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Virtualized Control Over Fog: Interplay
Between Reliability and Latency
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Abstract—This paper introduces an analytical framework to
investigate optimal design choices for the placement of virtual
controllers along the cloud-to-things continuum. The main appli-
cation scenarios include low-latency cyber-physical systems in
which real-time control actions are required in response to the
changes in states of an Internet of Things (IoT) node. In such
cases, deploying controller software on a cloud server is often not
tolerable due to delay from the network edge to the cloud. Hence,
it is desirable to trade reliability with latency by moving con-
troller logic closer to the network edge. Modeling the IoT node as
a dynamical system that evolves linearly in time with quadratic
penalty for state deviations, recursive expressions for the opti-
mum control policy and the resulting minimum cost value are
obtained by taking virtual fog controller reliability and response
time latency into account. Our results indicate that latency is
more critical than reliability in provisioning virtualized control
services over fog endpoints, as it determines the swiftness of the
fog control system as well as the timeliness of state measure-
ments. Based on a drone trajectory tracking model, an extensive
simulation study is also performed to illustrate the influence of
reliability and latency on the control of autonomous vehicles
over fog.

Index Terms—Control, distributed systems, fog computing,
Internet of Things (IoT), latency, reliability.

I. INTRODUCTION

FOG computing, sometimes referred to as edge com-
puting, is an emerging computing paradigm in which

computing, storage, networking, and control are placed at
multiple locations between the endpoint devices and the
cloud [1], [2]. Levine [3], a partner at an A-list venture capital
firm Andreessen Horowitz, has recently called fog computing
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the next multibillion dollar tech market. The promise of
fog computing for enabling the next generation of advances
in IoT is underscored by the growing developments of fog
computing architectures [4], [5] and ongoing industry-wide
standardization efforts [6], [7].

Fog computing offers flexibility in the choice of virtualized
controller placement options for interactive control applica-
tions, as has been proposed in the outlines of the vision of
the future of the industry [1], [2], [6]. Furthermore, fog/cloud
architecture is also starting to be considered from a prac-
tical point of view for futuristic control applications, e.g.,
moving vehicular controls to different locations is proposed
in [8] and [9]. However, while multiple virtual controller place-
ments are starting to become possible in practice [10]–[13],
the theoretical foundations for these placement decisions are
currently lacking. We take steps toward addressing this gap in
this paper.

In particular, this paper focuses on latency and reliability
aspects that arise in a fog computing environment because
different virtual controller locations in a fog hierarchy may
exhibit different latency and reliability characteristics [2]. For
example, fog logic execution points may include local nodes
and a wide variety of remote ones, as shown in Fig. 1 (i.e., both
Amazon Web Service (AWS) Greengrass [4] and Microsoft
Azure IoT Edge [5] allow executing functions both locally
and remotely). In these settings, local devices provide low
response latency but may not always be reliable. Remote cloud
computing nodes, on the other hand, offer considerably longer
response times [14] but can be readily designed to guarantee
high reliability. Then, what is the optimum design choice for
placing controller software to maximize system performance?
Critical to resolving this question is the discovery of the inter-
play between latency and reliability in control applications
over fog, which is what the current paper achieves for linear
IoT systems with a quadratic cost.

Our analytical framework applies to IoT systems with lin-
ear feedback controllers, which are studied in a wide variety
of applications [15], [16], that can be virtualized over the fog
endpoints. In particular, the trajectory following control for
flying drones is a notable example of a control functionality
that can be virtualized in different locations in a fog com-
puting system, as shown in Fig. 2, and hence our results can
be applied to. Motivated by the advances in quadcopter tech-
nology and by the commercial promise of autonomous drone
operations, such as Amazon’s plan to deliver packages using
drones [17], various aspects of drone operations are actively
studied [18], [19]. For example, in drone air traffic control,
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Fig. 1. In a fog computing system, control application can be run at different
distributed points and as different services, with different characteristics.

Fig. 2. Layers of control functionality for drones. While path planning
belongs on the cloud and velocity control probably belongs on the device
itself, trajectory tracking elements could be virtualized on different fog
endpoints.

the highest-level global fleet planning decisions require the
involvement of the cloud and the low-level high-bandwidth
velocity control needs to be done on the drone itself [20], as
illustrated by the top and bottom layers in Fig. 2. On the other
hand, the important trajectory tracking and path following con-
trol operations [21], [22] can be executed on multiple locations
in a fog network, as illustrated by the middle layer in Fig. 2.

To the best of our knowledge, this paper is the first
systematic study to shed light on the interplay between
reliability and latency appearing in virtual control services
offered over fog networks. Our main contributions can be
summarized as follows.

1) We propose an analytical framework to investigate the
effects of latency and reliability on controlling linear IoT
processes, disturbed by stochastic environmental factors,
by means of a controller software located along the
cloud-to-things continuum. Under this framework, the
min-cost performance of virtualized control services is
obtained.

2) We derive the structure of optimum virtual controllers
by considering reliability and latency (both communica-
tion and computation) characteristics of the fog endpoint
which will execute the controller application. In addi-
tion to increased response times between consecutive
control actions, we show that an estimator, separated

from control, must first be run for distant fog endpoints
to estimate live IoT node states from delayed sensor
inputs. This collateral effect of latency further decreases
the efficacy of software-defined control over imperfectly
placed fog endpoints.

3) Based on a drone trajectory tracking model, we conduct
extensive simulations to visualize the performance of
virtual fog controllers. It is observed that the path fol-
lowing efficiency decreases more quickly with latency
than reliability due to its direct and collateral effects (i.e.,
increased response times and state estimation problem),
which suggests to move the controller software as close
as possible to the unmanned aerial vehicle (UAV).

