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Abstract—Conventional radio-frequency (RF) sensing systems
rely on either frequency diversity or spatial diversity to ensure
high sensing accuracy. Such reliance introduces several practi-
cal limitations that hinder the pervasive deployment of existing
solutions. To circumvent this prevalent reliance, we present
MetaSense, a system that leverages antenna pattern diversity for
fine-grained RF sensing. MetaSense incorporates the dynamic
metasurface antenna (DMA) and the auxiliary-assisted ensem-
ble multimask learning (AEMML) framework in its design. The
DMA is a novel type of antenna that can provide a diverse
set of uncorrelated radiation patterns in a low-cost and low-
complexity manner. The AEMML is a quality-aware learning
framework that can dynamically assess and aggregate the hetero-
geneous channel measurements from different antenna patterns
to ensure high sensing accuracy. It also incorporates a trans-
fer learning model that allows it to generalize to new sensing
conditions with few training instances required. We prototype
MetaSense and demonstrate its effectiveness on a writing motion
recognition task using a custom-designed 2-D DMA. The results
show that MetaSense achieves 92% to 98% accuracy in classify-
ing ten miniature writing motions, outperforming a nontunable
antenna by 20% in all scenarios. Moreover, when deployed in
new sensing positions where limited training instances are avail-
able, MetaSense requires as few as five training instances per
class to achieve over 90% accuracy.

Index Terms—Ensemble learning, metamaterials, metasurface,
reconfigurable intelligent surfaces, wireless sensing.
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I. INTRODUCTION

EVERAGING signal fluctuations to detect environmen-
Ltal dynamics is a well-studied area in physics known
as diffusing wave spectroscopy [1]. This concept has been
applied in the radio-frequency (RF) sensing domain, where
the variations in the wireless signal are used to capture the
environmental changes caused by the motion of interest. To
achieve high accuracy in RF sensing, the fundamental issue is
to obtain a high dimension of uncorrelated input that provides
sufficient information about the monitoring target. In wireless
systems, this can be achieved by having enough spatial or
frequency diversity. First, leveraging spatial diversity, we can
add more transceiver pairs at independent locations, where the
local wireless signals are affected by the monitored motion
differently. Examples are the use of multiple-input—multiple-
output (MIMO) [2] and antenna arrays [3] for sensing. Second,
we can rely on frequency diversity to transmit the sensing sig-
nal in a wideband. Examples are the WiFi-based solutions [4]
that transmit signal at a 20/40-MHz bandwidth, as well as the
radar-based [5] and ultrawideband (UWB)-based [6] solutions
that require a GHz bandwidth for sensing.

In practice, however, reliance on either frequency diver-
sity or spatial diversity is difficult and costly. Custom-built
devices, such as Doppler-radar [5], [7] and antenna array [3]
are costly in both hardware and signal processing. The wide
frequency band requirement makes RF components, e.g.,
amplifiers and oscillators, more complex and expensive than
those of a narrow-band device. Moreover, increasing the num-
ber of antennas not only makes the device cumbersome, but
also increases the complexity in digital signal processing [3].
Commodity devices, such as WiFi infrastructures, are more
pervasive and widely deployed. Unfortunately, WiFi-based
solutions are known to degrade in performance due to the
multipath issues [8], [9].

In this work, instead of adding more transceivers or extend-
ing the signal bandwidth, we propose the use of antenna
pattern diversity to boost RF sensing performance. However,
achieving configurable antenna patterns with high diversity is
nontrivial. Conventional array antennas require power-hungry
phased shifters, amplifiers, and other RF components to gen-
erate different antenna patterns [10], and thus are costly and
complex when a large scale of antenna elements is needed. To
move beyond these limitations, we exploit the dynamic meta-
surface antenna (DMA) to ensure antenna pattern diversity for
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RF sensing. The DMA is a novel class of antennas that can
effectively and rapidly change their radiation patterns from
a simplified hardware platform [11], [12]. Instead of using
conventional antenna elements, the key enablers of DMA are
the metamaterial elements which are artificial materials engi-
neered to allow the manipulation of electromagnetic waves in a
deliberate and controlled manner [13]. The DMA is embedded
with a set of subwavelength-sized metamaterial elements on its
top layer. Each of the embedded metamaterial elements pas-
sively radiates portion of energy from the antenna’s waveguide
into the wireless channel, and thus, by tuning the resonance
frequency of each individual element, the overall radiation
pattern of DMA can be effectively controlled [14].

Without the need for complex, costly, and energy hungry
RF components in its design, DMA is an emerging technology
for realizing large scale adaptive antenna arrays in a smaller
form-factor with simple and low-cost design [15]. Moreover,
metasurface and metamaterial-based antenna designs have
shown great performance in eliminating the mutual coupling
effects among antenna elements [16], [17] to ensure higher
antenna diversity [18]. In light of the great promise, a recent
report forecasts the commercial market of DMA-based sens-
ing and communication devices to exceed ten billion dollars by
2030 [19]. Indeed, DMA has attracted a lot of attention from
both academia [20], [21] and industry [22]-[24]. Industry lead-
ers, such as LG and NETGEAR, have included metamaterial-
based antennas in smartphones and routers [25], Huawei and
PARC have started to deploy metasurface antennas for 5G
communications [26], [27].

Despite the appealing benefits of DMA, its applications and
challenges for fine-grained RF sensing systems have not yet
been studied. In this article, we present MetaSense, the first
end-to-end DMA-based RF sensing system. Leveraging the
antenna pattern diversity of the DMA, MetaSense embraces
a high dimension of uncorrelated channel measurement to
develop more accurate and robust RF sensing solutions.
Bringing this high-level concept into a practical system
requires overcoming several challenges.

1) As there is no off-the-shelf DMA hardware available,
the first challenge is in prototyping an effective DMA
to provide a large set of distinct antenna patterns. In
this article, we design and implement a single-port,
2-D DMA with 98 metamaterial elements operating at
microwave frequencies (i.e., 17.5-22 GHz). We design a
simple Arduino-based controller to configure the DMA’s
antenna pattern. Our prototype provides hundreds of
uncorrelated antenna patterns to boost the measurement
dimension.

2) The antenna pattern diversity of DMA offers a fruit-
ful measurement for sensing. Intrinsically coupled to
this capability is the challenge in designing a learn-
ing mechanism that can properly assess and compare
the sensing quality of different antenna patterns, and
can dynamically aggregate them based on the esti-
mated quality in runtime. This is essential as different
antenna patterns are unequal in signal resolvability
and sensing performance. Indeed, as will be shown in
Section VIII-D, the accuracy varies from 64% to 82%
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given different DMA pattern configurations. Moreover,
the performance changes dynamically with the sens-
ing conditions, and is hard to pre-estimate without
actual channel measurement. In this article, borrowing
the concept of certainties from information theory, we
propose the normalized entropy as the auxiliary fea-
ture to assess the sensing quality of different DMA
antenna patterns. In addition, we design the quality-
aware auxiliary-assisted ensemble multimask learning
(AEMML) that can dynamically aggregate the het-
erogeneous DMA measurements to boost the sensing
accuracy.

3) Finally, existing learning-based @ RF  sensing
systems [28], [29] leverage the deep neural networks
(DNNs) to boost the recognition accuracy. However,
a large labeled data set is required to achieve good
sensing performance. Moreover, when the pretrained
DNN model is deployed in a new location or environ-
ment, its sensing accuracy will degrade significantly
due to the domain shift problem [30], as the radio
signals used for sensing are subject to environment and
location changes [28], [29]. Thus, existing DNN-based
RF sensing systems try to generalize the classification
model by collecting data sets across a large number
of environments [28], [29], which is expensive and
inefficient. To move beyond this limitation, we employ
transfer learning to generalize the proposed AEMML
framework. Our solution significantly reduces the num-
ber of training instances required to extend MetaSense
to new sensing locations and environments, allowing it
to achieve over 90% accuracy with only five training
instances per class.

