on hand-crafted features for classification. How-
ever, due to the intrinsic heterogeneity in human visual behavior,
hand-crafted features usually lead to poor recognition performance
in highly diverse sensing conditions (Section 3.2). By contrast, Gaze-
Graph ensures better feature learning capability by modeling the
eye movements as graphs and leveraging the gaze graph classifier
to capture the spatial-temporal information embedded in the eye
movements. There are also works that use eye-area images for emo-
tion recognition [37, 38]. For instance, EMO [38] leverages the CNN
to capture sophisticated features from eye-area images for emotion
recognition. However, due to the visual behavior diversity, EMO
requires subject-dependent optimization and requires 285 images
per class during the training. Similarly, SPIDERS [37] requires 1000
images per class for the training. By contrast, GazeGraph is robust
against the visual behavior heterogeneity and requires only five
instances per class when adapting to new subjects.

Graph-based context recognition. There is a large body of
work on applying graph models together with machine learning
techniques for context recognition [39, 40]. Applications such as
inferring the functional annotations for genes protein [41], feature
learning for molecular structures [42], text classification [43], as
well as human action recognition [44, 45], are leveraging graph
models and DNNs to ensure good performance. GazeGraph shares
similar motivation with these recent advances: leveraging graph-
modeling and DNNs to learn a better data representation [39]. How-
ever, GazeGraph is the first work that focuses on gaze-based sensing
problems. We also devise techniques that model the human gaze
signal as spatial-temporal graphs, and introduce new contributions
to address the unique domain shift challenges that result from the
heterogeneity of human visual behavior.

Few-shot learning. The problem of enabling machine learning
models to quickly adapt to unseen scenarios with limited training
samples, known as few-shot learning, has attracted much effort in
recent years [25–31, 46, 47]. Meta-learning, in particular, has shown
promise in few-shot image classification tasks [26, 28–31]. Gaze-
Graph shares the underlying concepts of ‘learning to learn’ [27]
with the recent meta-learning advances that achieve few-shot learn-
ing by first training the classification model on a set of source tasks
to identify a good model initialization and then fine-tuning the
optimized model to unseen tasks with only a few gradient descent
updates. The study most related to ours is MetaSense [47] which
applies the model-agnostic meta-learning framework [28] to tackle
the individual condition problem in activity and speech recognition.

GazeGraph: Graph-based Few-Shot Cognitive Context Sensing from Human Visual Behavior SenSys ’20, November 16–19, 2020, Virtual Event, Japan

To the best of our knowledge, GazeGraph is the first work that
leverages the ‘learning to learn’ concept to address the domain shift
problem in gaze-based context sensing.

3 BACKGROUND AND MOTIVATION
3.1 Primer on Eye Tracking
Eye tracking is the process of estimating the point of gaze at which
the subject is looking. Existing eye tracking solutions can be cate-
gorized into the following three classes:

Video-oculography (VOG) is the most popular tracking ap-
proach, and has beenwidely adopted in commercial systems [12, 48–
51]. A VOG-based eye tracker consists of an infrared light emitting
diode that creates reflections on the cornea, and a camera that is
sensitive to the infrared light to capture images of the eyes [52–54].
As the positions of the cornea reflections are almost constant during
the eye movement, they are leveraged as reference points. Then, by
calculating the relative positions between the center of the pupil
and the corneal refection, the movement of the pupil can be esti-
mated. Based on the application scenario, VOG-based eye trackers
can be further classified into mobile-based trackers (MVOG), which
are typically head mounted devices worn by the user (e.g., Pupil
Core [53, 55]), and stationary trackers (SVOG) that are installed
beneath a computer screen [48] or a car dashboard [12].

Electro-oculography (EOG) works on the principle that the
electrical potential on the skin around the eye changes with the
eye movements. Thus, electrodes are placed on the skin to measure
the potentials, which can be leveraged to estimate the angular
position of the eye [6]. Although EOG-based trackers are more
computationally efficient than VOG-based counterparts, they suffer
from poor tracking accuracy, owing to the interference from the
facial muscles and head movements of the user [7].

Scleral search coils (SSC) is widely regarded as the most accu-
rate tracking approach [7, 54]. In SSC, a contact lens embedded with
a magnetic field sensor is inserted into the subject’s eye. During
tracking, an electromagnetic field is applied to the tracker by plac-
ing a magnetic frame around the user. The magnetic field sensor
then provides measurement to estimate the eye movement [56].
However, as the subject needs a topical anesthetic before the use of
SSC, it makes the approach less feasible in daily sensing scenarios.

3.2 Challenges in Gaze-based Activity Sensing
While recent studies have demonstrated the great potential of gaze-
based cognitive context sensing [22, 57, 58], two important chal-
lenges, the heterogeneity in human visual behavior and the infea-
sibility of collecting a large-scale gaze dataset during the system
training phase, hinder the pervasive adoption of existing solutions.

3.2.1 Heterogeneity in human visual behavior. Human vi-
sual behaviors are heterogeneous across subjects, visual stimuli,
and eye tracking devices. Researchers have shown that subject dif-
ferences, including the subject’s language proficiency [8], personal
interests [16], and engagement [17] with the visual material, have
significant impact on the visual behavior. In addition, eye move-
ment patterns are also influenced by the visual stimuli [14, 15]: gaze
patterns are diverse among different visual stimuli, even though
the same subject is performing the same activity. Lastly, the het-

0 60
0

0.5

1

C
oo

rd
in

at
e

Subject 1 - Manga

X Y
0 60

0

0.5

1

C
oo

rd
in

at
e

Subject 1 - Textbook

0 30 60
Time (s)

0

0.5

1

C
oo

rd
in

at
e

30

Time (s)

Subject 2 - Manga

0 30 60
Time (s)

0

0.5

1

C
oo

rd
in

at
e

30

Time (s)

Subject 2 - Textbook

Figure 1: Examples of heterogeneity in visual behavior.

erogeneity of eye tracking devices, owing to the difference in their
underlying hardware (e.g., EOG versus VOG) and deployment sce-
narios (e.g., mobile versus stationary), also introduces additional
variations in the captured eye movement signal.

To illustrate the heterogeneity in human visual behavior, we take
the public reading behavior dataset [15] as an example. Figure 1
shows the normalized 2D coordinates (with X and Y coordinates
range from 0 to 1) of the captured gazes when two subjects are
reading. Specifically, two variants of reading material, i.e., a manga
(Japanese comics) and a textbook, are used as different visual stim-
uli. As shown in Figure 1, for the same reading activity, the eye
movement patterns (the coordinates of the gazes) are highly di-
verse among subjects (i.e., subfigures in the same column indicate
that different subjects read the same document differently) and
visual stimuli (i.e., subfigures in the same row indicate that the eye
movement patterns of the same subject differ among the stimuli).

Although the heterogeneity in eye movements is widely known
to the eye tracking community [14, 15], its impact on the sensing
performance is still largely overlooked. Existing gaze-based recog-
nition systems rely heavily on hand-crafted features [6, 14, 15],
which are extracted from different visual behaviors such as fixa-
tions, saccades, and blinks, to train supervised learning algorithms
for classification. However, hand-crafted features are vulnerable to
the intrinsic heterogeneity. Thus, in scenarios with high subject and
stimuli diversities, the recognition accuracy of existing systems is
poor with small sensing window (e.g., less than 60% with a sensing
window of 15s [6, 14]). To improve the accuracy, a potential solution
is to enlarge the sensing window. However, the improvements are
modest: the overall accuracy is still less than 73% when a sensing
window of 150s is used [6, 14, 34].

3.2.2 Accuracy deficiency due to limited gaze samples. An
alternative solution to improve sensing accuracy is to collect a suf-
ficiently large gaze dataset that covers all possible conditions, and
takes advantage of the superior feature learning and classification
capabilities of DNNs [59]. However, when deployed ‘in the wild’, a
gaze-based recognition system will face the diversity in subjects, vi-
sual stimuli, and eye tracking hardware. Considering the countless
possible combinations of all the dependencies, collecting a dataset
that covers all different conditions is almost impossible. In addi-
tion, rising concerns on compromising user privacy from the eye
movement data [22–24] also make such data collection infeasible. A
recent survey of 124 people shows that over 70% of the participants

SenSys ’20, November 16–19, 2020, Virtual Event, Japan G. Lan et al.

SedentaryActivity JapaneseDocument
0

0.2
0.4
0.6
0.8

1
Ac

cu
ra

cy
500 instances
30 instances
10 instances
5 instances

Figure 2: The recognition accuracy of an LSTM-based classi-
fier on two public datasets, when different number of train-
ing instances are available for a new subject.

refuse to share their eye tracking data due to privacy concerns [24].
To demonstrate how the availability of gaze data affects the

sensing performance, we examine the accuracy of an LSTM-based
classifier (which has been proven to be powerful in time-series data
classification [60–62]) on two public gaze datasets, i.e., Sedentary-
Activity [14] and JapaneseDocument [15]. The classifier has a single
LSTM layer with 160 memory units. It takes the 2D coordinates
of 900 gaze samples as the input. We investigate the recognition
accuracy of the classifier when a different number of training in-
stances per class are available for a new subject. The results are
shown in Figure 2. Comparing with the 500-instances-per-class base
case, the classifier experiences over 30% and 60% accuracy drop
when there are only 30 and 5 training instances available per class,
respectively. Clearly, the lack of sufficient gaze data will lead to
significant performance deficiency for gaze-based sensing systems.