The remainder of this paper is organized as follows. In
Section II, we compare and contrast our results with related
work. In Section III, we elaborate on important proper-
ties of fog computing architectures, and present small-scale
results related to latency and reliability in fog computing. In
Section IV, we introduce the analytical framework to investi-
gate reliability and latency for virtualized control services over
fog. In Section V, we derive the structure of the optimum
virtual controller without latency, while Section VI contains
parallel results for the optimum virtual controller with latency.
In Section VII, we present our simulation results for the UAV
trajectory tracking problem. In Section VIII, we provide a fur-
ther discussion of our results and other potential applications.
Section IX concludes this paper with future generalizations.

II. RELATED WORK

This paper focuses on fog computing and linear IoT control
systems. In this section, we describe the previous work that
is most relevant to our technical results. For further discus-
sion on linear modeling of IoT node processes and potential
applications, we refer the reader to Section VIII.

Our results in this paper are related to both the emerging
body of papers in fog computing [12], [13], [23]–[26]
and the more classical literature in control sys-
tems [10], [11], [27]–[32]. The papers [12] and [13]
focused on the development of fog computing platforms for
smart-city and smart-home applications with several control
functionalities virtualized either in street cabinets [12] or at
the control panel located inside a home [13]. Although these
papers provide insightful system implementation showcases
to illustrate the utility of fog computing, they do not take any
analytical approach, as we do in this paper, to substantiate
their design choices.

The papers [23]–[26] studied how to adapt services for fog
computing by mainly focusing on computational load offload-
ing and associated computing job scheduling. In particular,
Tong et al. proposed a hierachical edge/cloud architecture
in [23], and showed that the proposed architecture has a
higher chance of serving peak loads from virtualized ser-
vices. Tan et al. [24] studied online algorithms for minimizing
total weighted response time for edge-cloud networks with
upload and download delays. An important feature of their
online algorithm is that its performance comes close to the
optimal offline algorithm with speed augmentation and with-
out requiring any ex-ante knowledge of job arrival statistics.
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Xiao and Krunz [25] investigated a job offloading problem
similar to those studied in [23] and [24], but by consider-
ing the interest of both fog endpoints and users. Specifically,
they optimized response times subject to power efficiency con-
straints of fog nodes and showed that cooperation among fog
nodes has the potential to improve service execution times.
Kosta et al. [26] developed a novel mobile cloud comput-
ing platform to migrate smartphone applications to virtual
machines running on the cloud in an attempt to improve
mobile computing and energy efficiency at the network edge.

When compared to [23]–[26], we take a simpler but more
fundamental approach in this paper. By focusing on virtual
control services, we examine the problem of where to place
the codebase for a single controller application along the
cloud-to-things continuum. For each value of reliability and
latency parameters, we obtain the min-cost performance of the
optimum virtual fog controller. These optimum performance
figures can then be inputed to a wider system-level fog opti-
mization problem as in [23]–[25] to determine how to dispatch
and schedule a multitude of virtual control services to maxi-
mize a collective system utility, which we plan to pursue as a
future research direction.

On the side of control systems, the papers [10] and [11]
considered virtualized control services over the cloud.
Liberatore [27] investigated an integrated play-back mecha-
nism to improve the efficiency of remote control over the
network. In [28], they studied the design of a physical con-
trol system over a wireless link that can corrupt transmitted
data. These papers, however, do not employ any optimization
framework to compute the structure of a virtual controller to
be run at a fog endpoint. The papers [29]–[32], on the other
hand, adopted a more optimization theory-based approach to
design control systems over communication channels either
allowing opportunistic transmissions [29], [30] or dropping
packets randomly [31], [32]. The main point of difference of
the current paper from [29]–[32] is that we focus on the virtual
controller placement over fog by considering reliability and
latency dimensions simultaneously. We show that the optimum
virtual fog controller runs an estimator as a delay compensator,
which does not appear in these papers. Further, the issue of
reliability in our model is shifted from communication links
to virtual fog controllers.

III. FOG COMPUTING ARCHITECTURES FOR

CONTROL-AS-A-SERVICE APPLICATIONS

In this section, we describe the properties of fog computing
architectures that are important for placements of virtual-
ized control services, and present the results of small-scale
experiments in a fog computing system.

A. Fog Services: Heterogeneity and the Need for Auto-Tuning

Fog computing architectures are expected to include differ-
ent physical links (e.g., wired, wireless, and satellite), different
extends of mobility of different nodes, and a wide range of
differences in computing device capabilities [6].

We expect the functionality in fog systems to be pro-
vided via service execution options with different performance

parameters (providing services for control applications can
be referred to as creating control-as-a-service architec-
tures [8], [9]). Cloud computing service providers are already
offering a full range of service options that differ in the speed,
cost, and complexity of execution [33], [34]—the diversifica-
tion that is likely to become more and more prominent in
the future. Due to the inherently heterogenous nature of fog
systems, we expect them to include a wider range of service
execution options than the options provided in traditional cloud
computing systems. In particular, we expect services in fog
systems to be offered at a range of reliability options, start-
ing from expensive high-availability services with “five nines”
uptime guarantees (i.e., 99.999% availability, or the downtime
of no more than 5.2 min per year) [35], to cheaper limited
or frequently interrupted services provided by low-end nodes,
including nodes with long sleep cycles and energy-harvesting-
based intermittently powered nodes [36], [37].

Additionally, virtualized control functionality in fog systems
will need to be placed, tuned, and moved around automati-
cally, without requiring inputs from the users. Existing com-
mercial examples of automatic service placements in cloud
computing include serverless computing mechanisms [34],
[38]–[40], which use auto-provisioning (“autoscaling”) mech-
anisms to provide robustness to spikes in service request rates
at the cost of additional latency [41]. In distributed heteroge-
neous fog computing settings, we will also require the ability
to shift task execution point assignments to save energy, opti-
mize deployment costs, and to free up constrained resources
for critical tasks and services. Enabling the provision of such
auto-optimizing virtual control services necessitates obtaining
quantitative understanding of the tradeoffs between differ-
ent control system design parameters that are not generally
considered simultaneously.

B. Latency and Reliability Tradeoffs: Small-Scale
Experiments

To better understand latency-reliability tradeoffs in fog com-
puting systems, we conducted small-scale experiments with
simple linear virtual controllers.