The main contributions of this article are as follows.

1) We investigate the use of the antenna pattern diver-
sity of DMA to boost RF sensing accuracy. It achieves
fine-grained RF sensing with a single transceiver device
working at a single frequency. Our solution paves the
way for future low-cost and low-complexity RF sensing
systems, where limited transceivers and bandwidth are
available or accessible.

2) We present the first end-to-end system design for DMA-
based RF sensing which includes a signal processing
pipeline to handle noise and misalignment issues in the
DMA signal, a robust segmentation algorithm for motion
detection, as well as the quality-aware learning frame-
work that can assess the sensing quality of different
DMA patterns and dynamically aggregate them to boost
the sensing accuracy at runtime.

3) Using the 2-D DMA we designed and implemented, we
evaluate the performance of MetaSense. We consider the
miniature writing motion recognition as a case study.
Specifically, we leverage a programmable drawing robot
to generate miniature writing movements with high ran-
domness. This robot-based setup allows us to conduct
comprehensive and repeatable experiments when human
interactions are restricted due to the COVID-19. We also
take the MNIST handwritten digits data set [31] as the
reference to design different drawing patterns. Extensive
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experiments show that MetaSense achieves 92% to 98%
accuracy in different settings, outperforming the non-
tunable antenna by 20% in all scenarios. Moreover, by
dynamically aggregating the inputs from diverse DMA
masks, our quality-aware multimask learning framework
achieves up to 12.5% accuracy improvement compared
to the best conventional classifier.

4) Our transfer learning-based framework enables efficient
system adaptation to new sensing conditions with lim-
ited training instances required. Our evaluation shows
that, together with the help of the DMA antenna pat-
tern diversity, MetaSense requires as few as five training
instances per class to achieve over 90% accuracy when
deployed in new sensing locations, which outperforms
the conventional method by 18%.

The remainder of this article is organized as follows. Related
work is reviewed in Section II. Section III presents a primer
on DMA and the use of DMA for sensing. Section IV pro-
vides the system overview of MetaSense. Section V details the
design of our DMA hardware. Section VI introduces the sig-
nal processing pipeline. Section VII presents the quality-aware
multimask sensing framework. We present the evaluation in
Section VIII and discuss the limitations and future directions
in Section IX. We conclude the work in Section X.

II. RELATED WORK
A. Wireless Sensing

Our work is related to existing efforts that leverage RF
signal, visible light, and sound for sensing.

WiFi-based works rely on frequency diversity to obtain
detailed phase and amplitude information from each of the
subcarriers [32]. To further improve the sensing performance,
more advanced methods are stitching multiple antennas in a
single-device [3], [33] or leveraging multiple transceivers [2].
These solutions are cumbersome and costly in both hardware
and signal processing. More recently, attempts have been made
to achieve a single transceiver solution [34]. However, they still
rely on a wide bandwidth to ensure good sensing performance.

RF identification (RFID) is also promising for sensing.
However, existing methods need to attach the RFID tags to the
sensing target [35], [36] and require multiple dedicated read-
ers and antennas (e.g., RF-IDraw [35] needs eight antennas
and two readers, Tagoram [36] needs four antennas).

Radar-based  systems, including the UWB [37],
Doppler-radar [5], and the frequency modulated carrier
wave (FMCW) radar [7], [38], rely on frequency diversity
to achieve good performance, as their sensing resolution is
proportional to the bandwidth that the signal sweeps. For
instance, FMCW radars need to sweep the sensing signal
in a total bandwidth of 1.69 GHz [38], while UWB-based
systems require 1-GHz bandwidth [37]. Recent works in
mmWave [39]-based sensing make use of a higher frequency
band to avoid the multipath issue. They are promising given
their high sensing resolution, but are more complex and
expensive than the DMA in achieving a high dimension of
antenna patterns.

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 18, SEPTEMBER 15, 2021

Instead of having more transceivers or extending the sig-
nal bandwidth, MetaSense applies antenna pattern diversity
to obtain a high dimension of uncorrelated channel measure-
ment for sensing. It achieves high sensing accuracy with only
a single transceiver pair operating at a single frequency.

B. DMA-Based Imaging

Recent works have proposed the use of DMA for computa-
tional imaging [11], [12]. However, they focus on static object
imaging using /-D metasurface with limited antenna pattern
diversity. To improve the measurement dimension, they require
a wide frequency band to achieve frequency-diverse antenna
patterns (e.g., 8 GHz [11]) and multiple transceivers (e.g., four
transceivers [12]). In contrast, MetaSense enables fine-grained
dynamic motion sensing using a single transceiver pair with a
single carrier frequency.

C. DMA-Based Sensing

Leveraging the antenna pattern diversity of DMA for sens-
ing has also been proposed recently [40], [41]. However, the
authors only focus on the niche case of binary motion detection
as a proof of concept (e.g., detecting the presence of motion).
In contrast, for the first time, MetaSense demonstrates the
use of DMA for fine-grained miniature motion sensing. We
build on the literature but advance it by addressing a set of
specific challenges that lacked adequate attention in the past,
namely, a complete processing pipeline to handle noise and
misalignment in the DMA signal, a robust segmentation mech-
anism to extract the motion signal, as well as a quality-aware
multimask learning framework that can properly assess and
aggregate the high-dimensional measurements of the DMA to
improve sensing accuracy at runtime. Using our 2-D DMA,
we demonstrate the effectiveness of MetaSense on a writing
motion recognition task.

D. Domain Adaptation in RF Sensing

As the radio signals are subject to environment and
location changes [28], [29], it results in the domain shift
problem [30] when using the pretrained classifier for recogni-
tion. Existing works require collecting a large labeled data set
across different sensing scenarios to generalize the recognition
model [28], [29], [42]. In contrast, MetaSense incorporates
the transfer learning [43] to address the domain adapta-
tion problem in RF sensing. Our evaluation indicates that
MetaSense requires only five training instances per class to
achieve over 90% accuracy when deployed in new sensing
locations.

III. DMA-BASED RF SENSING
A. Background of the DMA

The DMA is a novel antenna that offers control-
lable radiation pattern diversity from a simplified hardware
platform [11], [12]. The key enablers of DMA are the meta-
materials. Metamaterials were initially proposed as artificial
media that were engineered to allow the manipulation of elec-
tromagnetic waves in a deliberate and controlled manner [13].
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This notion was later adapted to planar counterparts, thus
metasurfaces [15]. More recently, metasurfaces excited by a
guided mode (instead of a plane wave) have been consid-
ered, giving rise to metasurface antennas. A DMA, which is
a subclass of metasurface antennas, is usually a single-port
waveguide exciting a set of subwavelength-sized metamaterial
radiators integrated into its top layer. Each of the embed-
ded metamaterial elements radiates a portion of the energy
from the waveguide into free space, and therefore, the over-
all radiation pattern of the DMA is the superposition of the
contributions from all excited elements. The electromagnetic
response of each metamaterial element can be altered to con-
trol the amplitude and the phase of the radiated signal (hence,
dynamic metasurface antenna). The operation of each element
is programmable using simple external electronic controls.
Thus, by varying the electromagnetic response of the meta-
material elements and switching different sets of elements to
radiate, the DMA provides dynamic radiation pattern diversity
without the need for power-hungry phase shifters, amplifiers,
and other RF components that are required in conventional
phased array antennas. More importantly, metamaterial-based
antenna designs can dramatically reduce the interelement cou-
pling effect that occurs in conventional large-scale dense
antenna arrays [17], and thus ensure higher antenna efficiency
and diversity [18].