4 SYSTEM OVERVIEW
System design: the overall design of GazeGraph is shown in Fig-
ure 3. An eye tracker captures the gaze of the subject and feeds
a time series of gazes to GazeGraph as input. As a generalized
system, GazeGraph is compatible with different eye trackers. In
this work, we consider three types of eye trackers, specifically, two
MVOG-based (i.e., SMI wearable eye tracking glasses [63] and Pupil
Core [55]) and one SVOG-based (i.e., Tobii Pro X2 [64]). We focus
mainly on the VOG-based eye tracking due to its wide adoption in
commercial systems (e.g., advanced laptops [48, 49] and modern
AR and VR headsets [50, 51]). The raw gaze signal is processed by
the following system components:
• Signal preprocessing (Section 5): consists of a gaze filter, sig-
nal interpolation, and signal normalization units.
• Gaze graph modeling (Section 6): converts the preprocessed
gaze signal into graphs which preserve both the temporal and
spatial information of the original gaze signal. The gaze graphs are
represented by two matrices, the gaze distance matrix and the gaze
orientation matrix, that are used as the inputs of the few-shot gaze
graph classifier for feature learning and classification.
• Few-shot gaze graph learning (Section 7): consists of the
CNN-based gaze graph classifier and the few-shot gaze graph learn-
ing module. The former learns a low-dimensional representation of
the gaze graph and uses it for recognition, while the latter enables
the gaze graph classifier to quickly adapt to new gaze-based sensing
scenarios (e.g, new sensing subjects) with a limited number of gaze
instances required from the new scenarios for training.
Applications: we consider two typical gaze-based cognitive sens-
ing applications:
• Sedentary activity recognition: tracking sedentary activities
has several benefits. First, sedentary activities, such as reading and

Visual behavior

Raw gazes

Gaze filter

Signal preprocessing

Interpolation Normalization

Gaze graph

modeling

Preprocessed gaze signal

Graph

representation

Few-shot gaze

graph learning
Result

GazeGraph

Sedentary

activity

recognition

Reading

document

recognition

Applications

Eye tracker

Figure 3: System architecture of GazeGraph.

watching videos, occupy a dominant amount of time in people’s
daily lives. A recent report indicates that 25% of Americans are
sedentary for more than eight hours a day [65]. Unfortunately,
a sedentary lifestyle is associated with poor health, including an
increased risk of heart disease and type 2 diabetes [65]. Thus, proac-
tively monitoring the daily sedentary activities can provide more
fine-grained information about people’s lifestyles. Second, it en-
hances the context-awareness of existing systems. For instance, by
detecting whether a user is playing video games or reading articles,
the environment (e.g., smart home) or mobile AR/VR systems can be
augmented to provide more immersive user-environment interac-
tion. In this work, we consider two sedentary activity datasets, one
public [14] and one collected by ourselves (Section 8.1), to examine
the performance of GazeGraph in this application.
• Reading behavior recognition: reading is a cognitive activity
that people perform every day. A sensing application that can track
what the user is reading and how long the user has read is particularly
valuable. For instance, teachers can leverage this application to
monitor the reading habits of the students, and quantify their daily
knowledge acquisition. Moreover, reading behavior recognition
also provides insights about the user’s reading interests which can
be used by recommendation systems to deliver reading articles
of interest to the user. In this work, leveraging the public reading
activity dataset [15], we investigate the performance of GazeGraph
in recognizing the type of document the subject is reading.
Other “killer apps”: we believe that GazeGraph can enable many
other game-changing applications. For instance, in the healthcare
domain, GazeGraph can be used to monitor both physical and
psychological health conditions, such as Alzheimer disease [66],
bipolar disorder [67], and autism [68], among others [69]. In the
field of industrial maintenance and training, GazeGraph can be
coupled with AR/VR systems [50, 70] to monitor the user’s “brain
power” [70], assess trainee’s cognitive workload in learning [9, 71],
and to monitor worker’s safety awareness when performing high-
risk tasks [72].

5 SIGNAL PREPROCESSING
The signal preprocessing component prepares the raw gaze sig-
nal captured by the eye tracker for graph modeling and activity
recognition. As shown in Figure 3, it consists of the gaze filter,
interpolation, and normalization units.

First, the gaze filter removes raw gaze samples that are corrupted
(e.g., eye tracker fails to estimate the gaze when the user is blinking
or user’s eyes are closing). Different eye trackers have different
indicators to assess their confidence on the correctness of the gaze
measurements. For the Tobii eye tracker [64], corrupted samples

GazeGraph: Graph-based Few-Shot Cognitive Context Sensing from Human Visual Behavior SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Figure 4: Example of the raw and processed gaze signals
when a subject is reading an article.

0 1
0

0.5

1

Y
co

or
di

na
te

(a) Browse

0 1
0

0.5

1

Y
co

or
di

na
te

(b) Play

0 1
0

0.5

1

Y
co

or
di

na
te

(c) Read

0 10.5
X coordinate

0

0.5

1

Y
co

or
di

na
te

0.5
X coordinate
(d) Search

0 10.5
X coordinate

0

0.5

1

Y
co

or
di

na
te

0.5
X coordinate

(e) Watch

0 10.5
X coordinate

0

0.5

1

Y
co

or
di

na
te

0.5
X coordinate

(f) Write

Figure 5: Examples of the gazeswhen a subject is performing
six sedentary activities: (a) Browsing the Internet; (b) Play-
ing video games; (c) Reading articles; (d) Searching the Inter-
net; (e) Watching videos; and (f) Writing essays.

are removed by filtering any gaze measurements with a validity
code larger than 0, whereas, for Pupil and SMI eye trackers [55],
incorrect measurements are removed by filtering any samples with
confidence level lower than 0.6. After filtering out the corrupted
samples, we apply a median filter with a sliding window of 10s to
detect and filter the outliers in the gazes (i.e., gaze samples that have
a large Euclidean distance to the remaining samples in the sliding
window). After filtering, spline interpolation is used to harmonize
and resample the filtered gaze signal to its original length. Lastly,
the normalization component scales the gaze measurements to a
normalized 2D plane (with X and Y coordinates range from 0 to
1). The normalization eliminates the impact of different hardware
calibrations on the gaze signal. Since the actual measurement of
the gaze depends on the subject’s field of view and the calibration
process in correlating the gaze measurement range with the field
of view, thus, comparing with the raw measurements provided by
the eye tracker, the normalized signals are more robust against the
variations in the hardware calibration. Figure 4 compares the raw
gaze signal and the gaze signal processed by the three processing
units when a subject is reading an article. The raw signal is noisy
and contains many outliers. By contrast, the processed signal is
clear and exhibits smooth ‘left-to-right’ eye movement patterns.

6 SPATIAL-TEMPORAL GRAPH MODELING
FOR HUMAN VISUAL BEHAVIOR

Eye movements captured by eye trackers are represented by a
time series of gazes. For instance, Figure 5 shows the gazes when
a subject is performing six different sedentary activities. Each of
the subfigures shows a sequence of 900 gazes in a normalized 2D
plane, where gazes are denoted by nodes, and any two sequentially

1/29

vi+1

vi-1

vi-2

v1

vi+2

vn

vn-1

vi

vi

vi+2

vn

vn-1

vi+1

vi-1

vi-2

ei,i-1

ei-1,i

ei+1,i+2

en-1,n

ei-2,i-1

Deg(vi)=8

ei+2,i

v1

(a) Example of a gaze graph.
1/29

(a) Original gaze sequence

i
i-1

i+1 i+2

1

N

N-1

X

Y

X

Y

Θi,i+1

i+1

Δy

Δx

Δx

Δy

i

Gaze orientation

(b) Edge weights.

Figure 6: (a) Example of a temporal gaze graph G𝑇𝐺𝐺 con-
structed from a time series of 𝑛 gaze samples. (b) The gaze
distance and gaze orientation between nodes 𝑣𝑖 and 𝑣𝑖+1.

recorded gazes are connected by a link. In mathematics, this type
of “node-link” structure, which models the geometric and pairwise
relations among nodes, is known as the graph. Indeed, as shown in
Figure 5, we can consider the whole “node-link” structure formed
by the 900 gazes as a graph. Moreover, for different activities, the
constructed graphs are distinct in their geometric patterns, which
introduces opportunities for graph-based context recognition. Al-
though graph-like depictions have been proposed for eyemovement
visualization [73], e.g., attention map for fixation [74] and scanpath
visualization [75], there is no literature that has modeled human
gazes as graphs for the purpose of cognitive context sensing. Below,
we present the spatial-temporal gaze graph and introduce how to
construct it from a time series of gazes.

6.1 Modeling Human Gazes as Graphs
6.1.1 Basic definitions. We first introduce some definitions that
are used in graph modeling [76, 77]:
• Definition 1: Graph. A graph is denoted as G = (𝑉 , 𝐸) with a
set of 𝑛 nodes 𝑉 = {𝑣1, ..., 𝑣𝑛} and a set of edges 𝐸 = {𝑒𝑖, 𝑗 }𝑛𝑖,𝑗=1,
where 𝑒𝑖, 𝑗 ∈ 𝐸 is an edge from node 𝑣𝑖 to node 𝑣 𝑗 . Moreover, G is a
homogeneous graph when all the nodes have the same node type and
all the edges have the same edge type.
• Definition 2: Weighted Graph. A weighted graph is a graph in
which each edge 𝑒𝑖, 𝑗 ∈ 𝐸 is associated with a weight scalar s𝑖, 𝑗 . For
nodes 𝑣𝑖 and 𝑣 𝑗 that are not linked by an edge, their weight s𝑖, 𝑗 = 0,
otherwise, s𝑖, 𝑗 > 0. The weights of all the edges are stored in a |𝑉 | ∗ |𝑉 |
weight matrix denoted asW =

[
s𝑖, 𝑗

]𝑛
𝑖,𝑗=1.

• Definition 3: Directed Graph. A directed graph is a graph in
which each edge 𝑒𝑖, 𝑗 ∈ 𝐸 with s𝑖, 𝑗 > 0 is associated with a direction.

6.1.2 Gaze graph modeling. Given the above definitions, we in-
troduce the proposed gaze graph. Specifically, we first introduce a
simple graph model that only captures the temporal structure of
the gazes, followed by a complete model that preserves both spatial
and temporal information of the gazes.
• Definition 4: Temporal Gaze Graph (TGG). For a sequence
of 𝑛 gazes, the associated temporal gaze graph, denoted as G𝑇𝐺𝐺 =

(𝑉𝑇𝐺𝐺 , 𝐸𝑇𝐺𝐺), is a homogeneous weighted directed graphwith weight
matrixW𝑇𝐺𝐺 =

[
s𝑖, 𝑗

]𝑛
𝑖,𝑗=1. Each node 𝑣𝑖 ∈ 𝑉𝑇𝐺𝐺 corresponds to

a gaze sample in the time series, and is assigned with a coordinate
vector 𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖) in the normalized 2D plane. Every pair of adjacent
nodes, i.e., 𝑣𝑖 and 𝑣𝑖+1 for 1 ≤ 𝑖 < 𝑛, are linked by a directed edge
𝑒𝑖,𝑖+1. Thus, we have |𝑉𝑇𝐺𝐺 | = 𝑛 and |𝐸𝑇𝐺𝐺 | = 𝑛 − 1.

As an example, Figure 6(a) shows the temporal gaze graph con-

SenSys ’20, November 16–19, 2020, Virtual Event, Japan G. Lan et al.