The control service we implemented received, as inputs,
a 2-D vector and a time index, looked up a corresponding
2-by-2 matrix, performed matrix multiplication, and returned
the results. This service implementation closely follows the
controller operations we examine in this paper. We executed
the control application at different AWS Lambda [34] cloud
computing service points worldwide, at a Microsoft Azure
(serverless) Functions computing point [39], and on a local
consumer-grade hardware device with an Intel Atom single-
core 1.6 GHz CPU. The local control service was implemented
using a popular Flask [42] micro-service development frame-
work over the built-in Flask HTTP server and over a Gunicorn
WSGI HTTP Unix Server [43].

Our small-scale experiments demonstrated the expected
richness of virtualized fog control services in the latency-
reliability space. Specifically, our response latency measure-
ments, summarized in Table I, demonstrate that response times

Authorized licensed use limited to: Duke University. Downloaded on October 13,2021 at 01:55:26 UTC from IEEE Xplore.  Restrictions apply. 



INALTEKIN et al.: VIRTUALIZED CONTROL OVER FOG 5033

TABLE I
LATENCY OF CONTROL SERVICE EXECUTION IN DIFFERENT NODES

vary over a wide range.1 We observed a wide variety of relia-
bility options in fog settings as well. Serverless AWS Lambda
and Microsoft Azure Functions computing are provisioned on
demand and hence can be seen as always available. Local
control service, on the other hand, has only a finite number
of control service processes deployed, and thus can handle
only a fixed number of responses at the same time. Thus, as
expected, we observed in our experiments with both default
Flask server settings and with the Gunicorn server that when
the instantiated processes are occupied, the responses can be
deemed to be dropped in time-critical control applications due
to large waiting times behind others. It is clear that these dif-
ferences in reliability and latency are likely to be even more
dramatic in fully heterogeneous fog computing architectures
outlined above.

These experimental observations as well as the drone tra-
jectory following problem provide the underlying motivation
for this paper to undertake a systematic study for delineating
the direct and collateral effects of reliability and latency on
virtual control services over fog.

IV. VIRTUALIZED CONTROL OVER FOG

In this section, we will introduce the details of our sys-
tem model, definitions of the main concepts in relation to this
model and the virtualized control problem over fog.

A. System Model

We consider an IoT node (such as a UAV, a robotic arm, etc.)
whose dynamics evolve linearly in discrete-time according to

xk+1 = Akxk + Bkuk + wk (1)

where xk ∈ R
n is the state vector, uk ∈ R

s is the control signal,
wk ∈ R

n is the zero-mean random disturbance (independent
over time) with a covariance matrix Wk, and Ak ∈ R

n×n and
Bk ∈ R

n×s are the system matrices that modulate the system
states and control signals, respectively, for k = 0, . . . , N− 1.2

The IoT node does not possess an on-board controller circuitry,
and hence the controller functionality is virtualized on a fog

1Our control service code was not optimized for speed; service execu-
tion latency can be improved with additional software engineering effort.
However, latency variation across different execution points would be a fac-
tor for latency-optimized code as well, due to network, service invocation,
and underlying hardware platform differences between the different execution
points.

2This paper does not consider how the time discretization is performed,
which depends on the time-scale of change of the IoT process to be controlled
as well as on other several design degrees of freedom such as control quality
and precision. For nonlinear IoT node processes, it is assumed that Hartman–
Grobman theorem holds and the system dynamics can be linearized around
an equilibrium point [44].

Fig. 3. Model for virtualized control over fog.

endpoint, as shown in Fig. 3. We note that the model in (1)
is general enough to include the cases in which the control
information is not precise. In particular, if the control signal
received by the IoT node at time k is distorted by the zero-
mean additive noise ξ k according to uk+ξ k, then the IoT node
state at time k+1 is given by xk+1 = Akxk+Bkuk+Bkξ k+wk.
Hence, the analysis of the system with randomly distorted con-
trol signal uk+ ξ k is the same with that of the system without
any disturbance at control signals but having the random dis-
turbance Bkξ k+wk at the IoT node. The states are monitored
by the on-board sensors and the measurements are transmit-
ted over a communication channel to the fog controller. The
received data at the output of the channel is modeled by

zk = Ckxk + νk (2)

where Ck ∈ R
m×n is the measurement matrix (alternatively

called sensor matrix) and νk ∈ R
m is the measurement-plus-

channel noise. Several remarks are in order about this model.
First, this model is mathematically more general than the case
zk = xk, which we call the fully observed state information
case in the sequel. With partially observed state information
(i.e., zk �= xk), the IoT control system we have can be consid-
ered to be in the form of a hidden Markov model (HMM). In
general, HMMs have a broad range of applications in commu-
nications, signal processing and robotics [45]–[47]. Second,
the measurement matrix is not necessarily in the form of a
square matrix since some of the states may not be measured
by means of available sensor types [15], [16]. For example, in
the drone trajectory tracking problem, only location measure-
ments may be available, while the state vector contains both
drone location and velocity values. Finally, it is expected that
νk mostly contains the measurement noise since the communi-
cation noise is robustly handled by the lower layers in modern
digital communication systems [48]. However, the communi-
cation process is still expected to cause additional distortion
in the measured data due to quantization, lossy data compres-
sion (for communication over channels with limited capacity),
and time-frequency uncertainty [49]–[51]. Therefore, we will
continue to call νk measurement-plus-channel noise in the
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remainder of this paper.3 It is assumed that system disturbance
and measurement-plus-channel noise vectors are independent
among themselves as well as being independent over time.
It is also assumed that reception of zk marks a request-for-
control and initiates the generation of a control signal at the
fog endpoint.