B. RF Sensing Primer

Below, we revisit the wireless channel theory to get
some intuition in using wireless signal for motion sensing.
Considering the case where a stationary transmitter radiates a
sinusoidal signal at frequency f to a receiver, while the sensing
object is in motion within the transmission range. For instance,
as shown in Fig. 1(a), a stationary transmitter emits a signal to
a receiver while a subject is in motion. The wireless channel
between the transmitter and the receiver can be modeled as
Y(f,t) = X(f, 1) x H(f,t), where X(f, t) is transmitted sig-
nal, Y(f, f) is the received signal, and H(f, f) is the wireless
channel response [44]. For a given X(f, 1), Y(f, t) is directly
affected by the H(f, r), which is sensitive to environment varia-
tions. Any small perturbations in the environment will notably
change the structure of the wireless channel and cause varia-
tions in H(f, ¢). Due to the multipath effect, H(f, ) is modeled
as the weighted sum of all paths’ channel responses. If there
are N paths, H(f, t) can be expressed as [32], [44]

N
HE 0 = Y wie(f, ne ™% (1)

k=1
where wy is the corresponding weight of the kth path, Ai(f, 1)
is the complex-valued representation of the amplitude and the
initial phase offset, dy is the path length, A is the wavelength,
and e /27 (/1) is the phase offset due to the propagation delay.
Moreover, we can divide the N paths into two groups, the static
and the dynamic paths [9], [45]. As shown in Fig. 1(a), Hs(f, 1)
represents the overall channel response of the static paths,
which include the line-of-sight path and the paths reflected
by the static objects in the environment. When the subject
moves by a small distance, Hs(f, t) does not change. Hp(f, 1)
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Fig. 1. (a) Channel variations due to human movements. (b) Phasor

representation of the variations.

is the channel response of the dynamic paths that are reflected
by the moving subject. As shown in Fig. 1(a), the moving per-
son creates a path length change of Ad in the dynamic path,
which then leads to a phase change of e /27 (A4/%) in Hpy(f, 1).
The overall channel response H(f,t) is the sum of Hg(f,?)
and Hp(f, ). As shown in Fig. 1(b), the subject’s movement
results in a variation of AH in the overall channel response.
By capturing the wireless channel variation, we can detect the
motion of interest.

C. Boosting Sensing Accuracy Using DMA

1) Motivation in DMA-Based Sensing: Based on 1, we can
further define the received signal Y(f, ?) as

N
Y(f,tw) =y we- g(fw) - af, Yi) )

k=1

where N is the number of paths, u is the location of the
receiver, and g(f, u) is a term determined by frequency f and
location u. For the kth path, a(f, ¥) is the product of the
transmitter antenna pattern, o;(f, ¥x), and the receiver antenna
pattern, o, (f, ¥x), in direction ¥, and wy, is the corresponding
weight. Note that the basic principle of boosting sensing accu-
racy is to have a high dimension of uncorrelated measurement
of Y(f, ¢, u) that can provide sufficient information about the
sensing target. Without the reliance on multiple transceivers
and a wide frequency band, the remaining variables we can
tune in 2 are the carrier frequency f and the antenna pattern
a(f, ¥i).

1) Frequency Hopping: The first potential solution is
switching the carrier frequency. For instance, assum-
ing a 20-MHz bandwidth, we can change f among the
center frequencies of the 3 and 24 nonoverlapping chan-
nels of the 2.4 GHz and 5-GHz WiFi, respectively, to
boost measurement dimension (nonoverlapping channels
are required to ensure low signal correlation). However,
achieving fast channel switching is nontrivial. For WiFi-
based systems, the default channel switching mechanism
in 802.11 protocol induces several seconds of delay [46],
which is far beyond the sensing requirement.

2) Antenna Pattern Diversity: Alternatively, if we can pro-
gram the antenna to rapidly change its pattern, we
can ensure measurement diversity by having different
o (f, ¥r). This motivates us to use the DMA as either the
transmitter or the receiver, or even both, for RF sensing.
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Fig. 2.  Overview of MetaSense which contains a DMA transmitter and a
sensing unit.

For instance, with the DMA as the transmitter, we can
generate a variety of radiation patterns on the transmitter,
o (f, Yx), to probe the N multiple paths with different
weights. As will be shown in Section VIII-B, using a
single DMA as the transmitter, we can easily obtain a
200-dimension of uncorrelated channel measurements to
boost the sensing accuracy.

IV. SYSTEM OVERVIEW

System Design: Fig. 2 shows the overview of MetaSense
which contains: 1) the DMA transmitter and 2) the sensing
unit. The DMA transmitter is incorporated with our custom
designed DMA and a mask controller which dynamically
configures the DMA to send wireless signals with different
antenna patterns (Section V). The reflected wireless signal cap-
tured by the dipole antenna is used as the input for sensing.
The sensing unit includes two major components: 1) the sig-
nal processing pipeline (Section VI) and 2) the quality-aware
multimask sensing framework (Section VII). The former is a
complete processing pipeline which handles denoising, seg-
mentation, and motion alignment for the DMA signal; the
latter is a recognition framework that can dynamically assess
and aggregate the diverse measurements from DMA to boost
sensing accuracy.

Fine-Grained Writing Movement Sensing: As a case study,
in this article MetaSense is designed to recognize the ten
Arabic numerals written by a tiny drawing robot (details will
be given in Section VIII). The motions of the robot will
cause variations in the signal captured by the receiver. As the
motions in writing different digits affect the wireless signal
differently, we use those differences to recognize the digit
that has been written. Recognition of the writing motions
can facilitate many contactless human—computer interaction
applications. For instance, a user can draw digits in the air
to interact with smart-home appliances (e.g., smart TV) in a
contact-free and nonintrusive manner. The use of the robot
allows us to generate miniature movement with high random-
ness. As will be shown in Section VIII, the robot ensures 2500
possible ways in drawing the same digit in a 2 cmx2 cm draw-
ing area which is 300 times smaller than the 35 cmx35 cm
gesture moving area considered in related work [47], [48].
The random and minute robot movements make our task more
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Fig. 3.  Schematic of the DMA with an example of the radiation pattern
generated by the metamaterial elements.

challenging than recognizing human drawing. Moreover, this
robot-based measurement methodology allows for the exact
replication of all our experiments by other research groups, and
permits data collection when human interactions are restricted,
such as throughout COVID-19 shelter-in-place orders. Note
that MetaSense is not limited to the application of robot writ-
ing recognition as presented in this article. With minor tuning
efforts, the same design can be easily adapted to other contexts,
such as activity recognition and gesture recognition.

V. DMA TRANSMITTER
A. Hardware Design

Fig. 3 shows the schematic design of our DMA. Overall,
the DMA is a single-fed, electrically large cavity with control-
lable metamaterial elements patterned into the front radiating
surface. The device is excited by a single coaxial probe
which feeds the radio waves into a planar cavity formed
by an irregularly shaped via cage. The radio waves bounce
around inside the cavity before leaking out through the meta-
material elements. These radiating elements thus project the
wave formed inside the cavity into the wireless channel. The
superposition of the waves from all the radiating metamate-
rial elements forms the overall radiation pattern. To realize a
dynamic response, each metamaterial element is loaded with
a PIN diode, giving rise to a binary response (radiating or not
radiating). The radiating status for each of the metamaterial
elements are addressed independently by applying simple DC
voltage signals. Thus, by selecting different sets of elements
to radiate, we can create distinct radiation patterns in a simple
programmable fashion.