Figure 7: Example of building the spatial-temporal gaze
graph with 𝑘 = 2.

structed from a time series of 𝑛 gaze samples. To characterize the
local pairwise relation between the linked nodes, we propose the
gaze distance and gaze orientation as two weight metrics. Figure 6(b)
shows the two metrics for edge 𝑒𝑖,𝑖+1. The gaze distance, denoted
as dist𝑖,𝑖+1, reflects the Euclidean distance between nodes 𝑣𝑖 and
𝑣𝑖+1, and can be obtained as:

dist𝑖,𝑖+1 = | |𝑐𝑖+1 − 𝑐𝑖 | |, (1)
where 𝑐𝑖 and 𝑐𝑖+1 are the coordinate vectors of 𝑣𝑖 and 𝑣𝑖+1, respec-
tively, and | | · | | is the Euclidean norm operation. Moreover, to
capture the geometry of the eye movement scanpath, i.e., the eye
movement direction between succeeding gazes, we introduce the
gaze orientation, denoted as orient𝑖,𝑖+1, which can be obtained by:

orient𝑖,𝑖+1 = arctan

(
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

)
, (2)

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) are the normalized coordinates of
the two succeeding nodes. Then, the weight of directed edge 𝑒𝑖,𝑖+1
can be defined as s𝑖,𝑖+1 =

[
dist𝑖,𝑖+1, orient𝑖,𝑖+1

]
, and the weight

matrix of the graph can be obtained by:
W𝑇𝐺𝐺 =

[
s𝑖,𝑗

]𝑛
𝑖,𝑗=1

,where (3)

s𝑖,𝑗 =

{ [
dist𝑖,𝑗 , orient𝑖,𝑗

]
if 𝑣𝑖 and 𝑣𝑗 are linked,

0 otherwise. (4)

Finally, we canmodel the original𝑛 gaze samples by the constructed
weight matrixW𝑇𝐺𝐺 which consists of an |𝑛 | ∗ |𝑛 | gaze distance
matrixMdist =

[
dist𝑖, 𝑗

]𝑛
𝑖,𝑗=1 and an |𝑛 | ∗ |𝑛 | gaze orientation matrix

Morient =
[
orient𝑖, 𝑗

]𝑛
𝑖,𝑗=1.

6.1.3 Constructing the spatial-temporal gaze graph. The TGG de-
fined in Definition 4 captures only the local pairwise relation be-
tween the temporally adjacent gazes, i.e., only the succeeding nodes
in the time series are connected in the graph. However, captur-
ing the sequential and local pairwise relations between gazes is
not enough for eye movement modeling. In practice, many visual
behaviors are represented by a small group of spatially correlated
gazes. These gazes are geographically close to each other in the 2D
plane, but are not linked by any edges. For instance, a cluster of
closely located gazes forms a visual fixation [14, 78] (the stationary
state of the eyes) which is a widely used pattern for gaze-based
sensing [6, 14, 15, 34]. To address this limitation, we propose the
𝑘-hop spatial-temporal gaze graph to effectively preserve both the
sequential and the spatial information of the eye movement. We
introduce the following definition:
• Definition 5:𝑘-hop Spatial-temporalGazeGraph (𝑘-STGG).
For a sequence of𝑛 gazes, the associated𝑘-STGG, denoted asG𝑆𝑇𝐺𝐺 =

(𝑉𝑆𝑇𝐺𝐺 , 𝐸𝑆𝑇𝐺𝐺), is an extended TGG, where 𝑉𝑆𝑇𝐺𝐺 = 𝑉𝑇𝐺𝐺 and
𝐸𝑆𝑇𝐺𝐺 ⊇ 𝐸𝑇𝐺𝐺 . Specifically, for nodes 𝑣𝑖 and 𝑣 𝑗 in 𝑉𝑆𝑇𝐺𝐺 , if they
are within 𝑘 hops, we link them by two directed edges, 𝑒𝑖, 𝑗 and 𝑒 𝑗,𝑖 .

The approach for building the 𝑘-STGG from the gaze samples
is by examining each node 𝑣𝑖 ∈ 𝑉𝑆𝑇𝐺𝐺 (where 𝑉𝑆𝑇𝐺𝐺 = 𝑉𝑇𝐺𝐺 , as

Algorithm 1 𝑘-STGG Construction
Input: (1) A time series of 𝑛 gaze samples with normalized coordinate

vectors𝐶 = {𝑐𝑖 }𝑛𝑖=1 where𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖) ; (2) a parameter𝑘 that indicates
𝑘-hop neighbors to be connected in the graph.

1: Mdist = Morient = [0]𝑛×𝑛 ; ⊲ initiate the weight matrices
2: for 𝑖 = 1, ..., 𝑛 do ⊲ Examining all 𝑛 nodes
3: # For node 𝑖, examining all its 𝑘-hop neighbors
4: for 𝑗 ∈ {𝑖 − 𝑘, ..., 𝑖 + 𝑘 } and 𝑗 > 0 do
5: # Calculating the gaze distance and gaze orientation
6: dist𝑖,𝑗 = | |𝑐 𝑗 − 𝑐𝑖 | |; orient𝑖,𝑗 = arctan

(
𝑦 𝑗−𝑦𝑖
𝑥 𝑗−𝑥𝑖

)
;

7: # Updating the weight matrices
8: Mdist (𝑖, 𝑗) = dist𝑖,𝑗 ; Morient (𝑖, 𝑗) = orient𝑖,𝑗 ;

Output: Mdist, Morient;

1 50 100 150 200 250 300

1
50

100
150
200
250
300

(a)
1 50 100 150 200 250 300

1
50

100
150
200
250
300

(b)
1 50 100 150 200 250 300

1
50

100
150
200
250
300

(c)
1 50 100 150 200 250 300

1
50

100
150
200
250
300

(d)

Figure 8: Examples ofMdist andMorient of the 𝑘-STGG (with
𝑘 = 30) that is constructed from a sequence of 𝑛 = 300 gazes:
(a) and (b) show the Mdist and Morient when the subject is
‘browsing the Internet’; (c) and (d) are thematrices when the
subject is ‘reading articles’.

STGG and TGG have the same node set), and adding edges between
𝑣𝑖 and each of its 𝑘-hop neighbors. As an example, Figure 7 shows
how to construct 𝑘-STGG with 𝑘 = 2 from the original TGG. As
shown, in addition to the edges of the original TGG (indicated by
black solid lines), six new edges (indicated by red dashed lines)
are added to the examining node 𝑣𝑖 by connecting it with all its
2-hop neighbors (𝑣𝑖−2, 𝑣𝑖−1, 𝑣𝑖+1 and 𝑣𝑖+2). Then, the 𝑘-STGG is
constructed by examining and adding new edges for all the 𝑛 nodes.
The details of constructing the 𝑘-STGG for a time series of 𝑛 gaze
samples are shown in Algorithm 1. The final outputs are the gaze
distance matrix Mdist and the gaze orientation matrix Morient.
As an example, Figure 8 visualizes theMdist andMorient of the
𝑘-STGG (with 𝑘 = 30) that is constructed from a time series of
𝑛 = 300 gazes. Figures 8(a) and (b) show theMdist andMorient of
the gazes when the subject is ‘browsing the Internet’. In comparison,
Figures 8(c) and (d) visualize the two matrices when the subject is
‘reading an article’. We can clearly see the distinct patterns in the
constructed matrices of the two activities.

Note that by configuring 𝑘 , 𝑘-STGG pays selective attention to the
gaze samples in the sensing window. It only preserves the pairwise
relations between the gazes that are temporally close (within 𝑘-hop)
and discards the others. A careful selection of 𝑘 not only ensures a
lower computational burden in graph construction, but also main-
tains the most targeted and essential gaze pairs (gazes with close
spatial-temporal relation) and discards the maleficent ones (gazes
with loose spatial-temporal relation) for the gaze graph classifier.
In summary, the 𝑘-STGG converts a time series of gazes into a
graph which largely preserves both the temporal (through the local
pairwise relation between the single-hop nodes) and the spatial
(through the 𝑘-hop neighbor nodes) structure of the original eye
movement signal. Below, we show how to leverage the constructed
𝑘-STGG for feature learning and cognitive context recognition.

GazeGraph: Graph-based Few-Shot Cognitive Context Sensing from Human Visual Behavior SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Table 1: The network design of the gaze graph classifier.
Layer Size In Size Out Filter
conv1 90 × 90 × 2 90 × 90 × 32 5 × 5, 1
conv2 90 × 90 × 32 86 × 86 × 32 5 × 5, 1
pool1 86 × 86 × 32 43 × 43 × 32 2 × 2, 2
conv3 43 × 43 × 32 39 × 39 × 64 5 × 5, 1
pool2 39 × 39 × 64 19 × 19 × 64 2 × 2, 2
conv4 19 × 19 × 64 15 × 15 × 64 5 × 5, 1
pool3 15 × 15 × 64 7 × 7 × 64 2 × 2, 2
flatten 7 × 7 × 64 3136
fc 3136 64
fc 64 |𝐶𝑙𝑎𝑠𝑠 |

7 FEW-SHOT GRAPH REPRESENTATION
LEARNING AND CLASSIFICATION

7.1 CNN-based Gaze Graph Classifier
Learning a robust and generalized low-dimensional data represen-
tation of the gaze graphs is a challenging task. The difficulty comes
from the complex graph structure and the intrinsic heterogeneity
in human visual behavior which introduces additional variations
in the graphs. Below, we propose the gaze graph classifier for the
graph-based data representation learning and classification.

The classifier takes the graph matrices generated by the 𝑘-STGG
as the inputs, which can be considered as data modalities in the
form of 2D arrays containing graph weights in two different infor-
mation channels: the Euclidean distance and the orientation. Then,
the spatial-temporal features embedded in the graph are obtained
by conducting multiple levels of non-linear operations. Each of the
operations transforms the data representation learnt at the previous
level (starting with the original weight matrices) into a representa-
tion at a higher and slightly more abstract level [21]. In particular,
the multi-layer non-linear operations (in the form of nonlinear
activation function or pooling layers) make the obtained data rep-
resentation sensitive to minute details embedded in the matrices
(e.g., temporal and spatial features of the gazes), and insensitive
to large irrelevant variations that result from the eye movement
diversity. Lastly, the learnt gaze graph representation is fed into
the fully connected layers for context recognition.