The causal ordering of events to update IoT node states is
the state measurement, forward delivery of measured states
to the virtual fog controller, generation of control signals and
backward delivery of control signals to the IoT node. When
all these events happen in the same time-slot, we say that the
fog controller is perfectly matched to the IoT node dynamics.
Otherwise, we say that it is imperfectly matched, in which case
the control signals lag behind the IoT node state updates. To
simplify the exposition, we will explain the rest of the system
model for the case of perfect match, and relegate the details
of the latter to Section VI.

We model the reliability issues observed in our fog com-
puting experiments through a stylized Markov process having
two states with transition probabilities

Pr
{
τk+1 = 1

∣∣τk = 1
} = p (3)

and

Pr
{
τk+1 = 0

∣∣τk = 0
} = q (4)

where τk is the internal state of the fog controller at time
k = 0, . . . , N−1. Here, the states 1 (i.e., ON state) and 0 (i.e.,
OFF state) indicate the capacitated occupancy status (due to
multiple instantiated computing processes) of the fog endpoint
for provisioning the requested control service. We note that (3)
and (4) are enough to identify the Markov chain transitions
since the state transition probability from ON state to OFF
state is 1 − p, and the one from OFF state to ON state is
1− q.

The control uk depends on the available information at the
fog controller by time k, which will be denoted as

Hk = {zi : τi = 1, 0 ≤ i ≤ k}
⋃
{ui : 0 ≤ i ≤ k − 1}. (5)

We define Hk to be the collection of all possible information
sets available at time k. Note that the fog controller knows the
previous control signals when generating uk at time k, which
is embodied in Hk. The class of dynamic control policies of
interest to us in this paper is introduced in Definition 1.

Definition 1: A control policy is a sequence of functions
π = (π0, . . . , πN−1) such that the kth component function
πk : Hk × {0, 1} �→ R

s determines the control applied at time
k = 0, . . . , N − 1, i.e., πk(Hk, τk) = uk.

We note that π is an online rule that observes the realiza-
tions of system history and determines the control signals to
be applied based on these observations. In this paper, we will
only focus on a class of control policies that always output
zero as the control signal when they are at the OFF state, i.e.,

3We also note the affinity of this model with the classical multiple-input
multiple-output wireless channel model [52]. Hence, our model can be alter-
natively considered to exemplify uncoded or low-complexity coded wireless
transmissions such as simple CRC schemes so that some channel noise still
inflicts the received state measurements, which is a practical assumption for
the IoT nodes limited by computational resources and battery life.

πk(Hk, τk) = 0 if τk = 0. Accordingly, we will say that a
control policy π is feasible for the optimum stochastic con-
trol problem we want to solve if it belongs to this class of
control policies, i.e., πk(Hk, 0) = 0 for all Hk ∈ Hk and
k = 0, . . . , N − 1. To put it another way, a feasible control
policy does not output any control signal when the fog con-
troller is at the OFF state. We note that the class of feasible
control policies contains the ones that can output zero even
when the fog controller is not switched off. For example, it
contains the one that always outputs zero as the control signal
regardless of the internal state of the fog controller. Despite its
richness and spanning an infinite dimensional functional space,
we also note that our definition of feasibility in this paper does
not include an important and practical set of control policies
that can produce nonzero control signals at the OFF state such
as those holding the last control value. An important subclass
of control policies that we consider in this paper is that of
memoryless ones, formally defined in Definition 2.

Definition 2: A control policy is said to be memoryless if
the control applied at time k depends only on zk and τk for
k = 0, . . . , N − 1.

B. Cost Minimization Problem

As is standard in control systems [16], [30]–[32], [53]–[55],
we rank the quality of virtualized control over fog by means
of a quadratic cost function. In particular, we define the per-
stage-cost under control policy π = (π0, . . . , πN−1) at time k
as

gπk(xk, Hk, τk) = x�k Qkxk + u�k Rkuk (6)

where uk is the control generated by π after having observed
Hk, and Qk is positive semidefinite and Rk positive definite for
all k. Over a finite horizon of N + 1 time-slots, the aggregate
cost depends on three sources of randomness: 1) IoT node
disturbance; 2) measurement-plus-channel noise; and 3) fog
controller reliability. Hence, we write the total cost incurred
over the time horizon of interest and averaged over the existing
sources of randomness as

J(p,q)
π (x0, τ0) = E(x0,τ0)

[

x�N QNxN +
N−1∑

k=0

gπk(xk, Hk, τk)

]

(7)

where x0 and τ0 are the initial states and E(x0,τ0) indicates
expectation starting from these initial sates. Our aim is to min-
imize J(p,q)

π (x0, τ0) over the set of all feasible control policies
�, i.e.,

J�(p,q)(x0, τ0) = inf
π∈� J(p,q)

π (x0, τ0). (8)

We will solve the optimization problem in (8) by utilizing
the dynamic programming (DP) approach [16], [56]. To this
end, we define cost-to-go functions as

J(p,q)
i (xi, τi) = E(xi,τi)

[

x�N QNxN +
N−1∑

k=i

gπk(xk, Hk, τk)

]

. (9)

We note that J(p,q)
i (xi, τi) depends on the ith tail policy π i for

π , which is defined as π i = (πi, . . . , πN−1). The principle
of optimality for DP states that the control policy π� having
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optimal tail policies π�
i = (π�

i , . . . , π�
N−1) for minimizing the

cost-to-go function J(p,q)
i (xi, τi) for any starting state xi ∈ R

n

and τi ∈ {0, 1} for all i ∈ {0, . . . , N − 1} solves the main
DP problem in (8). We will utilize this fact for revealing the
structure of the optimum control in both cases of perfectly and
imperfectly matched fog controllers.

V. CONTROL OVER FOG WITH PERFECT MATCH

In this section, we will investigate the performance of vir-
tual controllers with the focus of reliability being on the fog
endpoint that is perfectly matched to the IoT node dynamics.
Despite following the standard DP steps [16], [56], our anal-
ysis in this section will be helpful to set the stage for the case
of imperfectly matched fog controllers, which can only access
to the delayed and intermittent state information from the IoT
node. We will consider the cases of fully observed and par-
tially observed state information separately, starting with the
former one below.