B. Implementation

Fig. 4 shows the implementation of the DMA. The device
has a form-factor of approximately 15 cmx15 cmx3 mm.
The frontend is embedded with 96 metamaterial elements.
Each of the elements is an electrically small, complemen-
tary electric-LC resonator. This metamaterial element design
has been proven to exhibit high radiation efficiency while
maintaining low Ohmic losses and low cross-polarized radia-
tion [49]. In addition, a PIN diode is added to the resonator
to control its radiating state. In our implementation, each of
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coaxial probe

Fig. 4. DMA hardware design and implementation. (a) Backend of the device.
A coaxial probe is used to feed the radio wave into the device. (b) Frontend
of the DMA. There are 96 metamaterial elements patterned randomly on the
surface. (¢) Details of a metamaterial element.
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Fig. 5. Example of four different DMA masks. Each of the bright spots is
a radiating metamaterial element.
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Fig. 6. Four resulting radiation patterns for different DMA masks.

the 96 metamaterial elements is controlled externally by the
DC voltage provided by an Arduino microcontroller. The tun-
ing states of all the elements determine the overall radiation
pattern that will be generated by the frontend metasurface.
Thus, by binary tuning the DC voltage applied to the ele-
ments (i.e., 0 V for not radiating and 5 V for radiating), the
DMA allows 2% = 7.9 x 10%® radiation patterns with a sin-
gle RF chain. In this article, we call different tuning states
of the 96 elements as different DMA masks. Each mask con-
figuration corresponds to a different DMA radiation pattern.
As an example, Fig. 5 shows four DMA masks. Each of the
bright spots in these plots corresponds to a radiating metama-
terial element. Fig. 6 shows the resulting radiation patterns of
the four DMA masks. Clearly, the radiation patterns change
with the mask tuning state. In addition to pattern diversity,
the device is capable of changing the mask configuration at
an MHz rate. When different DMA masks are used for sens-
ing, the changes in the motion being monitored are almost
negligible within the time duration of a few hundreds mask
switches.

VI. SIGNAL PROCESSING

In this section, we present the design of the signal process-
ing pipeline which is used to prepare the raw DMA signal for
the recognition.
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Fig. 7.  Example of denoising: (a) and (b) compares the amplitude and the
phase of the raw and the denoised DMA signal.

A. Denoising

The raw wireless signal captured by the dipole antenna is
noisy. The noise results from the ambient human movements
as well as minor imperfections of the antenna hardware.

We apply the discrete wavelet transform (DWT) [50] to
filter time-domain and frequency-domain noise contained in
the raw signal. DWT is able to resolve the signal at dif-
ferent frequency ranges and provides good resolution in
both time and frequency domains. It performs a hierarchi-
cal transformation that transforms the raw signal into multiple
frequency levels called wavelet levels. For each wavelet level,
DWT calculates the detail coefficients and the approximation
coefficients which correspond to the high and low frequency
components in the signal, respectively. The key insight in
DWT-based noise filtering is to modify the coefficients of the
signal based on the estimated cut-off thresholds in different
wavelet levels. Below, we describe the denoising procedure.

First, we apply the Daubechies D4 wavelet on the raw
signal to compute the level 5 coefficients. The selection of
level 5 is based on the sampling frequency we used and the
frequency of the targeted motion. Since we sample the wire-
less signal from each of the DMA masks at 500 Hz (details
are given in Section VIII-A), the highest frequency component
in the measured signal is 250 Hz. Moreover, based on the fast
Fourier transform (FFT), we notice that the frequency of the
writing motions is bounded by 7 Hz. During DWT decompo-
sition, the frequency span halves every DWT level [50], and
thus, the level 5 coefficients represent the frequency range
of [0, 250/23] Hz, i.e., [0, 7.8] Hz, which accommodates the
targeted frequency range of [0, 7] Hz. Second, we apply the
soft-thresholding method [51] to calculate the cut-off threshold
based on the Stein’s unbiased risk estimate. Then, we com-
pare the decomposed level 5 coefficients with the estimated
threshold and set all detail coefficients with values below the
threshold to 0. Finally, we apply inverse DWT on the modified
coefficients to reconstruct the denoised signal. As an example,
Fig. 7(a) and (b) compares the signal before and after the DWT
denoising. The signal is smooth after denoising.

B. Motion Detection and Segmentation

After denoising, we identify and extract the motion signal
from the entire time-series data. Following the widely used
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Fig. 8. Example of motion detection and segmentation. Two motions sep-
arated by a pause. The red dotted lines indicate the sample indices of the
identified changepoints.

assumption [47], [52], [53], we assume that there is a short
pause before and after each motion. As an example, Fig. 8
shows the amplitude and the phase of the denoised wireless
signal which contains two writing motion segments. The sta-
tistical properties of the signal (both amplitude and phase) are
stable within the pause duration, but change abruptly within
the motion segments. To extract the motion segments from
the time-series data, we first apply changepoint analysis [54]
on the denoised signal to identify the changepoints. Formally,
consider a data sequence, Y1, £ (1, - - -, Yn)- A changepoint is
said to occur at sample index 7, such that the statistical proper-
ties of the split data sequences {yi, ..., y¢} and {yr41, ..., Yn}
are different. In practice, there could be d changepoints in the
target signal. They split the original time series into d + 1
segments, with the ith segment containing the data sequence
of Y(;,_,+1):r;> where t; is the sample index for the ith change-
point. The changepoints are identified by finding d data points
that minimize the target function Z;l:]l [CO@_ +1):r)] + Bd,
where C is the cost function and Bd is the penalty term. In
our implementation, the input data sequence yi., is a 2-D
time series which contains the amplitude and the phase of the
denoised DMA signal. We use the root-mean square (RMS) as
the statistic for the cost function, and apply the pruned exact
linear time algorithm [54] to detect the changepoints. As the
number of changepoints d is unknown, we add the penalty
term Bd to the target function to avoid over-fitting [55]. As
shown in Fig. 8, the changepoint detection algorithm estimates
a set of sample indices, 7i.4, at which the RMS of the signal
has changed abruptly. The start and the end index of the motion
segment are estimated by finding any two adjacent indexes, t;
and 141 in 11,4, that satisfy (riy1 — 7;) > K. The value of
K equals to the number of samples in the shortest possible
pause. In our implementation, given the sampling frequency
of 500 Hz and a shortest pause duration of two seconds, K
is set to 1000. Following this rule, as shown in Fig. 8, we
can easily identify indices 7; and t;4; as the start and the
end points of the pause. The index of the first changepoint
71 and the estimated index 7; will be the start and the end
index of the first motion segment, respectively. The segmen-
tation performance of the proposed algorithm is evaluated in
Section VIII-C.

C. Motion Alignment

The variations in the writing motions and experimental
setups lead to three types of misalignment in the segmented
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(c) Signal after Z-score and DTW.

signals: 1) variations in the transmission power of the DMA;
2) variations in writing speed; and 3) variations in the writing
size. As shown in Fig. 9, the variations result in either temporal
misalignment or amplitude misalignment in the received sig-
nal. Specifically, different writing speeds and writing sizes lead
to varying signal duration which makes the same writing signal
mismatched in the time dimension (i.e., temporal misalign-
ment). Similarly, different power levels affect the resolution
of the received signal and cause amplitude shifts in the same
writing pattern (i.e., amplitude misalignment). We apply signal
transformation techniques to resolve the signal misalignment.
The alignment process is illustrated in Fig. 10. First, we
apply the Z-score transformation [56] on the original signal to
minimize the amplitude variation. The Z-score transformation
returns the z-score for each data sample in the original signal,
such that the transformed signal follows the standard normal
distribution. Fig. 10(a) and (b) compares the signal before and
after the Z-score transformation. The amplitude shifts are elim-
inated and the two signals are converted to the same scale.
Then, we apply the dynamic time warping (DTW) [57] to cope
with the temporal mismatch. The final outputs are shown in
Fig. 10(c), in which the misalignment in the two signals is
minimized. The signal alignment process allows us to mini-
mize the negative impacts from different practical parameters
on the recognition performance.