The details of the classifier are given in Table 1. The classifier
consists of four convolutional layers, three max pooling layers, one
flatten layer, and two fully connected layers. The ReLU is used as the
activation function after each of the convolutional layers. Moreover,
a dropout layer has been added after each of the three max pooling
layers to prevent overfitting when a small-scale training dataset is
used [79]. Before feeding to the network, we reshape both of the
two weight matrices to the size of 90×90. Thus, the size of the input
to the first convolutional layer is 90×90×2, where the two channels
correspond to the reshapedMdist andMorient, respectively. The
output size of the last fully connected layer can be adjusted based
on the number of classes in the sensing task (|𝐶𝑙𝑎𝑠𝑠 |).

7.2 Few-shot Gaze Graph Learning Module
Although the proposed gaze graph classifier adopts a shallow net-
work design, it still requires a large-scale gaze dataset to ensure
good performance. Unfortunately, the countless ‘in the wild’ vari-
ations and the rising privacy concerns about eye movement data
make the collection of a large-scale gaze dataset infeasible (Sec-
tion 3.2). To address the performance limitation in this ‘small gaze

data’ regime, we formulate the gaze-based cognitive context sens-
ing as a few-shot learning problem. In general, the goal of few-shot
learning is to train a machine learning model that can adapt to a
new learning task with few samples [25, 26]. A broad family of
techniques to address this problem is known as meta-learning [27–
29, 46] which aims to learn a new task by learning how to learn [27].
Borrowing concepts from the model-agnostic meta-learning [28],
we design a few-shot gaze graph learning module which incorpo-
rates the meta-training and the deployment stages. In the meta-
training stage, the module learns a good parameter initialization for
the gaze graph classifier using an unseen source dataset, such that,
in the deployment stage, the classifier can quickly adapt to new
sensing conditions (e.g., new subjects, unseen visual stimuli, or new
eye trackers) after a few learning iterations (e.g., ten gradient steps)
with a small number of gaze instances from the new conditions
(e.g., five instances per class).

Problem formulation and overall design. Formally, we de-
note the gaze graph classifier as 𝑓 with network parameters 𝜃 . In
the meta-training stage, 𝑓 is trained on a set of tasks, denoted as T ,
generated from a source dataset D𝑆 which contains gaze instances
collected from diverse sensing conditions (e.g., different subjects).
Each task T𝑖 ∈ T is a 𝐾-shot𝑀-way classification problem, where
the classifier aims to recognize 𝑀 classes of activity by using 𝐾
labelled instances for each of the activities (𝐾 is a small number,
e.g., 5 or 10). Moreover, each task T𝑖 is associated with a support
set 𝑆T𝑖 and a query set 𝑆Q𝑖 . The two sets are disjoint with each
other (ST𝑖 ∩QT𝑖 = ∅) and each set contains only 𝐾 ·𝑀 instances. In
essence, in the concept of meta-learning, the entire tasks are treated
as training examples [26, 28], and the classifier learns how to solve
a future 𝐾-shot𝑀-way classification task by learning from this col-
lection of tasks T . The output of the meta-training stage is a good
initialization for 𝜃 , denoted as 𝜃 , which is learned from T . Lastly,
in the deployment stage, 𝑓

𝜃
can be adapted to any new sensing task

with a few gradient steps and training instances needed.
Meta-training. The classifier 𝑓 is randomly initialized with

parameters 𝜃0, and then adapted to all individual tasks in T . We can
consider each task T𝑖 mimicking the situation where 𝑓 is adapted to
learn and solve an unseen 𝐾-shot𝑀-way gaze-based classification
problem with only 𝐾 ·𝑀 samples. Specifically, for each task T𝑖 ∈ T ,
𝑓 is trained using the associated support set 𝑆T𝑖 , and it learns a new
task-specific parameters 𝜃 ′T𝑖 (tuned from the initial parameters 𝜃0)
via gradient descent update:

𝜃
′
T𝑖 = 𝜃0 − 𝛼∇𝜃 LT𝑖 (𝑓𝜃0 , 𝑆T𝑖), (5)

where 𝛼 is a fixed hyperparameter that controls the learning rate
of individual tasks; LT𝑖 (𝑓𝜃 , 𝑆T𝑖) is the task-specific cross-entropy
loss of 𝑓𝜃 on the support set 𝑆T𝑖 and can be further defined as:

LT𝑖 (𝑓𝜃 , 𝑆T𝑖) =
∑

(x𝑗 ,y𝑗)∈𝑆T𝑖

y𝑗 log𝑓𝜃 (x𝑗) + (1 − y𝑗) log𝑓𝜃 (1 − x𝑗), (6)

where (x𝑗 , y 𝑗) denotes the 𝑗th sample in 𝑆𝑇𝑖 . After obtaining the
task-specific parameters for all T𝑖 , an across-tasks parameters 𝜃 can
be computed by optimizing the following objective function:

argmin
𝜃

∑
T𝑖 ∈T
LT𝑖 (𝑓𝜃 ′T𝑖

,𝑄T𝑖), (7)

which minimizes the sum of the task-specific loss for all tasks in T .
Note that the testing loss for each task T𝑖 is obtained by applying

SenSys ’20, November 16–19, 2020, Virtual Event, Japan G. Lan et al.

Algorithm 2Meta-training for the Gaze Graph Classifier
Input: (1) Source dataset D𝑆 ; (2) gaze graph classifier 𝑓 ; (3) 𝛼 and 𝛽 .
1: 𝑓𝜃 ← 𝜃0; ⊲ initialize 𝑓 with random parameters 𝜃0
2: while not done do
3: Generate a batch of tasks T from source dataset D𝑆 ;
4: for all generated T𝑖 ∈ T do
5: ST𝑖 ← Sample 𝐾 ·𝑀 instances for T𝑖 ;
6: QT𝑖 ← Sample 𝐾 ·𝑀 instances for T𝑖 where ST𝑖 ∩ QT𝑖 = ∅;
7: Evaluate ∇𝜃 LT𝑖 (𝑓𝜃) on ST𝑖 based on loss LT𝑖 (𝑓𝜃 , 𝑆T𝑖) ;
8: Compute the task-specific model parameters 𝜃 ′T𝑖 using gradient

descent: 𝜃 ′T𝑖 = 𝜃0 − 𝛼∇𝜃 LT𝑖 (𝑓𝜃0 , 𝑆T𝑖) ;

9: Obtain the across-task initialization 𝜃 via minimizing the sum of all
task-specific losses: 𝜃 ← 𝜃0 − 𝛽∇𝜃

∑
T𝑖 ∈T LT𝑖 (𝑓𝜃 ′T𝑖

,𝑄T𝑖) ;

Output: Output gaze classifier 𝑓
𝜃
with parameters 𝜃 ;

the updated task-specific classifier 𝑓
𝜃
′
T𝑖
on the corresponding query

set 𝑄T𝑖 . The across-tasks optimization is performed via stochastic
gradient descent (SGD) [28], such that 𝜃 is obtained by:

𝜃 ← 𝜃0 − 𝛽∇𝜃
∑
T𝑖 ∈T
LT𝑖 (𝑓𝜃 ′T𝑖

,𝑄T𝑖), (8)

where 𝛽 is a fixed hyperparameter that determines the learning rate
of SGD optimization. The final outputs of the meta-training stage
are the optimized parameters 𝜃 for the classifier. The algorithm for
training the few-shot gaze graph classifier is given in Algorithm 2.

Deployment. After initializing with the optimized parameters 𝜃 ,
the classifier 𝑓

𝜃
can quickly adapt to any new sensing task (e.g.,

deployment scenario with new sensing subjects, new visual stimuli,
or new eye tracker) with only 𝐾 ·𝑀 samples. The new sensing task
can be considered as a 𝐾-shot𝑀-way classification problem T𝑛𝑒𝑤
with dataset D𝑇 (e.g., a new gaze dataset that is collected from
a new subject). Given the almost countless ‘in the wild’ sensing
conditions for gaze-based activity recognition, D𝑇 and D𝑆 are
disjoint (D𝑆 ∩ D𝑇 = ∅). We can adapt the optimized gaze graph
classifier 𝑓

𝜃
to the new task T𝑛𝑒𝑤 using a few gradient steps. The

new parameters 𝜃𝑇 that are fine-tuned on D𝑇 can be defined as:
𝜃𝑇 = 𝜃 − 𝛼∇𝜃 LD𝑇 (𝑓𝜃), (9)

where the value of𝛼 is as same as that in Equation 5. The final output
of the few-shot learning module is the gaze graph classifier 𝑓𝜃𝑇 with
parameters 𝜃𝑇 that are fine-tuned to the new sensing task T𝑛𝑒𝑤 .
We evaluate the few-shot learning module in Section 8.3.

8 EVALUATION
8.1 Datasets
We consider two gaze-based sensing applications and three datasets
in the evaluation to demonstrate the generality of GazeGraph.

8.1.1 Dataset we collected. First, we have collected a gaze dataset,
denoted as DesktopActivity, from eight subjects (four female and
four male, aged between 24 and 35; all subjects are fluent in English,
with Spanish (1), English (2), and Chinese (5) as their first language)
using the Pupil Core eye tracker [53, 55]. The study is approved by
our institution’s Institutional Review Board. During data collection,
the subjects wear the eye tracker and sit in front of the computer
screen (a 34-inch display) at a distance of approximately 50cm.
We conduct the manufacturer’s default on-screen five-points cali-

bration for each of the subjects. Note that only one calibration is
needed per subject, and the subjects canmove their heads and upper
bodies freely during the experiment. This is achieved as GazeGraph
focuses on the relative movements of gazes rather than the exact
coordinates of the gazes.

Activities: we consider six different desktop activities that are
commonly performed in daily life.
• Browse: subjects browse public news websites or blogs. The web-
sites visited by the subjects are different: three subjects gravitated
toward visiting websites written in English while the other five
subjects visited websites written mainly in Chinese.
• Play: subjects are asked to play simple online games. We con-
sider two different games: one requiring the subjects to look ahead
horizontally (Classic Super Mario [80]), while the other requiring
the subjects to look in all directions to navigate the game charac-
ter (Agario [81]). The instructions of the games are given to the
subjects before playing.
• Read: subjects read digital content displayed on a computer
screen. Three readingmaterials in English are prepared: aWikipedia
article, a research paper in a two-column format, a textbook in a
single-column format. These materials differ in both text layout
and the number of figures embedded.
• Search: we ask subjects to search for answers to a list of prede-
fined questions using a web-based search engine. For each of the
subjects, the questions are randomly ordered to ensure variations
(and thus, different visual stimuli). The search history is cleared
before every session so that all subjects start from the same baseline.
• Watch: subjects watch a short video played on the screen. We
consider two videos with a different number of main characters
(one with two main characters and the other with more than three
characters); also one video has subtitles shown on the bottom.
• Write: subjects are asked to write an essay in English using the
Microsoft Word installed on the computer.
The subjects are asked to perform each of the six activities for five
minutes. They can choose one of the stimuli prepared for the Read,
Watch, and Play. The gazes is recorded at a 30Hz sampling rate.
Examples of the recorded gazes are shown in Figure 5.