A. Fully Observed State Information

This is the case in which the fog controller perfectly
observes the measured states, i.e., νk = 0 and Ck is iden-
tity for all k = 0, . . . , N − 1. Hence, the network does not
distort the state measurements while relaying them. When the
IoT node states are fully observed, it is then enough to focus
on the memoryless policies [16], which is why we write the
optimum policy below as a function of current states rather
than the complete system history. Theorem 1 establishes the
recursive relationship for the optimum control policy π� and
the min-cost performance under π�. In the remainder of this
paper, for any square matrix A ∈ R

n×n, Tr(A) will represent
the classical trace operation given by Tr(A) =∑n

i=1 aii.
Theorem 1: Assume p = 1 − q and the measured states

can be fully observed with perfect match. Then, the optimum
control policy π� = (π�

0 , . . . , π�
N−1) and J�(p,q)(x0, τ0) are

given by

J�(p,q)(x0, τ0) = x�0
(
L0 −�01{τ0=1}

)
x0 +

N−1∑

k=0

Tr(Kk+1Wk)

(10)

and

π�
k (xk, τk) = −Vkxk1{τk=1} (11)

where Vk = (Rk +B�k Kk+1Bk)
−1B�k Kk+1Ak and the matrices

Kk, for k = 1, . . . , N − 1, are given recursively as

KN = QN

Kk = Lk − p�k

Lk = Qk + A�k Kk+1Ak

and

�k = A�k Kk+1BkVk.

Proof: Using the DP algorithm and bearing in mind the
relation between feasible uk and τk, we write

J�(p,q)
N (xN, τN) = x�N QNxN (12)

and

J�(p,q)

k (xk, τk) = x�k Qkxk + min
uk∈Rs

{
u�k Rkuk + E(xk,τk)

×
[
J�(p,q)

k+1 (xk+1, τk+1)
∣∣uk

]}

(13)

for the optimum cost-to-go expressions. We first consider the
stage N − 1. Using the IoT node process evolution in (1) and
minimizing the resulting quadratic form for τN−1 = 1, one
can obtain

π�
N−1(xN−1, 1) = −VN−1xN−1

and

J�(p,q)

N−1 (xN−1, 1) = x�N−1(LN−1 −�N−1)xN−1 + Tr(KNWN−1).

On the other hand, no control is applied and the matrix
�N−1 above disappears when τN−1 = 0, which leads to the
desired result for stage N − 1 in Theorem 1. For stage N − 2,
the same analysis holds, but one also needs to average over the
Markov process transitions from N−2 to N−1. By considering
the symmetry assumption, this leads to the optimum control
given in (11) and the minimum cost-to-go expression

J�(p,q)

N−2 (xN−2, τN−2) = x�N−2

(
LN−2 −�N−21{τN−2=1}

)
xN−2

+ Tr(KN−1WN−2)+ Tr(KNWN−1).

Iterating similarly, one can complete the proof.
An appealing feature of the optimum control, given by

Theorem 1, for implementing a virtual controller at a fog end-
point is its linear structure, which is easy to implement over
light-weight fog computing nodes. The effect of the fog end-
point reliability appears as a multiplicative coefficient in the
definition of Kk matrices. In particular, as p increases, the addi-
tive cost terms Tr(Kk+1Wk), i.e., matrix traces, decrease and
we start to have a smaller cost value in (10).4 We note that
this is also the same virtual control service structure imple-
mented over AWS Lambda, Microsoft Azure, Flask HTTP, and
Gunicorn WSGI HTTP Unix servers in our experiments above.
For the asymmetric case, a similar optimum control recursion
can also be obtained after averaging over exponentially many
sample ON–OFF scheduling tail-paths of the fog controller at
each time k = 0, . . . , N − 1, which is, however, not compu-
tationally practical for a fog computing system. As a result,
we provide performance upper and lower bounds as well as a
low-complexity control policy achieving these bounds in the
following theorem.

Theorem 2: Assume p > 1− q. Then

J�(p,q)(x0, τ0) ≤ J�(1−q,q)(x0, τ0)

and

J�(p,q)(x0, τ0) ≥ J�(p,1−p)(x0, τ0).

Moreover, the optimum control achieving J�(1−q,q)(x0, τ0)

with full state information and perfect match also attains a
performance in between these two bounds.

4This follows from observing the fact that the matrices Kk , Lk , and �k are
positive semi-definite for all k = 0, . . . , N − 1.
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Proof: Intuitively, decreasing p results in a less reliable
fog computing system, which leads to the upper bound in the
theorem. Similarly, decreasing q leads to a more reliable fog
computing system, which leads to the lower bound in the the-
orem. For the sake of exposition, the details are relegated to
the Appendix.

B. Partially Observed State Information

We now consider the case in which measured IoT node
states can only be observed partially due to possible distortion
in the measurement process and communication environment.
In this case, the optimum control policy derived in Theorem 1
loses its memoryless property and depends on the realizations
of observed measurement history. However, it is well-known
that the information structure considered in this paper does not
introduce any dual-effects, and control and estimation prob-
lems can be separated [16], [57], which leads to our next
theorem.

Theorem 3: Assume p = 1−q and the measured states can
be partially observed with perfect match. Then, the optimum
control policy π� = (π�

0 , . . . , π�
N−1) and J�(p,q)(x0, τ0) are

given by

J�(p,q)(x0, τ0) = x�0
(
L0 −�01{τ0=1}

)
x0 +

N−1∑

k=0

Tr(Kk+1Wk)

+ E(x0,τ0)

[
ε�0 �01{τ0=1}ε0

]

+ p
N−1∑

k=1

E(x0,τ0)

[
ε�k �kεk

]
(14)

and

π�
k (Hk, τk) = −VkE

[
xk

∣∣Hk
]
1{τk=1} (15)

where εk = xk − E[xk
∣∣Hk] and the matrices Vk, Kk, �k, and

Lk are as defined in Theorem 1.
Proof: The proof follows from the existence of no

dual-effects and the property of conditional expectations
E[E[X|F2]

∣∣F1] = E[X|F1] for any two nested σ -algebras
F1 ⊆ F2 from [58].