VII. QUALITY-AWARE MULTIMASK SENSING
FRAMEWORK

The antenna pattern diversity of the DMA provides a fruitful
measurement for sensing. To ensure robust and high recogni-
tion accuracy, we propose the AEMML framework which can
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TABLE I
NETWORK ARCHITECTURE OF THE MASK LEARNER

Layer Size In Size Out Filter
convl 64 x 32 x2 | 64 x32x64]3x3,1
conv2 64 x 32 x 64 | 62 x30x64 | 3x3,1
pool 62 x30x64 | 31 x15x64|2x22
Flatten | 31 x 15 x 64 29760

fel 29760 512

fe2 512 10

properly assess and compare the sensing quality of different
DMA masks, and dynamically aggregate them based on the
estimated quality in runtime.

A. Auxiliary-Assisted Ensemble Multimask Learning

Fig. 11 shows the overview of the AEMML which incorpo-
rates three major components in its design: 1) convolutional
neural network (CNN)-based mask learner for feature extrac-
tion and first-level recognition; 2) auxiliary feature for runtime
DMA mask sensing quality assessment; and 3) stacking-based
multimask learning which dynamically aggregates the hetero-
geneous recognition results from the mask learners to boost
the sensing accuracy.

DMA Mask Learner: The AEMML contains m independent
mask learners, where m equals to the total number of DMA
masks used for sensing. The mask learners are homogeneous
in architecture but trained independently using the signal from
different DMA masks, such that a particular learner is designed
to learn the features for a specific DMA configuration. The
mask learners adopt CNN-based architecture given its ability
in learning a proper data representation from high-dimensional
input [58]. The network architecture of the mask learner is
shown in Table I, which consists of two convolutional lay-
ers (convl and conv2), one pooling layer (pool), one flatten
layer, and two fully connected layers (fc/ and fc2). We use
this shallow design to avoid over-fitting. We apply the spline
interpolation on the preprocessed signal to make the input data
have the same length of 2048. Then, we reshape it to the size
of 64x32. The size of the final input to the first convolutional
layer is 64x32x2, where the two channels correspond to the
amplitude and the phase signals, respectively.

Runtime Mask Assessment: Given the antenna pattern diver-
sity of the m DMA masks, the m mask learners are unequal
in their recognition performance. One way to assess and com-
pare the performance of different mask learners is to leverage
the confidence values reported by the classifiers [59]. In our
design, borrowing the concept of certainties from information
theory, we propose the normalized entropy as the metric to
assess the sensing quality of different mask learners. For the
kth mask learner, the normalized entropy S}‘ measures the

14117

Algorithm 1 AEMML Training and Classification

Input: (1) Dataset D = {D{,D;,...,Dy}, in which D, =
{(xll(,yl),..., (xﬁ,yn)} is the preprocessed RF signal for the kth
mask; (2) m mask learners: CNNj, CNN,, ..., CNN,,; and (3) the
meta-classifier META.

1: # Training of the m mask learners

2: for k=1, ...,mdo

3: hr = CNNg(Dy); > train CNNy using data Dy,

4: # Training of the meta-classifier

5.0 =0, > initiate a new dataset for META

6: fori=1,..,ndo > iterate over the n training instances

7: fork=1,..,mdo > iterate over the m masks

8: ’Pl.k = hy (xf); > probability vector of the kth CNN
. k |71 PEG) log PEG) 4

9: Sf=- Z/‘:l L Tog ] 57|I ; > normalized entropy

10 D=DUP}, ... P, (S}, s S i)

11: /' = META(®D);
12: # Multi-mask stacking for recognition
Output: y/ = /’l/(hl ()Cl)7 woes B (X))

> train META using ©

learner’s confidence on the classification of the ith instance,
and is defined as Sf(’Pik) = — Zlﬂ (pilogpi/log|J|), where
’Pl-k = {p1,...,p 7} is the probability vector of the kth mask
learner on the ith instance, and |7 |=10 is the set of ten possi-
ble writing digits. The normalized entropy values are between
0 and 1. A value close to O indicates that the mask learner
is confident about its classification on the instance, whereas a
value close to 1 means that it is not confident. The normalized
entropy is used as the auxiliary feature to assess the quality
and confidence of the heterogeneous mask learners.
Stacking-Based Multimask Learning: Although the normal-
ized entropy captures the sensing quality of different DMA
masks, aggregating the m sensing outputs to boost the final
prediction accuracy is not straightforward. A naive solution is
to use the normalized entropy as the weight and apply either
weighted average or weighted majority voting to combine the
m outputs. However, these methods are sensitive to the biases
of the mask learners with respect to their heterogeneous input
signals [60], and result in higher prediction error. To reduce
the biases of the mask learners and boost the final prediction
accuracy, we borrow the concept of stacking [61] and use a
meta-classifier for multimask aggregation. In our design, the
meta-classifier is a shallow neural network with three fully
connected layers. As shown in Fig. 11, the meta-classifier
can be considered as a second-level recognizer that is trained
to combine the predictions of the first-level mask learners. It
takes the probability vectors and normalized entropy of the m
mask learners as the input, and outputs the aggregated result.
Putting All Together: The details of the AEMML are
shown in Algorithm 1. The training contains two major steps.
First, we use the signal of the kth DMA mask, Dy =
{(x’l‘ SV e ey (xﬁ, yn)}, to train the kth mask learner. The data
set Dy contains n training instances, in which xf? is the pre-
processed signal of the ith writing instance, and y; is the
corresponding label. In the second step, we use the probabil-
ity vectors, i.e., {Pl-l, ..., P}, that output from the m mask
learners (i.e., base CNNs) to train the meta-classifier META. In
addition, we calculate the normalized entropies, {5}, R S
from the probability vectors as the auxiliary information to
quantify the classification performance of the mask learners.
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This runtime mask assessment allows the meta-classifier to
dynamically adjust the stacking weights during the classifica-
tion. As the mask learners are unequal in accuracy, AEMML
is more robust against this variance when compared to the
standard stacking methods which assign equal weights to the
base CNNs during the aggregation.

B. Transfer Learning for New Sensing Domains

The proposed AEMML framework takes advantages of
the superior feature learning and classification capabilities of
CNN s to ensure good sensing performance. Such capabilities,
however, rely on the availability of abundant labeled train-
ing instances that cover diverse sensing conditions. Moreover,
as shown in 2, the radio signals captured by the receiver
are not only affected by the motion of the sensing object,
but also the environment and physical location where the
receiving wireless signals are measured. Consequently, when
the sensing location or environment changes, the features
of the receiving signal also change. This is known as the
domain shift problem [30], which significantly degrades the
sensing accuracy of pretrained DNN models. Thus, existing
DNN-based RF sensing systems try to generalize the classifi-
cation model by collecting data sets across a large number of
environments [29], which is expensive and inefficient.

To efficiently generalize AEMML to different locations and
environments in a data-efficient manner, we employ transfer
learning [43] to transfer knowledge from a pretrained source
domain (e.g., a known environment or location) to a new tar-
get domain (e.g., a new deployment location). Specifically,
we divide the AEMML architecture into general layers and
domain-specific layers. The general layers include the first two
convolutional layers of the mask learner, i.e., convl and conv2.
The domain-specific layers include the two fully connected
layers of the mask learner, i.e., fc/ and fc2, and all layers in
the meta-classifier. The underlying principle of our design is
that the low-layers of the DNNs are known to learn features
that are not specific to the training data set or task, but are gen-
eral and applicable to data sets or tasks in different domains.
On the other hand, features computed by the last layers of the
DNNs depend greatly on the training data set and task [43].
When deployed in the target domain (e.g., a new sensing envi-
ronment or location), the AEMML model inherits the general
layers directly from a pretrained model (e.g., AEMML model
that is well-trained with sufficient training instances collected
at a specific location) and only fine-tunes the domain-specific
layers with a small number of new instances collected from
the target location (e.g., five or ten instances per class). This
transfer learning-based AEMML design significantly reduces
the number of model parameters that need to be trained for
different sensing domains, and dramatically reduces the num-
ber of required training instances to adapt the framework to
new domains without sacrificing recognition accuracy.