8.1.2 Other datasets. We consider two public datasets:
SedentaryActivity [14]: collected from 24 subjects (16 male and

8 female, aged between 24 and 48). The gazes are recorded at 30Hz
using a Tobii Pro X2 [64] SVOG-based eye tracker. Subjects perform
eight activities including: five common desktop activities, i.e., read,
watch, browse, search, and play; and three software development
activities, i.e., interpret (interpreting the output of a short program
code), debug (fixing bugs in a computer program), and write (imple-
menting three program functions). Each of the activities has three
variants to mimic different visual stimuli. Subjects perform each
of the activities for five minutes. The sensing task is to recognize
which activity the subject is performing.

JapaneseDocument [15]: collected from eight subjects (four
male and four female, aged between 21 and 32). The subjects read
five different types of documents written in Japanese: novel, manga,
fashion magazine, newspaper, and textbook. During data collection,
all subjects read each of the five documents for 10 minutes. Their
gazes were recorded at 30Hz using a mobile head-mounted eye
tracker, the SMI wearable eye tracking glasses [63]. The sensing

GazeGraph: Graph-based Few-Shot Cognitive Context Sensing from Human Visual Behavior SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Table 2: List of the 18 hand-crafted eye movement features
used by the conventional feature-based methods.

Features

Saccade length sacc-mean, sacc-variance, sacc-std

direction sacc-up, sacc-up-right, sacc-down-right, sacc-right,
sacc-up-down, sacc-down-left, sacc-left, sacc-left-up

Fixation

duration fix-mean, fix-variance, fix-std
rate fix-rate
slope fix-slope
dispersion fix-disp-area
count fix-count

task is to recognize the type of the document the subject is reading.

8.2 Overall Performance
We implement GazeGraph using the Keras 2.3 library on top of the
TensorFlow 2.0 framework. We employ the Adam optimizer [82]
during the training. We use the F1 score as the performance metric.

8.2.1 Performance improvement over state-of-the-art methods. We
compare GazeGraph with a conventional feature-based method [3,
15], and an LSTM-based classifier [20]. Specifically, for the feature-
based method, we first implement the fixation filter [83] to obtain
the fixations and saccades from the raw gaze signal. Then, we
extract 18 commonly used features [3, 14, 15] from the detected
fixations and saccades (shown in Table 2), and feed them to the
Support Vector Machines (SVM) for training and classification. In
brief, the saccade-based features include: three statistical features
that capture the mean, variance, and standard deviation of the sac-
cade length, and eight direction features that count the number of
saccades that appear in each of the eight saccade directions [15].
Similarly, the fixation-based set includes: three statistical features
that capture the mean, variance and standard deviation of the fix-
ation duration; the number of fixations that appear per second
(fix-rate); the slope over the fixations in the sensing time window
(fix-slope); the dispersion area of the fixations (fix-disp-area); and
the total number of fixations in the sensing time window (fix-count).
The LSTM-based classifier has a single LSTM layer with 160 mem-
ory units. It takes the preprocessed 2D coordinates of the gaze
signal as the input. The LSTM classifier is trained using the Adam
optimizer with a learning rate of 0.001. We consider LSTM as a
baseline classifier given its good performance in time-series data
classification [60–62]. Lastly, for GazeGraph, we construct the gaze
graph using the 𝑘-STGG model (Algorithm 1) with 𝑘 = 10.

We evaluate the three classificationmethods on the three datasets.
For each of the datasets, we mix the data from all subjects together
and perform the 10-fold cross-validation. Three small sensing win-
dow sizes are considered, i.e., 10s, 20s, and 30s, to ensure short
recognition delay. We have carefully monitored the training, valida-
tion, and testing curves of the classifier to ensure there is no overfit-
ting. The results are shown in Figure 9. First, for all three methods,
the F1 score increases with the window size, as a larger sensing
window contains more information about eye movements. Sec-
ond, in all scenarios, GazeGraph achieves the highest performance.
Specifically, given different window sizes, GazeGraph outperforms
the conventional feature-based method significantly by 37−39%,
49−54%, and 50−53% on the SedentaryActivity, JapaneseDocument,
and DesktopActivity datasets, respectively. Similarly, GazeGraph
outperforms the LSTM-based method by 10−16%, 18−22%, and

19−23% on the three datasets, respectively.
The improvements of GazeGraph over the conventional hand-

crafted feature based method indicate its superiority in feature
learning. Moreover, since the LSTM-based classifier is powerful
in learning the temporal and sequential information of the gaze
signal [60, 61] (and thus, it outperforms the feature-based method
by a large margin), the improvements of GazeGraph over the LSTM-
based method further demonstrate the capability of the proposed
graph modeling and the CNN-based gaze graph classifier in preserv-
ing and learning the spatial-temporal features of the gaze signal.

8.2.2 Micro-benchmarks. Below, we examine how different weight
metrics and graph construction methods affect GazeGraph.

Impact of weight metrics: first, we evaluate the performance
of GazeGraph given different edge weight metrics used in the graph
modeling. Specifically, we compare the proposed gaze distance and
gaze orientation with conventional metrics, i.e., Euclidean, Cosine,
and Manhattan distances, that are widely used in the graph model-
ing literature [76]. The Euclidean distance captures the straight-line
distance between the two gaze points in the 2D space, and it is cal-
culated the same as the gaze distance (Equation 1). The Cosine
distance for two nodes 𝑣𝑖 and 𝑣 𝑗 with 2D coordinate vectors 𝑐𝑖 and
𝑐 𝑗 can be calculated by Cosine𝑖, 𝑗 = 1− 𝑐𝑖 ·𝑐 𝑗

| |𝑐𝑖 | |× | |𝑐 𝑗 | | , where the latter
part is known as the cosine similarity and has been widely used to
measure the cohesion and similarity between two vectors irrespec-
tive of their sizes [76]. Lastly, the Manhattan distance measures the
absolute differences between coordinates of a pair of gaze points 𝑣𝑖
and 𝑣 𝑗 , and it is obtained by Manhattan𝑖, 𝑗 = |𝑥 𝑗 − 𝑥𝑖 | + |𝑦 𝑗 − 𝑦𝑖 |.

For all the four weight metrics, we construct the gaze graphs
using the 𝑘-STGG model with 𝑘 = 10. The results are shown in
Figure 10. The proposed weight metrics, i.e., gaze distance and gaze
orientation (Dist +Orient), outperform all the examined conven-
tional weight metrics. Specifically, Dist +Orient outperforms the
best conventional metric, Cosine distance, by 8−17%, 11−18%, and
10−15% on the three datasets, respectively. Moreover, when compar-
ing with the second-best conventional metric, Euclidean distance,
Dist +Orient achieves 15−18%, 19−25%, and 18−21% improvement
on the three datasets, respectively. These results indicate the ef-
fectiveness of the proposed weight metrics in capturing both the
pairwise distance (by the gaze distance metric) and the geometry of
the eye movement scanpath (by the gaze orientation metric).

Impact of graph constructionmethods: next, we investigate
how different constructions of the gaze graph will affect the recog-
nition performance. Specifically, we use different 𝑘 values when
generating the 𝑘-STGG from the gaze signal (Algorithm 1). We
consider six different configurations, namely, 𝑘 ∈ {1, 2, 5, 10, 30, 𝑛},
where 𝑛 is the total number of gaze samples in the sensing window.
In particular, 𝑘 = 1 represents the simplest temporal gaze graph
(Definition 5), whereas 𝑘 = 𝑛 results in a directed complete graph
where every pair of nodes in the graph is connected. Figure 11
shows how 𝑘 affects the recognition performance of GazeGraph on
the three datasets. The results indicate that the optimal selection
of 𝑘 differs among the datasets (sensing task on hand): GazeGraph
achieves the highest performance on the JapaneseDocument and
DesktopActivity datasets with 𝑘 = 5, while 𝑘 = 10 leads to the
best performance for the SedentaryActivity dataset. By contrast,
at the two ends of the 𝑘 spectrum, 𝑘-STGG with either 𝑘 = 1 (the

SenSys ’20, November 16–19, 2020, Virtual Event, Japan G. Lan et al.

10s 30s20s
Window size (s)

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

Feature-based
LSTM
GazeGraph

(a) SedentaryActivity

10s 30s20s
Window size (s)

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

Feature-based
LSTM
GazeGraph

(b) JapaneseDocument

10s 30s20s
Window size (s)

0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

Feature-based
LSTM
GazeGraph

(c) DesktopActivity

Figure 9: Performance of different classification methods on the three datasets.

10s 30s20s
Window size (s)

0.5

0.6

0.7

0.8

0.9

1

F1
 sc

or
e

Euclidean
Manhattan

Cosine
Dist+Orient

(a) SedentaryActivity

10s 30s20s
Window size (s)

0.5

0.6

0.7

0.8

0.9

1

F1
 sc

or
e

Euclidean
Manhattan

Cosine
Dist+Orient

(b) JapaneseDocument

10s 30s20s
Window size (s)

0.5

0.6

0.7

0.8

0.9

1

F1
 sc

or
e

Euclidean
Manhattan

Cosine
Dist+Orient

(c) DesktopActivity

Figure 10: Performance of GazeGraph on the three datasets given different weight metrics.

10s 30s20s
Window size (s)

0.7

0.8

0.9

1

F1
 sc

or
e

k=1
k=2
k=5

k=10
k=30
k= n

(a) SedentaryActivity

10s 30s20s
Window size (s)

0.5

0.6

0.7

0.8

0.9

1

F1
 sc

or
e

k=1
k=2
k=5

k=10
k=30
k= n

(b) JapaneseDocument

10s 30s20s
Window size (s)

0.7

0.8

0.9

1

F1
 sc

or
e

k=1
k=2
k=5

k=10
k=30
k= n

(c) DesktopActivity

Figure 11: Performance of GazeGraph given different 𝑘 used in the construction of 𝑘-STGG.
single-hop graph that captures only the pairwise relations between
temporally adjacent gazes) or𝑘 = 𝑛 (the complete graph that blindly
includes the pairwise relations between all gazes) results in poor
performance, especially when the window size is small (10s).