The first two terms in (14) give the minimum cost attained
in the former case of fully observed state information. On
the other hand, the last two terms describe the effect of state
estimation on the performance of virtual controller over the
fog. Further, the structure of optimum control in (15) is sim-
ilar to the one in Theorem 1, except the nonlinear estimator
E[xk

∣∣Hk] that needs to be run at the fog endpoint, separately
from the controller application. This can be an onerous and
time-consuming task for light-weight fog nodes. Hence, it can
be replaced with its linear approximation through Kalman fil-
tering in practical settings with some loss of optimality when
the measurement-plus-channel noise is not Gaussian.

The main procedures both at the IoT node and fog controller
sides to implement a fog controller system with perfect match
are illustrated in Algorithms 1 and 2. For the sake of expo-
sition, random disturbance/noise generation and their effects
on the state updates and measured data are illustrated explic-
itly but in a somewhat synthetic way. In an actual system

Algorithm 1 Fog Controller System Implementation With
Perfect Match—IoT Node Side
IoT Node Side: Receives control signals, updates current
states and sends state measurements to the fog controller.

Initialization: Store Ak, Bk, Ck for k = 0, . . . , N − 1.
1: procedure RECEIVECONTROL(sockID) � Listens to

receive control signals over sockID

2: procedure RANDOM(F) � Generates random
disturbance/noise with distribution F

3: procedure STATEUPDATE(k, xk, Fk, sockID) � Updates
the IoT node states

4: uk = 0
5: while TimeOut == false do � Waits one time-unit

to receive a control signal
6: uk ← RECEIVECONTROL(sockID)
7: wk = RANDOM (Fk)

8: xk+1 ← Akxk + Bkuk + wk

9: return xk+1

10: procedure MEASUREANDSEND(k, xk, Fk)
11: νk = RANDOM(Fk)

12: zk = Ckxk + νk

13: SEND2FOG(zk)

Algorithm 2 Fog Controller System Implementation With
Perfect Match—Fog Controller Side
Fog Controller Side: Receives measurements, generates con-
trol signals and sends them to the IoT node.

Initialization: Store Ak, Bk, Ck, Qk, Rk for k = 0, . . . , N − 1.

1: procedure RECEIVEMEASUREMENT(sockID) � Listens
to receive measurements over sockID

2: procedure STATEESTIMATE(z, hist) � Estimates the IoT
node states based on the currently received measurement
z and history hist through Kalman filtering

3: procedure CONTROLLERMATRICES(p) � Generates
controller matrices

4: KN = QN
5: for k = N − 1:0 do
6: Lk = Qk + A�k Kk+1Ak

7: Vk =
(
Rk + B�k Kk+1Bk

)−1
B�k Kk+1Ak

8: �k = A�k Kk+1BkVk

9: Kk = Lk − p�k

10: return Vk for k = 0, . . . , N − 1
11: procedure CONTROLANDSEND(k, τk)
12: uk = 0
13: if τk == 1 then
14: zk = RECEIVEMEASUREMENT(sockID)
15: x̂k = STATEESTIMATE(zk, hist)
16: uk ←−Vkx̂k

17: SEND2IoT(uk)

implementation, they are expected to arise intrinsically due
to underlying system dynamics and environmental conditions.
We only represent the distortion due to measurement noise in

Authorized licensed use limited to: Duke University. Downloaded on October 13,2021 at 01:55:26 UTC from IEEE Xplore.  Restrictions apply. 



INALTEKIN et al.: VIRTUALIZED CONTROL OVER FOG 5037

these algorithms. Finally, we note that the measurement matrix
Ck and the distribution of the noise νk are used by the state
estimation procedure in Algorithm 2 although we do not show
this explicitly.

An important remark about the steady-state behavior of the
optimum control policy, which will facilitate the implementa-
tion in Algorithm 2, is the following. As formulated in its most
general form described by (1) and (6), we have a time-varying
IoT control system. Hence, all the states are transient and we
cannot talk about the steady-state behavior. In this case, all the
system matrices Ak, Bk, Qk, and Rk for k = 0, . . . , N−1 must
be stored and the discrete-time Riccati equation must be solved
iteratively, starting from k = N and going backwards in time,
to obtain controller gain matrices Vk. On the other hand, if the
system is time-invariant, i.e., Ak = A, Bk = B, Qk = Q, and
Rk = R for all k = 0, . . . , N−1, then Kk converges to a steady-
state matrix K given by the solution of the algebraic Riccati
equation as k→−∞ [16], [55]. This implies the convergence
of gain matrices Vk to V = (R + B�KB)−1B�KA as we go
backwards in time starting from large N values. Here, due to
the DP recursion, the steady-state behavior occurs for small
values of k, whereas the transient-state behavior occurs as k
approaches N. Ignoring the transient behavior, the optimum
control policy can be approximated by the stationary policy
π ss using V as its gain matrix for all time, i.e., πk,ss(x) = −Vx
for all k = 0, . . . , N − 1. Implementation of π ss only requires
the knowledge of V. This approximate implementation saves
considerable memory space, especially when N is large and
the system has high dimensionality.

The next theorem provides the analogous upper and lower
bounds on the fog controller performance with partial state
information.

Theorem 4: Assume p > 1− q. Then

J�(p,q)(x0, τ0) ≤ J�(1−q,q)(x0, τ0)

and

J�(p,q)(x0, τ0) ≥ J�(p,1−p)(x0, τ0).

Moreover, the optimum control achieving J�(1−q,q)(x0, τ0)

with partial state information and perfect match also attains a
performance in between these two bounds.

Proof: The proof follows from similar lines in the
Appendix by considering the same starting states and observed
history for both systems in the inductive arguments, and hence
is omitted to avoid repetition.