VIII. EVALUATION
A. Experimental Setup

Hardware Setup: We use the DMA as the transmitter and
a dipole antenna as the receiver. As shown in Fig. 12(a), to
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Fig. 12. (a) Setup of the DMA transmitter and dipole antenna. (b) Drawing
robot used in the experiment.
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Fig. 13. Ten digits that the robot is programmed to draw. We consider three
variants for each of the digits. The arrows on the digits indicate the motion
of the pen.

form a single-device design, the DMA and the dipole antenna
are placed closely together. The signal of the DMA is trans-
mitted at a single frequency of f = 19.4 GHz with 10-dBm
transmission power. The power is 20 and 100 times lower
than the default 23 dBm and 30-dBm power used in WiFi
(5-GHz channel) and mmWave-based sensing systems [39],
[62], respectively. We configure the DMA with 40 randomly
selected masks to enable 40 distinct radiation patterns (which
we find is sufficient to ensure high accuracy in this case study).
The wireless signal is measured by the dipole antenna at a
sampling rate of 20 KHz (with each DMA mask sampled at
500 Hz). The measurement is a 40-D complex-valued time
series, where each dimension corresponds to the receiving
signal (amplitude and phase) of a particular mask.

Data Collection: As shown in Fig. 12(b), we use the draw-
ing robot from Line-us [63] to perform digit writing. The robot
is controlled wirelessly by a G-code [64] program. As the writ-
ing habits vary among users, we take the MNIST handwritten
digits data set [31] as the reference to design different draw-
ing patterns. Fig. 13 shows the ten digits that the robot is
programmed to draw. We consider three variants for each of
the digits. The arrows on the digits indicate the movement of
the pen during drawing. As shown in Fig. 14, we consider
five deployments of the sensing device and the robot: three
line-of-sight distances (i.e., P1, P2, and P3) and three angles
(i.e., P1, P4, and PS5). For each of the deployments, we pro-
gram the robot to draw 20 times for each variant of the ten
digits. In total, we collect 10x3x20 = 600 drawing instances
for each of the five deployments, resulting in 3000 instances in
total. We use a central controller to coordinate the DMA mask
switching, the robot drawing, and the signal measurement of
the dipole antenna.

Authorized licensed use limited to: Duke University. Downloaded on October 13,2021 at 01:53:48 UTC from IEEE Xplore. Restrictions apply.



LAN et al.: MetaSense: BOOSTING RF SENSING ACCURACY USING DYNAMIC METASURFACE ANTENNA

PN

Drawing position

P3
.F’Z
N

Sensing device

(a)

Fig. 14. (a) Five different deployments of the drawing robot. (b) Setup at
P1. The robot is placed at a line-of-sight distance of 50 cm from the sensing
device.

Robot Control: The use of the robot allows us to gen-
erate miniature movement with high randomness. The robot
is programmed to draw digits at random size, speed, and
starting position (i.e., the position where the pen starts to
draw). For each of the digit variants, we consider ten dis-
tinct speed levels, ten distinct drawing sizes, and 25 distinct
starting positions, which results in 10x10x25=2500 possi-
ble ways to draw the same digit. Moreover, as shown in
Fig. 12(b), the largest and smallest drawing sizes of our robot
are 5.5 cmx10 cm (i.e., 5.5-cm horizontal and 10-cm verti-
cal) and 2 cmx2 cm, respectively, which are 20 to 300 times
smaller than the 35 cmx35 cm gesture moving area consid-
ered in related works [47], [48], and make our task more
challenging.

B. Sensing Signal Correlation

Below, we examine the sensing signal correlation of the con-
ventional WiFi CSI-based system, and compare it with that
of our DMA-based solution. Note that we are not compar-
ing the recognition accuracy of WiFi-based and DMA-based
sensing systems directly, as they are using radio signal with
different frequencies. Instead, as an approximation, we com-
pare their sensing signals in both dimension and correlation.
This is because a high dimension of uncorrelated signal is
critical in boosting the final recognition accuracy [34]. For
a given dimension of signals, the lower their correlation, the
more complementary information can be captured, and thus
the higher the final recognition accuracy.

Strong Correlation in WiFi CSI: First, we set up a pair of
WiFi transceivers equipped with the TL-WND3800 wireless
adapters. Both transceivers have two antennas, and thus form
four transmission links. The transceivers are separated with
one meter line-of-sight distance to ensure good signal qual-
ity. We use the Atheros CSI tool [65] to collect the WiFi CSI
at 300-Hz rate. Both transceivers are configured at the 5-GHz
channel with 20-MHz bandwidth for communication, and thus,
result in a 56-D time-series measurement (each dimension cor-
responds to one of the 56 subcarriers) for each of the four
links. We apply the DWT-based denoising method to filter
out the noise in the raw CSI measurement (as noise is always
uncorrelated), and then calculate the correlation matrix. Fig. 15
shows the correlation matrices of the CSI amplitude for the
four transmission links. We can see that the subcarriers in the
same link have high positive correlation (i.e., with correlation
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Fig. 16. Correlation matrices of the amplitude and phase of the 200 randomly
selected DMA masks, respectively.

coefficient above 0.8), and the correlations are higher between
successive subcarriers.

Weak Correlation in DMA Signal: In comparison, we con-
figure the DMA with 200 randomly selected masks as the
transmitter, and use a dipole antenna as the receiver to mea-
sure the wireless channel. The signal from each of the masks is
measured at 300-Hz sampling rate. This provides us a 200-D
time-series measurement. We filter out the noise in the mea-
surement and calculate the correlation matrix. Fig. 16 shows
the correlation matrices among the 200 dimension of DMA
measurements in amplitude and phase, respectively. Distinct
from the WiFi CSI, the results indicate weak correlation
(i.e., correlation coefficient below 0.2) among the 200 DMA
masks.

Advantage of DMA in RF Sensing: The high correlation
among the WiFi subcarriers indicates a high redundancy in the
CSI measurement, which severely limits the signal diversity
and recognition performance of WiFi-based system, especially
in the “sensing dead zone” [8], [9]. To obtain a high dimen-
sion of uncorrelated sensing inputs, existing solutions are
stitching multiple antennas in a single-device [3], [33] or lever-
aging multiple transceivers [2]. The state-of-the-art solution
SWAN [3] is stitching 12 antennas on a single device, and
thus, can provide 12x12 = 144 streams of uncorrelated chan-
nel measurement using a pair of devices. In contrast, using a
single DMA as the transmitter, we can easily obtain a 200-D
uncorrelated input for sensing (and thus, a pair of DMAs can
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Fig. 17. (a) Heatmap of the detection ratio given different DMA masks and
digits. (b) Average detection ratio per mask over all ten digits.

easily boost the dimension to 40000). As will be shown in
the following evaluation, the weak correlation ensures largely
disjoint failure conditions among different DMA masks, and
thus, boosts the final sensing accuracy.

C. Performance of Motion Segmentation

Below, we evaluate the segmentation algorithm presented in
Section VI-B. We are interested in the detection ratio, defined
as the total number of correctly detected and segmented writ-
ing motions divided by the total number of actual motions
the robot has performed. If the algorithm fails to detect the
appearance of a writing motion, we consider it as an error.
Moreover, if it detects the motion but mistakenly segments it,
we also count it as an error. The segmentation performance
is quantified by the variation in both amplitude and phase of
the captured wireless signal, as the algorithm relies on the
RMS of the signal to detect the changepoints. The heatmap in
Fig. 17(a) shows the detection ratio of the ten digits across 40
masks. A darker area in the heatmap indicates a higher error
rate. The error rates vary for different DMA masks depend-
ing on their radiation pattern and signal quality. For instance,
masks #11 and #29 have an 8% detection error, whereas masks
#21 and #35 achieve 100% detection rate over all 10 digits.
The overall detection ratio of our algorithm is 98% averaged
over all masks and digits. The errors are mainly due to the
mistakes in signal segmentation, especially when the writ-
ing motion is minute (i.e., the drawing size of the digit is
2 cmx2 cm).