Moreover, as discussed in Section 6.1.3, the 𝑘-STGG is designed
to capture the spatial relation between neighboring gazes, such as
fixation, for which gazes are spatially clustered together. Physiolog-
ical studies [84] have reported that the mean fixation duration in
reading, scene perception, and visual research is 180 to 330ms. Thus,
with a 30Hz sampling rate, there are 5 to 10 gaze samples within
this fixation duration. Interestingly, as shown in Figure 11, 𝑘-STGG
achieves the highest recognition performance when 𝑘 equals to 5
or 10. This finding ties the parameter selection of GazeGraph to the
intrinsic physiological behavior. Overall, with a 30s window size,
GazeGraph achieves the F1 score of 0.96 on all the three datasets
given a properly selected 𝑘 .

8.3 Performance in Few-shot Scenarios
Below, we examine GazeGraph in the few-shot learning scenarios.
Specifically, we formulate the recognition tasks on the SedentaryAc-
tivity, JapaneseDocument, and DesktopActivity datasets as 𝐾-shot
𝑀-way classification problems, where𝑀 is the number of classes in
the dataset (i.e.,𝑀 equals to 8, 5, and 6 for the three datasets, respec-
tively), and we consider the 5 and 10-shot cases (i.e., 𝐾 equals to 5

or 10). Specifically, for each of the three datasets, we conduct leave-
one-subject-out experiments, in which the data collected from one
subject is used as the target dataset and the data collected from all
the other subjects acts as the source dataset. The testing subject sim-
ulates the scenario where the system is deployed to a new subject
with limited training samples available (𝐾 ·𝑀 samples). Note that,
as the three datasets contain different numbers of classes, we are
not able to perform cross-dataset evaluation, and only consider the
evaluation in the dataset-dependent manner. We leave the across-
applications and across-eye trackers evaluations as the future work
when such datasets become available.

Baselines: we compare the proposed few-shot learning module
with two baseline training strategies: (1) we use the few-shot sam-
ples from target dataset to train the gaze graph classifier and test it
using the remaining data in the target dataset. This represents the
subject-dependent training strategy; (2) we employ transfer learn-
ing [33] to transfer the knowledge from the source domain (e.g.,
known subjects) to the target domain (e.g., new subjects). Transfer
learning is widely used in mobile sensing applications [32, 85] as
well as eye tracking-based emotion recognition [38] to address the
domain adaptation problem. In brief, we first train the gaze graph
classifier on the source dataset. Then, we fix the pre-trained param-
eters of all the convolutional layers (architecture shown in Table 1),
and fine-tune the parameters of the fully connected layers using

GazeGraph: Graph-based Few-Shot Cognitive Context Sensing from Human Visual Behavior SenSys ’20, November 16–19, 2020, Virtual Event, Japan

(a) 5-shot
Sed

ent
ary

Act
ivity

Jap
ane

seD
ocu

me
nt

Des
kto

pAc
tivit

y
0

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

(b) 10-shot

0.2

0.4

0.6

0.8

1

F1
 sc

or
e

Subject-dependent
Transfer learning

Sed
ent

ary
Act

ivity

Jap
ane

seD
ocu

me
nt

Des
kto

pAc
tivit

y
Meta-training

Figure 12: Performance of gaze graph classifier in the few-
shot learning scenarios with different training strategies.

the few-shot samples from the target dataset. The assumption here
is that the pre-trained parameters of the convolutional layers are
reusable for similar learning problem [33]; (3) lastly, we train the
gaze graph classifier using the source dataset by following the meta-
training phase (Algorithm 2), and fine-tune it on the target dataset.
Specifically, the meta-training phase randomly generates tasks from
the source dataset. Each of the generated tasks is associated with
the disjoint support set and query set. In our implementation, both
support set and query set contain𝑀 · 𝐾 samples from the source
dataset. In the meta-training stage, the task-specific parameters
(𝜃 ′T𝑖) and the across-task optimized parameters (𝜃) are obtained by
five gradient descent updates. The hyperparameters 𝛼 and 𝛽 are set
as 0.01 and 0.001, respectively. In the deployment stage, we use ten
gradient steps to fine-tune the parameters 𝜃 for the target dataset.
Note that all three methods use the gaze graph classifier as the base
classifier and leverage the 𝑘-STGG with 𝑘 = 5 to construct gaze
graphs from the gaze signal. The sensing window size is 30s.

Recognition accuracy: Figure 12 shows the F1 score of the
three methods. The results are averaged over all the subjects used
in the leave-one-subject-out experiment. There are 24, 8, and 8
subjects in the SedentaryActivity, JapaneseDocument, and Desk-
topActivity datasets, respectively. As shown, the subject-dependent
training strategy achieves the worst performance, as the limited
training samples (𝐾 ·𝑀) lead to overfitting. The transfer learning
approach performs better, but its F1 score is lower than 60% and 70%
in the 5-shot and 10-shot scenarios, respectively. In all scenarios,
the proposed meta-training strategy achieves the best performance:
in the 5-shot case, it outperforms transfer learning by 27%, 31%,
and 33% on the three datasets, respectively; in the 10-shot case, it
achieves a 16%, 20%, and 21% improvement on the three datasets, re-
spectively. The results demonstrate the superiority of the proposed
few-shot gaze graph learning module in dealing with the ‘in the
wild’ unseen sensing tasks/scenarios with limited training samples
available. This allows us to significantly diminish the expensive
and privacy-compromising large-scale data collection by simply
collecting 5 or 10 samples per class from the new subject.

Adaptation overhead: another advantage of the few-shot learn-
ing strategy over conventional approaches is its low adaptation
overhead, i.e., the training time that is needed to adapt the clas-
sifier to the new sensing task/scenario. To demonstrate this, we
investigate how the recognition accuracy of meta-training and the
transfer learning counterpart change over the training epoch, and
how many training epochs are required for them to converge. Here,
one epoch equals to the time that is needed to train the classifier

10 50 150 200
0

0.5
1

Ac
cu
ra
cy

(a) SedentaryActivity

Meta-training Transfer learning

10 50 150 200
0

0.5
1

Ac
cu
ra
cy

100
Epoch

(b) JapaneseDocument

10 50 100 150 200
Epoch

0
0.5
1

Ac
cu
ra
cy

100
Epoch

(c) DesktopActivity

Figure 13: Recognition accuracy changes over training
epochs on three different datasets.

on the entire samples (𝐾 ·𝑀 samples) in training dataset. Figure 13
shows how the recognition accuracy changes over the number
of epochs in the 10-shot case. We can see that meta-training re-
quires significantly less adaptation overhead (only ten epochs) and
achieves a higher recognition accuracy compared to the transfer
learning approach (more than 50 epochs) on all the three datasets.
The results indicate that the proposed few-shot gaze graph learn-
ing module can adapt quickly to new subjects with few training
samples while maintaining good recognition performance.

The sub-par performance of transfer learning results from its
underlying mechanism: during training, it fine-tunes only fully con-
nected layers of the classifier, but reuses the convolutional layers
that are pre-trained on data from the source domain (under the as-
sumption that the feature distribution of the target domain is similar
to that of the source domain, so that the pre-trained parameters are
transferable [33]). However, due to the diversity between subjects,
when fine-tuning the classifier with only a few-shot instances from
the target domain (a new subject), the large gap between the feature
distributions of the source and target domains invalidates the un-
derlying assumption of transfer learning. Consequently, regardless
of the number of training epochs, transfer learning always results in
a sub-par solution. By contrast, instead of assuming the similarity
between the two domains, the meta-training approach identifies a
more generalized network initialization by learning from a large
number of tasks T that have different feature distributions, such
that the classifier can quickly adapt to a new target domain with
few-shot instances while assuring good performance.

8.4 System Profiling
Measurement setup.We consider two application scenarios: (1)
the user is using the stationary eye trackers, e.g., Tobii Pro X2 [64],
that are integrated with desktops and laptops [11]. The captured
gazes are processed directly on the powerful desktops or laptops;
and (2) the user is wearing the mobile eye trackers, e.g., the Pupil
Core [55]. As most mobile eye trackers do not support on-device
inference with DNNs, we consider the case where the captured
gaze samples are offloaded over a WiFi network to the edge server
for processing and classification. We employ a laptop (equipped
with an Intel i7-7700HQ CPU and a Nvidia GTX 1050 GPU) and a
desktop (equipped with an Intel i7-8700k CPU and a Nvidia GTX
1080 GPU) as the edge platforms.

SenSys ’20, November 16–19, 2020, Virtual Event, Japan G. Lan et al.

Table 3: The averaged computation latency (in ms) of Gaze-
Graphwhen deployed on different hardware platforms. The
variances of latency are shown in the parentheses.

Laptop Desktop
Signal preprocessing 0.46 (0.08) 0.32 (0.04)

Gaze graph
construction

𝑘=1 9.51 (0.13) 7.44 (0.37)
𝑘=2 10.39 (0.47) 7.52 (0.35)
𝑘=5 10.52 (0.66) 7.63 (0.19)
𝑘=10 11.45 (0.34) 7.73 (0.24)
𝑘=30 11.52 (0.32) 7.92 (0.32)
𝑘=900 12.62 (0.51) 8.09 (0.21)

Inference CPU 3.07 (0.09) 1.48 (0.11)
GPU 1.31 (0.13) 1.03 (0.07)

Overall (with 𝑘 = 5) 12.29 8.98

Computation latency: we tear down the system pipeline into
three components: the signal preprocessing, the gaze graph construc-
tion, and the inference using the CNN-based gaze graph classifier.
The signal preprocessing and the gaze graph construction modules
are realized in Matlab, and the gaze graph classifier is implemented
using Keras 2.3 on top of the TensorFlow 2.0 framework. We run
400 trials of the end-to-end pipeline for each of the three datasets
and report the average time consumed by each of the three system
components. The results are given in Table 3. The lion’s share of
computation latency is the construction of the gaze graph. Specif-
ically, the latency increases with 𝑘 . As discussed in Section 6.1.3,
a larger 𝑘 leads to more overhead in calculating the pairwise dis-
tances between each of the gaze points with its 𝑘-hop neighbors.
By contrast, the inference latency only accounts for a small portion
of the end-to-end latency. Overall, with a 30s sensing window and
𝑘 = 5 in the graph construction, the end-to-end latency is 12.29ms
and 8.89ms on the laptop and the desktop, respectively. For more
precise measurement in the future, we will use the NVIDIA Jetson
Nano [86] to profile GazeGraph on advanced IoT platforms.