Remark: It should be noted that we use the same notation
J�(p,q)(x0, τ0) for the min-cost value achieved by the optimum
control policy in both cases of fully and partially observed
state information in order to avoid excessive proliferation of
different symbols throughout this paper. It is clear from the
context to which min-cost value we are referring to. For exam-
ple, the min-cost values in Theorem 4 are those obtained in the
case of partially observed state information, whereas the ones
in Theorem 2 are those obtained in the case of fully observed
state information. Hence, the corresponding bounds in these
two different cases are different from each other.

VI. CONTROL OVER FOG WITH IMPERFECT MATCH

Despite being insightful when communication and compu-
tation latency can be ignored with respect to the IoT node state
evolution dynamics, our analysis in Section V cannot capture
the wide variation of delay values measured in our virtual fog
controller experiments, i.e., see Table I. Therefore, in this sec-
tion, we will extend the basic model above to discover the
effects of latency on the utility of fog controller placement
along the cloud-to-things continuum. The augmented model
is aimed to characterize the swiftness of control and timeli-
ness of state measurements due to network delay between the
IoT node and the fog endpoint.

Specifically, two types of delay are considered: 1) forward
delay MF and 2) backward delay MB. MF is the delay incurred
on the path from the IoT node to the fog endpoint at which the
controller software runs, whereas MB is the delay in the reverse
direction. To make the exposition simpler, we assume that any
delay to compute the optimum control signal is included in MB

in the sequel. The total delay incurred in both ways is then
equal to M = MF + MB.5 In this setup, any measurement
about the IoT node state sent out at time k arrives to the fog
controller at time k + MF , and a possible corrective control
signal arrives back to the IoT node at time k+M. A potential
manifestation of this latency is a proportional decrease in the
frequency of control actions arriving to the IoT node, which we
model below by assuming delay-spreaded requests-for-control
as in event-driven interactive control systems. We start our
analysis with the case of fully observed state information.

A. Fully Observed State Information

This is the case in which transmitted state measurements
can be fully observed by the fog controller with delay MF .
The next theorem establishes the optimum control rule and
the min-cost performance under optimum control with fully
observed but delayed state information.

Theorem 5: Assume p = 1 − q, N ≥ M ≥ 1 and the mea-
sured states can be fully observed with imperfect match. Define
c � ([N−a]/M), where a = N mod M if N is not an integer
multiple of M, and a = M otherwise. Then, the optimum con-
trol policy π� = (π�

0 , . . . , π�
N−1) and J�(p,q)(x0, τ0) are given

by

J�(p,q)(x0, τ0) = x�0 L0x0 +
N−1∑

k=0

Tr(Kk+1Wk)

+ p
cM−1∑

k=0

Tr(Pk+1Wk) (16)

and

π�
k

(
λk, τk−MB

)

=
{

0, if k �= 0 mod M
−VkE

[
xk

∣∣λk
]
1{

τk−MB=1
}, if k = 0 mod M (17)

for k ∈ {1, . . . , N−1}, where λk = (xk−M, uk−M) (for k ≥ M),
Vk = (Rk+B�k Kk+1Bk)

−1B�k Kk+1Ak and the matrices Kk and

5Here, we assume that these delays can either be reliably estimated or do
not vary a lot around their means so that the discrete model for them can be
reasonably approximated as being deterministic.
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Pk are given recursively as

KN = QN

Kk =
{

Lk, if k �= 0 mod M
Lk − p�k, if k = 0 mod M

Lk = Qk + A�k Kk+1Ak

and

�k = A�k Kk+1BkVk

for k ∈ {0, . . . , N − 1}, and

PcM = �cM

Pk =
{

A�k Pk+1Ak, if k �= 0 mod M
�k, if k = 0 mod M

for k ∈ {0, . . . , cM − 1}.
Proof: We will provide the proof only for when N is

not an integer multiple of M. The other case follows from
observing that the final time a useful control arrives is N−M
and repeating the same steps below.

First, observe that no control signal arrives from time cM+1
to N. Hence, we can write

J�(p,q)
i (xi, τi) = x�i Lixi +

N−1∑

k=i

Tr(Kk+1Wk) (18)

for i ∈ {cM + 1, . . . , N}. Second, we observe that a control
signal arrives to the IoT node for the final time at cM, gener-
ated by the fog controller at cM −MB based on the full state
observation x(c−1)M and the possible control signal u(c−1)M at
time (c− 1)M. To this end, the fog controller needs to solve

min
u∈Rs

{
u�Riu+ E

[
Exi

[
J�(p,q)

i+1 (xi+1, τi+1)

∣∣∣u
]∣∣∣λi

]}

for i = cM. Using (18) and system linearity, the above
minimization leads to

π�
cM

(
λcM, τcM−MB

) = −VcME
[
xcM

∣∣λcM
]
1{τcM−MB=1}

and, with a slight abuse of notation,6

J�(p,q)
cM (xcM, τcM) = x�cM

(
LcM −�cM1{τcM−MB=1}

)
xcM

+
N−1∑

k=cM

Tr(Kk+1Wk)

+ ε�cMPcM1{τcM−MB=1}εcM

where εcM = xcM −E[xcM
∣∣λcM]. Now observing that no con-

trol signal arrives at time cM − 1 and using the symmetry
assumption as well as system linearity, we have

J�(p,q)
i (xi, τi) = x�i Lixi +

N−1∑

k=i

Tr(Kk+1Wk)

+ pTr(Pi+1Wi)+ pε�i Piεi

for i = cM − 1 and εcM−1 = xcM−1 − E[xcM−1
∣∣λcM], which

is the residual error from estimation at time cM.

6J�(p,q)
cM (xcM, τcM) actually depends on τcM−MB but we have chosen to

use above notation for the sake notational consistency.