D. Recognition Performance of AEMML

1) Methodology: We compare the performance of the

proposed AEMML with the following baseline methods.

1) Conventional machine learning algorithms, i.e., decision
tree (DT) and support vector machines (SVMs), that
have been widely used in RF-based recognition [4]. The
SVM is configured with the Gaussian kernel function
to ensure good performance in dealing with nonlinear
features [66]. Unlike AEMML which uses the prepro-
cessed signal as the input for training and classification,
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we extract two sets of features from the phase and ampli-
tude as the input for DT and SVM: we consider four
statistical features, peak factor, wave factor, coefficient
dispersion, and autocorrelation coefficient, which are
introduced in [47], to capture the time-domain character-
istics; we adopt the widely used Daubechies D4 wavelet
to decompose the raw signal and extract the wavelet
detail coefficients in the fifth level as the features.

2) To investigate the advantages of AEMML in dynamic
multimask stacking, we implement the ensemble multi-
mask classifier (EMML) as the variant for comparison.
For EMML, the auxiliary feature is not used by the meta-
classifier and the mask learners are considered equally
in the stacking process.

The final classification results are obtained using 3-folds
cross-validation where each fold contains 200 instances
(i.e., 20 instances for each of the ten digits). For both AEMML
and EMML, the three folds are used for training the base
CNNs, training the meta-classifier, and testing, respectively.
For DT and SVM, only onefold is needed for training and
onefold is used for testing. Below, we evaluate our system
in the following four aspects: first, we take the deployment at
position P1 as an example to study the impact of DMA antenna
diversity on the recognition performance. Second, we compare
the AEMML with the other three classifiers to prove its advan-
tages in dynamic multimasks stacking. Finally, we study how
the device positioning, i.e., distance and orientation, affects
the recognition accuracy.

2) Advantages of DMA Antenna Diversity: First, to study
how the recognition accuracy can be improved by the antenna
diversity, we randomly select m masks (m < 30) from the
original 40-mask measurements for training and testing. As
the selection of the m masks will affect the recognition result,
we repeat the experiment 40 times (each time with randomly
selected m masks) and report the averaged result as the final
accuracy. We examine the case where only the amplitude or
the phase is used as the input for classification, as well as the
case where both amplitude and phase are used. The results
are shown in Fig. 18. First, relying on a fixed antenna pattern
for sensing gives the worst accuracy. As shown in Fig. 18(a),
in the single mask cases, the average recognition accuracy
for SVM and DT can be as low as 50%, and the accuracy
for both AEMML and EMML is only 70%. However, for
all scenarios, the sensing accuracy increases with the number
of DMA masks used—i.e., the accuracy increases with the
increase in antenna pattern diversity. As discussed, the recog-
nition accuracy of a single DMA mask is quantified by the
channel variation. With diverse antenna patterns, we are more
likely to find several masks that can provide complementary
and disjoint features to ensure good sensing performance. As
an illustration, Fig. 19 shows the recognition accuracy of the
40 mask learners. The accuracy varies from 64% to 82% given
different DMA configurations. This confirms the heterogene-
ity of the sensing signals from different DMA masks. The
accuracy variance also indicates largely disjoint failure condi-
tions among the 40 mask learners in the recognition. However,
despite the heterogeneity of recognition accuracy, there are
eight masks that achieve more than 80% accuracy. Thus,
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Fig. 18. Recognition accuracy at position P1 for different classifiers and different number of DMA masks (m). (a) Amplitude only. (b) Phase only. (c) Amplitude
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Fig. 19. Recognition accuracy for the 40 mask learners. The accuracy varies
among different DMA masks.

by leveraging DMA’s antenna diversity, we can dramatically
improve the accuracy.

3) Advantages of AEMML: Fig. 18 also compares the
recognition performance among the four classifiers. In all
scenarios, AEMML and EMML outperform the conventional
classifiers (i.e., SVM and DT). This is expected, as the former
two methods adopt our CNN-based mask learner for feature
extraction and recognition, whereas the latter two rely on
manually crafted features (i.e., statistical features and DWT
coefficients) for classification. For AEMML and EMML, their
gain in performance comes from the ability of CNN in
automatic feature learning and data representation [28], [67].

Moreover, we can see that AEMML achieves over 6%
improvement compared to the standard ensemble method
(i.e., EMML), and up to 12.5% improvement compared to
the best conventional classifier (i.e., SVM). The advantage of
AEMML is most distinct when the number of masks used is
small (i.e., m = 5), and diminishes with more masks used.
To explain, Fig. 19 shows the uneven recognition accuracy
for the 40 base CNNs. As the conventional methods weight
the m masks equally, with a small number of masks used, the
performance of the classifier is more likely to be affected by
the “bad” mask learners (e.g., mask learner #11, #26, or #36).
In contrast, the auxiliary feature enables the AEMML to learn
and discriminate the quality of different masks on the specific
recognition task, and allows it to dynamically integrate the
multimask outputs in a better way. Thus, AEMML is more
robust as it learns to assign less weight to the bad masks and
more weight to the “good” masks. The negative impact of bad
masks diminishes when more masks are combined. The result
demonstrates the superiority of AEMML over the conventional
methods.

4) Effects of Target Location: Below, we evaluate the
performance of AEMML given different locations. We fix
the position of the sensing device and place the robot at five

1 1
§0.9 ?O.Q
§ —6—P1 (50cm) § 08 —©-P1(0%)
<08 a2 21000'“; <07 B P4 (45°)
—#—P3 (150cm —— 0
0.7 0.6 P5{45)
1 5 10 1520 25 30 1 5 101520 25 30
Number of Masks Number of Masks
(a) (b)

Fig. 20. Accuracy of AEMML given different locations of the sensing target:
(a) distance and (b) angle.

different positions shown in Fig. 14. The distance and angle
determine the sensing coverage of the system. The results are
shown in Fig. 20.

Distance Coverage: As the receiving signal strength atten-
uates with the propagation distance, the recognition accuracy
also decreases with the distance. In our experiment, given 10-
dBm transmission power, when the distance increases from
50 cm to 150 cm, MetaSense experiences a minor 4.8% accu-
racy decrease with m = 30 masks used for sensing. We can
still achieve 94% accuracy in recognizing the miniature robot
motion at 150 cm. Note that the 10-dBm transmission power
used in this experiment is 20 and 100 times lower than the
default 23 dBm and 30 dBm power used in WiFi (5-GHz chan-
nel) and mmWave-based sensing system [39], respectively.
Therefore, by increasing the DMA transmission power, we
can expect a longer sensing distance.

Angle Coverage: In the single mask case we notice a 12%
and a 13% decrease in the accuracy when the drawing robot
has a 45° or -45° angle difference with the sensing device,
respectively. This is because the DMA is not configured to
generate directional antenna patterns, and most of the energy
is radiated toward the direct front of the antenna (i.e., 0°).
Thus, the signal that is reflected by the drawing robot becomes
weaker when there is a large angle difference between the
robot and the sensing device (i.e., 45° or —45°). However, by
leveraging DMA’s radiation diversity, the imperfection can be
resolved with more mask used. Overall, we achieve over 93%
accuracy with m = 30 at all locations.

E. Performance in New Sensing Locations With Limited
Training Samples

Below, we evaluate the performance of AEMML in scenar-
ios where limited number of training samples are available.
Specifically, we consider position P1 as the source domain
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with sufficient training instances available (20 instances per
class), and the other four positions P2—P5 as target domains
with only a few-shot training instances (i.e., 5-shot and 10-shot
cases where only five and ten instances are available per class,
respectively). The experiment simulates the practical scenario
where the system is extended to sense motion performed at
new positions or deployed in new environments with limited
training samples provided by the user.