Communication latency: as the Pupil Core does not support
wireless transmission, we use the Magic Leap One AR headset [50]
as the proxy to study the communication latency in data offloading.
The Magic Leap One is embedded with the VOG-based eye tracker
that captures the user’s gaze at a 30Hz sampling rate. We consider
a 30s sensing window, and transmit a sequence of 900 raw gaze
points encapsulated in a single JSON object from the Magic Leap
One (the client) to the desktop (the edge server) via an HTTP
POST request. After receiving the data, the server sends an HTTP
RESPONSE to the client. The two devices are connected by a single-
hop WiFi network in the 5GHz frequency band. We run 100 trials
of the data transmission and measure the round-trip time (RTT)
for each of the trials. The average RTT is 85.01ms with a standard
deviation of 6.2ms. Note that, as the Magic Leap One is known
to be inefficient in wireless data transmission [87], we can expect
a lower communication latency when the system is deployed on
other mobile eye trackers.

End-to-end system latency: with a 30s sensing window and
𝑘 = 5, the end-to-end system latency of GazeGraph is 8.98ms and
93.99ms for the stationary eye tracker (i.e., computation is per-
formed on the desktop) and mobile eye tracker (i.e., computation
is offloaded to the edge server), respectively. Overall, the results
indicate that GazeGraph ensures high sensing accuracy while main-
taining low system latency.

9 DISCUSSION
In this section, we discuss the limitations of this study and outline
possible research directions.

AdvancedDNNmodels for time series-based cognitive con-
text sensing. In the current presentation, we consider the classical
LSTM as the RNN model for time series-based cognitive context
sensing. Despite the wide use of LSTM in time series-based recog-
nition tasks [60–62], recent efforts in attention-based RNN mod-
els [88] have shown better recognition performance. In our future
work, we will consider more advanced RNN models, such as the
dual-stage attention-based RNN [89] and the sequence-to-sequence
model [90], for time series-based cognitive context sensing. In addi-
tion, deep metric learning-based approaches [91, 92] are also good
candidates to handle time series-based classification.

Different designs for the few-shot learning module. In the
current design, our few-shot gaze graph learning module adopts the
MAML [28] as the backbone algorithm to achieve few-shot learning.
However, MAML requires higher-order derivatives that may lead
to high computational cost when the dataset is large [93]. For the
future work, one can use the implicit MAML algorithm [93] or
the meta-transfer learning [94] to improve the learning efficiency.
Moreover, the initial network model trained by MAML can be
biased towards a subset of tasks that are generated during the
meta-training phase, and may lack the ability to generalize to new
domains. To alleviate this, one can use the task-agnostic meta-
learning [30] algorithm to improve the model generalizability.

Graph Convolutional Networks-based design. Another in-
teresting future direction is to leverage the Graph Convolutional
Networks (GCN) [95] as the backbone network for the gaze graph
classifier. GCN-based models are promising in handling data with
graph structures and have shown state-of-the-art performance in
many graph-based applications, such as text classification [43],
skeleton-based action recognition [44], and molecular recogni-
tion [42].

10 CONCLUSION
In this paper we present GazeGraph, a generalized framework for
gaze-based cognitive context sensing. GazeGraph advances the lit-
erature by a suite of new capabilities. We introduce a novel method
that models human visual behavior as spatial-temporal graphs
for better feature learning and high performance recognition. We
also devise the few-shot graph learning module to enable fast sys-
tem adaptation in new gaze-sensing scenarios with limited gaze
instances needed. Our comprehensive evaluation shows that Gaze-
Graph outperforms the existing solutions by 45% on average over
three datasets when a large training dataset is available. More-
over, in 5-shot and 10-shot scenarios, GazeGraph outperforms the
transfer learning-based approach by 30% and 19% on average, re-
spectively, while reducing the system adaptation time by 80%.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and the shepherd
for their insightful comments and guidance. We would also like to
thank Namrata Srivastava and Kai Kunze for sharing their datasets.
This work was supported in part by the Lord Foundation of North
Carolina and by NSF awards CSR-1903136 and CNS-1908051.

GazeGraph: Graph-based Few-Shot Cognitive Context Sensing from Human Visual Behavior SenSys ’20, November 16–19, 2020, Virtual Event, Japan

REFERENCES
[1] A. Bulling and T. O. Zander, “Cognition-aware computing,” IEEE Pervasive Com-

puting, vol. 13, no. 3, pp. 80–83, 2014.
[2] A. Bulling, D. Roggen, and G. Troester, “What’s in the eyes for context-

awareness?” IEEE Pervasive Computing, vol. 10, no. 2, pp. 48–57, 2010.
[3] A. Bulling and D. Roggen, “Recognition of visual memory recall processes using

eye movement analysis,” in Proceedings of ACM UbiComp, 2011.
[4] K. Kassem, J. Salah, Y. Abdrabou, M. Morsy, R. El-Gendy, Y. Abdelrahman, and

S. Abdennadher, “DiVA: Exploring the usage of pupil diameter to elicit valence
and arousal,” in Proceedings of ACM MUM, 2017.

[5] B. Pfleging, D. K. Fekety, A. Schmidt, and A. L. Kun, “A model relating pupil
diameter to mental workload and lighting conditions,” in Proceedings of ACM
CHI, 2016.

[6] A. Bulling, J. A. Ward, H. Gellersen, and G. Troster, “Eye movement analysis
for activity recognition using electrooculography,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 4, pp. 741–753, 2010.

[7] O. Augereau, C. L. Sanches, K. Kise, and K. Kunze, “Wordometer systems for every-
day life,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 1, no. 4, p. 123, 2018.

[8] J. Karolus, P. W. Wozniak, L. L. Chuang, and A. Schmidt, “Robust gaze features
for enabling language proficiency awareness,” in Proceedings of ACM CHI, 2017.

[9] T. Kosch, M. Hassib, P. W. Wozniak, D. Buschek, and F. Alt, “Your eyes tell:
Leveraging smooth pursuit for assessing cognitive workload,” in Proceedings of
ACM CHI, 2018.

[10] A. T. Duchowski, K. Krejtz, I. Krejtz, C. Biele, A. Niedzielska, P. Kiefer, M. Raubal,
and I. Giannopoulos, “The index of pupillary activity: Measuring cognitive load
vis-à-vis task difficulty with pupil oscillation,” in Proceedings of ACM CHI, 2018.

[11] “Laptops that are integrated with eye tracking,” https://gaming.tobii.com/
products/laptops/.

[12] P. Norloff. Eye tracking technology is making new cars safer. [Online]. Available:
https://eyegaze.com/eye-tracking-technology-is-making-new-cars-safer/

[13] Tobii. Eye tracking for driver safety. [Online]. Avail-
able: https://www.tobiipro.com/fields-of-use/psychology-and-neuroscience/
customer-cases/audi-attitudes/

[14] N. Srivastava, J. Newn, and E. Velloso, “Combining low andmid-level gaze features
for desktop activity recognition,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 2, no. 4, p. 189, 2018.

[15] K. Kunze, Y. Utsumi, Y. Shiga, K. Kise, and A. Bulling, “I know what you are
reading: Recognition of document types usingmobile eye tracking,” in Proceedings
of ACM ISWC, 2013.

[16] Y. Li, P. Xu, D. Lagun, and V. Navalpakkam, “Towards measuring and inferring
user interest from gaze,” in Proceedings of ACM WWW, 2017.

[17] D. Lagun, C.-H. Hsieh, D. Webster, and V. Navalpakkam, “Towards better mea-
surement of attention and satisfaction in mobile search,” in Proceedings of ACM
SIGIR, 2014.

[18] M. Sugiyama and A. J. Storkey, “Mixture regression for covariate shift,” in Pro-
ceedings of NeurIPS, 2007.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
IEEE CVPR, 2015.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[22] C. Katsini, H. Opsis, Y. Abdrabou, G. E. Raptis, M. Khamis, and F. Alt, “The role
of eye gaze in security and privacy applications: Survey and future HCI research
directions,” in Proceedings of ACM CHI, 2020.

[23] A. Liu, L. Xia, A. Duchowski, R. Bailey, K. Holmqvist, and E. Jain, “Differential
privacy for eye-tracking data,” in Proceedings of ACM ETRA, 2019.

[24] J. Steil, I. Hagestedt, M. X. Huang, and A. Bulling, “Privacy-aware eye tracking
using differential privacy,” in Proceedings of ACM ETRA, 2019.

[25] F.-F. Li, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–
611, 2006.

[26] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang, “A closer look at
few-shot classification,” in Proceedings of ICLR, 2019.

[27] S. Thrun, “Lifelong learning algorithms,” in Learning to learn. Springer, 1998,
pp. 181–209.

[28] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adapta-
tion of deep networks,” in Proceedings of ICML, 2017.

[29] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in
Proceedings of ICLR, 2016.

[30] M. A. Jamal and G.-J. Qi, “Task agnostic meta-learning for few-shot learning,” in
Proceedings of IEEE CVPR, 2019.

[31] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to generalize: Meta-
learning for domain generalization,” in Proceedings of AAAI, 2018.

[32] S. A. Rokni, M. Nourollahi, and H. Ghasemzadeh, “Personalized human activity
recognition using convolutional neural networks,” in Proceedings of AAAI, 2018.

[33] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?” in Proceedings of NeurIPS, 2014.

[34] J. Steil and A. Bulling, “Discovery of everyday human activities from long-term
visual behaviour using topic models,” in Proceedings of the ACM UbiComp, 2015.

[35] P. Kiefer, I. Giannopoulos, and M. Raubal, “Using eye movements to recognize
activities on cartographic maps,” in Proceedings of ACM SIGSPATIAL, 2013.

[36] K. Kunze, K. Masai, M. Inami, Ö. Sacakli, M. Liwicki, A. Dengel, S. Ishimaru, and
K. Kise, “Quantifying reading habits: counting how many words you read,” in
Proceedings of ACM UbiComp, 2015.

[37] J. Nie, Y. Hu, Y.Wang, S. Xia, and X. Jiang, “SPIDERS: Low-cost wireless glasses for
continuous in-situ bio-signal acquisition and emotion recognition,” in Proceedings
of IEEE/ACM IoTDI, 2020.

[38] H. Wu, J. Feng, X. Tian, E. Sun, Y. Liu, B. Dong, F. Xu, and S. Zhong, “EMO:
Real-time emotion recognition from single-eye images for resource-constrained
eyewear devices,” in Proceedings of ACM MobiSys, 2020.

[39] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs:
Methods and applications,” IEEE Data Engineering Bulletin, 2017.

[40] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31, no. 5, pp. 833–852, 2019.