We compare the sensing accuracy of two training strategies:
1) we only use the few-shot samples, i.e., 5-shot and 10-shot,
from each of the four target positions to train the AEMML
and test it using the remaining data collected from the tar-
get position. This represents the position-dependent training
strategy and 2) we first pretrain the AEMML model using the
source domain data set collected from position P1. Then, we
incorporate AEMML with the transfer learning model intro-
duced in Section VII-B. Specifically, we transfer the general
layers of the pretrained model and only fine-tune the domain-
specific layers using the few-shot instances from the target
domain (e.g., new sensing position). We also use the remaining
data collected from the target position as the testing data set.
This represents the transfer learning training strategy. Fig. 21
compares the accuracy of AEMML at the four target posi-
tions with different number of masks used as the sensing
input. Overall, the proposed transfer learning-based strategy
outperforms the position-dependent strategy by 7%—18% and
8%—19% in the 5-shot and 10-shot scenarios, respectively. As
shown in Fig. 21, together with the help of the DMA antenna
pattern diversity, MetaSense can still achieve over 90% accu-
racy with as few as five training instances available per class
when deployed in new sensing positions. The results demon-
strate the capability of MetaSense to generalize to new sensing
environments and locations in a data-efficient manner.

FE. System Profiling

Below, we provide a comprehensive profiling of the
system in terms of computation latency and runtime memory
usage. Specifically, we use a desktop equipped with an Intel
17-8700k CPU and an Nvidia GTX 1080 GPU to simulate
an edge server, and leverage a laptop embedded with an
Intel i7-7700HQ CPU and an Nvidia GTX 1050 GPU to
simulate the next-generation home appliances. Moreover, we
only enable a single CPU core among the four cores of the
laptop to approximate the computational power of a smart
TV. In practice, Samsung SMART TVs are equipped with
1.3-GHz Quad core processor and the AI Quantum-series
processor [68], while Sony has incorporated the Xl-series
processor in their smart TV [69]. Both of them are more
powerful than the single core laptop CPU we considered in
this measurement and should achieve a lower latency. We
have torn down the system pipeline into four computing
stages: 1) denoising; 2) motion detection and segmentation;
3) motion alignment; and 4) classification using the AEMML
framework. We realize the first three system components in
MATLAB and deploy them on the CPU. The MATLAB-
based implementation ensures good computational efficiency
in signal processing where large arrays and matrices are
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Fig. 21. Accuracy of AEMML at different sensing locations with a different

number of training instance available: (a) 5-shot scenario and (b) 10-shot
scenario.

involved, and can be easily deployed on both low-end IoT
devices and on an edge server [70]. The AEMML framework
is implemented using Keras 2.3 on top of the TensorFlow 2.0
framework and is tested on both CPU and GPU.

1) Computation Latency: To examine the computation
latency, we run 500 trials of the end-to-end system pipeline
and report the average computation latency for each of these
computing stages.

Fig. 22 shows the average latency on the two platforms
when a different number of DMA masks is used for sensing.
The error bars in the plots indicate the standard deviation of
the measured latency for the 500 trials. We have three major
observations. First, the latency for all the computing stages
increases with the number of masks used. This is because,
when a higher dimension of DMA signal is used as the input,
it requires more computations during the signal processing and
more inferences in the AEMML which make the computation
more intensive. Second, as shown in Fig. 22(d) and (e), the
latency of the AEMML is significantly lower when running
on the GPU than when running on the CPU. For both plat-
forms we examine, GPU achieves at least five times speedup
over CPU regardless of the number of masks used. Finally,
the desktop achieves the lowest latency in all the computing
stages. Overall, with the signal from 30 masks used as the
input, the end-to-end latency of MetaSense is 433 and 311 ms
when running on the laptop and desktop, respectively.

2) Memory Usage: We also evaluate the runtime memory
usage of the AEMML framework. We subtract the memory
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Fig. 22. Average computation latency of different system components on two
platforms: (a) denoising, (b) motion detection and segmentation, (c) motion
alignment, (d) AEMML running on CPU, (¢) AEMML running on GPU,
and (f) end-to-end latency with AEMML running on GPU. The error bars
indicate the standard deviation of the measured latency for the 500 trials.
Overall, with signals from 30 masks used as the input, the end-to-end latency
of MetaSense is 433 ms and 311 ms when running on the laptop and the
desktop, respectively.
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Fig. 23. Runtime memory usage (in MB) of the AEMML when running on

CPU and GPU, respectively.

usage before the framework is loaded and only report the
memory that is allocated to the framework and the inference
data (the preprocessed signal for recognition). Note that the
memory usage of DNNs is determined by the input data size
and the network model (e.g., the weight parameters and acti-
vations). For a given number of masks used as the input, the
memory usage of AEMML is deterministic. Fig. 23 compares
the memory usage of AEMML when running on CPU and
GPU. Even with 30 masks used as the inputs, the AEMML
framework requires a modest memory usage of 1174MB and
1697MB when running on the CPU and GPU, respectively.

IX. DISCUSSION AND FUTURE DIRECTIONS

Evaluation With Real Subjects in Different Sensing
Applications: In our current evaluation, we leverage the
programmable robot to generate repeatable and miniature digit
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writing movements. This robot-based setup also allows us to
conduct comprehensive and reproducible experiments when
human interactions are restricted. However, despite the high
randomness of the robot, the movements of the robotic arm
constitute only a finite set of real-world writing motions. In
practice, the writing movements of real subjects are more
diverse and have higher degrees of freedom. Thus, one of
the future directions is to evaluate the proposed system with
real subjects. Moreover, in addition to the writing recognition
considered in the current work, we believe that MetaSense
can be easily adapted to many other sensing applications
with minor tuning efforts. In future work, we will inves-
tigate the use of MetaSense in applications, such as daily
activity recognition [32], respiration detection [8], and user
authentication [2].

Passive and Energy-Neutral Operation: Thanks to its small
form-factor and hardware simplicity, the DMA can be eas-
ily embedded into walls and daily small objects. Instead
of using the DMA as an active RF sensor, we believe
that another promising use of the DMA in RF sensing is
to leverage it as a passive signal reflector to improve the
sensing performance of existing deployments. For instance,
as a reflector with antenna reconfigurability, the metasur-
face antenna can assist high-frequency bands solutions, e.g.,
millimeter-wave-based systems [71], to extend the non-line-
of-sight sensing coverage by reflecting the original signal into
the desired direction. Moreover, for a single pair of Wi-Fi
devices with limited antenna pattern diversity [34], [72], the
RF signal backscattered from the DMA can help the Wi-Fi
receiver obtain a higher dimensional channel measurement
(i.e., the DMA backscatters the same incoming RF signal
with different antenna patterns, and thus ensures signal diver-
sity in the receiving signal). Indeed, a similar concept has
been envisioned recently to boost the wireless communication
performance [20], [21], [71], [73], [74], where a metasurface
is used to configure the electromagnetic behavior of a wire-
less environment. In addition, as metamaterial elements can be
made out of passive elements that do not require any active
power sources for transmission [75], the DMA can be poten-
tially powered by energy harvesting solutions [76], [77] to
achieve energy-neutral operation.

X. CONCLUSION

This article presented MetaSense, the first system that
achieves fine-grained RF sensing with a single transceiver pair
and a single frequency. It exploits the antenna pattern diversity
of the DMA to ensure high-dimensional sensing measure-
ments. We implement MetaSense and evaluate its performance
on a fine-grained writing recognition task. Our experiments
show that MetaSense can achieve over 93% accuracy in dif-
ferent settings, outperforming the nontunable antenna by 20%
in all scenarios. Moreover, when deployed in new sensing
positions where limited training data are available, MetaSense
requires as few as five training instances per class to achieve
over 90% accuracy.
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