[41] V. Gligorijević, M. Barot, and R. Bonneau, “deepNF: Deep network fusion for
protein function prediction,” Bioinformatics, vol. 34, no. 22, pp. 3873–3881, 2018.

[42] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molec-
ular fingerprints,” in Proceedings of NeurIPS, 2015.

[43] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text classification,”
in Proceedings of AAAI, 2019.

[44] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for
skeleton-based action recognition,” in Proceedings of AAAI, 2018.

[45] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-RNN: Deep learning
on spatio-temporal graphs,” in Proceedings of IEEE CVPR, 2016.

[46] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Had-
sell, “Meta-learning with latent embedding optimization,” in Proceedings of ICLR,
2019.

[47] T. Gong, Y. Kim, J. Shin, and S.-J. Lee, “MetaSense: Few-shot adaptation to un-
trained conditions in deep mobile sensing,” in Proceedings of ACM SenSys, 2019.

[48] “How to use eye tracking on your Alienware 17 R4,” https://gaming.tobii.com/
onboarding/alienware17-eye-tracking-how-to/.

[49] “Acer Predator 21x,” https://gaming.tobii.com/product/acer-predator-21x/.
[50] “Magic Leap,” https://www.magicleap.com/.
[51] “Tobii Pro VR integration,” https://www.tobiipro.com/product-listing/vr-

integration/.
[52] J. Sigut and S.-A. Sidha, “Iris center corneal reflection method for gaze tracking

using visible light,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 2,
pp. 411–419, 2010.

[53] M. Kassner, W. Patera, and A. Bulling, “Pupil: An open source platform for
pervasive eye tracking and mobile gaze-based interaction,” in Proceedings of ACM
UbiComp, 2014.

[54] M. Tonsen, J. Steil, Y. Sugano, and A. Bulling, “InvisibleEye: Mobile eye tracking
using multiple low-resolution cameras and learning-based gaze estimation,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 1, no. 3, p. 106, 2017.

[55] “Pupil Labs eye tracker,” https://pupil-labs.com/.
[56] D. A. Robinson, “A method of measuring eye movement using a scleral search

coil in a magnetic field,” IEEE Transactions on Biomedical Electronics, vol. 10, no. 4,
pp. 137–145, 1963.

[57] A. T. Duchowski, “A breadth-first survey of eye-tracking applications,” Behavior
Research Methods, Instruments, & Computers, vol. 34, no. 4, pp. 455–470, 2002.

[58] M. Khamis, F. Alt, and A. Bulling, “The past, present, and future of gaze-enabled
handheld mobile devices: Survey and lessons learned,” in Proceedings of ACM
MobiHCI, 2018.

[59] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[60] T. Plötz and Y. Guan, “Deep learning for human activity recognition in mobile

computing,” Computer, vol. 51, no. 5, pp. 50–59, 2018.
[61] Y. Guan and T. Plötz, “Ensembles of deep LSTM learners for activity recognition

using wearables,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 1, no. 2, pp. 1–28, 2017.

[62] Z. Jia, X. Lyu, W. Zhang, R. P. Martin, R. E. Howard, and Y. Zhang, “Continuous
low-power ammoniamonitoring using long short-termmemory neural networks,”
in Proceedings of ACM SenSys, 2018.

[63] “SMI eye tracking glasses,” https://imotions.com/hardware/smi-eye-tracking-
glasses/.

[64] “Tobii Pro X2 eye tracker,” https://www.tobiipro.com/product-listing/tobii-pro-
x2-30/.

[65] E. N. Ussery, J. E. Fulton, D. A. Galuska, P. T. Katzmarzyk, and S. A. Carlson,
“Joint prevalence of sitting time and leisure-time physical activity among US
adults, 2015-2016,” Jama, vol. 320, no. 19, pp. 2036–2038, 2018.

[66] D. Lagun, C. Manzanares, S. M. Zola, E. A. Buffalo, and E. Agichtein, “Detecting
cognitive impairment by eye movement analysis using automatic classification

https://gaming.tobii.com/products/laptops/
https://gaming.tobii.com/products/laptops/
https://eyegaze.com/eye-tracking-technology-is-making-new-cars-safer/
https://www.tobiipro.com/fields-of-use/psychology-and-neuroscience/customer-cases/audi-attitudes/
https://www.tobiipro.com/fields-of-use/psychology-and-neuroscience/customer-cases/audi-attitudes/
https://gaming.tobii.com/onboarding/alienware17-eye-tracking-how-to/
https://gaming.tobii.com/onboarding/alienware17-eye-tracking-how-to/
https://gaming.tobii.com/product/acer-predator-21x/
https://www.magicleap.com/
https://www.tobiipro.com/product-listing/vr-integration/
https://www.tobiipro.com/product-listing/vr-integration/
https://pupil-labs.com/
https://imotions.com/hardware/smi-eye-tracking-glasses/
https://imotions.com/hardware/smi-eye-tracking-glasses/
https://www.tobiipro.com/product-listing/tobii-pro-x2-30/
https://www.tobiipro.com/product-listing/tobii-pro-x2-30/

SenSys ’20, November 16–19, 2020, Virtual Event, Japan G. Lan et al.

algorithms,” Journal of Neuroscience Methods, vol. 201, no. 1, pp. 196–203, 2011.
[67] A. García-Blanco, L. Salmerón, M. Perea, and L. Livianos, “Attentional biases

toward emotional images in the different episodes of bipolar disorder: An eye-
tracking study,” Psychiatry Research, vol. 215, no. 3, pp. 628–633, 2014.

[68] S. Wang, M. Jiang, X. M. Duchesne, E. A. Laugeson, D. P. Kennedy, R. Adolphs,
and Q. Zhao, “Atypical visual saliency in autism spectrum disorder quantified
through model-based eye tracking,” Neuron, vol. 88, no. 3, pp. 604–616, 2015.

[69] K. Harezlak and P. Kasprowski, “Application of eye tracking inmedicine: A survey,
research issues and challenges,” Computerized Medical Imaging and Graphics,
vol. 65, pp. 176–190, 2018.

[70] “HP Omnicept,” https://www8.hp.com/us/en/vr/reverb-g2-vr-headset-omnicept-
edition.html.

[71] R. S. Khan, G. Tien, M. S. Atkins, B. Zheng, O. N. Panton, and A. T. Meneghetti,
“Analysis of eye gaze: Do novice surgeons look at the same location as expert
surgeons during a laparoscopic operation?” Surgical Endoscopy, vol. 26, no. 12,
pp. 3536–3540, 2012.

[72] A. Burova, J. Mäkelä, J. Hakulinen, T. Keskinen, H. Heinonen, S. Siltanen, and
M. Turunen, “Utilizing VR and gaze tracking to develop AR solutions for industrial
maintenance,” in Proceedings of ACM CHI, 2020.

[73] T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl, “State-
of-the-art of visualization for eye tracking data,” in Proceedings of EuroVis, 2014.

[74] P. Blignaut, “Visual span and other parameters for the generation of heatmaps,”
in Proceedings of ACM ETRA, 2010.

[75] D. Noton and L. Stark, “Scanpaths in eye movements during pattern perception,”
Science, vol. 171, no. 3968, pp. 308–311, 1971.

[76] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of graph em-
bedding: Problems, techniques, and applications,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 9, pp. 1616–1637, 2018.

[77] D. B. West et al., Introduction to graph theory. Prentice Hall Upper Saddle River,
2001, vol. 2.

[78] S. Eraslan, Y. Yesilada, and S. Harper, “Scanpath trend analysis on web pages:
Clustering eye tracking scanpaths,” ACM Transactions on the Web, vol. 10, no. 4,
p. 20, 2016.

[79] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The Journal

of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.
[80] “Super Mario Bros game,” https://www.classicgames.me/super-mario-bros.html.
[81] “Agario game,” https://agar.io/.
[82] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Pro-

ceedings of ICLR, 2015.
[83] P. Olsson, “Real-time and offline filters for eye tracking,” 2007, Master Thesis,

KTH Royal Institute of Technology.
[84] K. Rayner and M. Castelhano, “Eye movements,” Scholarpedia, vol. 2, no. 10, p.

3649, 2007.
[85] R. Fallahzadeh and H. Ghasemzadeh, “Personalization without user interruption:

Boosting activity recognition in new subjects using unlabeled data,” in Proceedings
of ACM ICCPS, 2017.

[86] “NVIDIA Jetson Nano,” https://developer.nvidia.com/embedded/jetson-nano.
[87] M. Glushakov, Y. Zhang, Y. Han, T. J. Scargill, G. Lan, and M. Gorlatova, “Edge-

based provisioning of holographic content for contextual and personalized aug-
mented reality,” in Proceedings of IEEE SmartEdge, 2020.

[88] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proceedings of NeurIPS, 2017.

[89] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell, “A dual-stage
attention-based recurrent neural network for time series prediction,” in Proceed-
ings of IJCAI, 2017.

[90] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proceedings of NeurIPS, 2014.

[91] Z. Che, X. He, K. Xu, and Y. Liu, “DECADE: A deep metric learning model for
multivariate time series,” in Proceedings of KDDWorkshop on Mining and Learning
from Time Series, 2017.

[92] S. Li, D. Hong, and H. Wang, “Relation inference among sensor time series in
smart buildings with metric learning,” in Proceedings of AAAI, 2020.

[93] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning with implicit
gradients,” in Proceedings of NeurIPS, 2019.

[94] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for few-shot
learning,” in Proceedings of IEEE CVPR, 2019.

[95] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” in Proceedings of ICLR, 2017.

https://www8.hp.com/us/en/vr/reverb-g2-vr-headset-omnicept-edition.html
https://www8.hp.com/us/en/vr/reverb-g2-vr-headset-omnicept-edition.html
https://www.classicgames.me/super-mario-bros.html
https://agar.io/
https://developer.nvidia.com/embedded/jetson-nano

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 Primer on Eye Tracking
	3.2 Challenges in Gaze-based Activity Sensing

	4 System Overview
	5 Signal Preprocessing
	6 Spatial-temporal Graph Modeling for Human Visual Behavior
	6.1 Modeling Human Gazes as Graphs

	7 Few-shot Graph Representation Learning and Classification
	7.1 CNN-based Gaze Graph Classifier
	7.2 Few-shot Gaze Graph Learning Module

	8 Evaluation
	8.1 Datasets
	8.2 Overall Performance
	8.3 Performance in Few-shot Scenarios
	8.4 System Profiling

	9 Discussion
	10 Conclusion
	Acknowledgments
	References