In order to complete the proof, we repeat the same steps
until (c − 1)M. Observing that the residual error term from
estimation at cM is equal to w(c−1)M at (c− 1)M and taking
the form of a new estimation error appearing due to a potential
control signal to be applied at (c − 1)M into account, we
arrive at

J�(p,q)
i (xi, τi) = x�i

(
Li −�i1{τi−MB=1}

)
xi +

N−1∑

k=i

Tr(Kk+1Wk)

+ p
cM−1∑

k=i

Tr(Pk+1Wk)+ ε�i Pi1{τi−MB=1}εi

where εi = xi − E[xi
∣∣λi] for i = (c − 1)M. Observing the

emerging structure, and iterating similarly first from (c− 1)M
to M and then from M to 0, one can complete the proof.

There are several important structural features of the opti-
mum control policy and the resulting minimum cost appearing
in Theorem 5. First, the linearity property is preserved even
with imperfect match between the IoT node process and the
fog controller placement. This is important for practical low-
complexity implementations of the controller application at
the fog endpoint. Second, the separation principle still holds
in the case of imperfect match. An important ramification of
this observation is that an estimator needs to be run separately
from the controller software at the fog endpoint, which can be
interpreted as a delay compensator. However, when compared
to the estimation problem with partial state observation in (15),
this estimator is linear and easy to implement due to linear
evolution of IoT node states in (1). Third, the frequency of
corrective control signals arriving to the IoT node is decreased
in proportion to M. This is due to the aggregate delay over the
fog network that spreads transmitted measurements and con-
trol signals. Finally, the last summation in (16) represents the
collateral impact of latency on the min-cost performance due
to delayed state measurements, which would disappear for an
hypothetical perfect estimator.7

1) Virtual Controller Placement: Equations (10) and (16)
in Theorems 1 and 5 provide a pair of quantative perfor-
mance values for fog network designers to decide about
where to place virtual controller software by considering inher-
ent service grade and latency characteristics of available fog
endpoints when measurement and channel distortion can be
ignored. The next theorem provides the analogous upper and
lower bounds on the fog controller performance, as is done in
Section V.

Theorem 6: Assume p > 1− q. Then

J�(p,q)(x0, τ0) ≤ J�(1−q,q)(x0, τ0)

and

J�(p,q)(x0, τ0) ≥ J�(p,1−p)(x0, τ0).

Moreover, the optimum control achieving J�(1−q,q)(x0, τ0)

with full state information and imperfect match also attains
a performance in between these two bounds.

7J�(p,q)(x0, τ0) in (16) does not depend on τ0 since the system forgets
about the starting fog node state after one unit delay due to symmetry
assumption.
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Proof: The proof follows from similar lines in the
Appendix by observing that the inductive hypothesis holds
for k = cM, . . . , N, and considering the same starting states
and observed measurements in the inductive arguments for any
k < cM. It is omitted to avoid repetition.

Remark: Similar to our remark after Theorem 4, we note
that the bounds in Theorem 6 refer to the min-cost values
obtained by the optimum control policy for the imperfectly
matched fog controller with fully observed state informa-
tion. Hence, they are different than those appearing in
Theorems 2 and 4.

B. Partially Observed State Information

Finally, we analyze the case with partially observed states
and imperfect match between the IoT node and fog controller.
Updating the definition of system history in (5) in an obvious
way to include only delayed measurements and repeating the
same steps above, we obtain the following theorems.

Theorem 7: Assume p = 1 − q, N ≥ M ≥ 1 and the mea-
sured states can be partially observed with imperfect match.
Define c � ([N− a]/M), where a = N mod M if N is not an
integer multiple of M, and a = M otherwise. Then, the opti-
mum control policy π� = (π�

0 , . . . , π�
N−1) and J�(p,q)(x0, τ0)

are given by

J�(p,q)(x0, τ0) = x�0 L0x0 +
N−1∑

k=0

Tr(Kk+1Wk)

+ p
cM−1∑

k=0

Tr(Pk+1Wk)

+ p
c−1∑

k=1

E(x0,τ0)

[
ε�kMPkMεkM

]
(19)

and

π�
k

(
Hk, τk−MB

)

=
{

0, if k �= 0 mod M
−VkE

[
xk

∣∣Hk
]
1{

τk−MB=1
}, if k = 0 mod M (20)

for k ∈ {1, . . . , N − 1}, where the matrices Vk, Kk, �k, Lk,
and Pk are as defined in Theorem 5, and εkM = xkM −
E[xkM

∣∣H(k+1)M] for k ∈ {1, . . . , c− 1}.
Proof: The proof follows from the same steps in the proof

of Theorem 5, existence of no dual-effects and the property
of conditional expectations E[E[X

∣∣F2]
∣∣F1] = E[X

∣∣F1] for any
two nested σ -algebras F1 ⊆ F2 from [58].

The last summation in (19) represents the error terms arising
from the uncertainty that cannot be resolved via partial state
observations. As in the case of perfect match with partial state
observations, the estimation in (20) is nonlinear, which can be
replaced with its linear version through practical Kalman filter-
ing implementation at the expense of some loss of optimality
when νk is not Gaussian. The main procedures to implement
a fog controller system with imperfect match are illustrated in
Algorithm 3, which only contains the ones for the fog con-
troller side. The procedures at the IoT node side are similar
to those in Algorithm 1, except receiving control signals less
frequently due to delay, and hence omitted for brevity.

Algorithm 3 Fog Controller System Implementation With
Imperfect Match—Fog Controller Side
Fog Controller Side: Receives measurements, generates con-
trol signals and sends them to the IoT node.

Initialization: Store Ak, Bk, Ck, Qk, Rk for k = 0, . . . , N − 1.

1: procedure RECEIVEMEASUREMENT(sockID) � Listens
to receive measurements over sockID

2: procedure ESTIMATEFORWARDDELAY � Estimates the
forward delay MF from the IoT node to the fog controller

3: procedure ESTIMATEBACKWARDDELAY �
Estimates the backward delay MB from the fog controller
to the IoT node

4: procedure STATEESTIMATE(z, MB, hist) � Estimates
the IoT node states based on the currently received mea-
surement z, backward delay MB and history hist through
Kalman filtering

5: procedure CONTROLLERMATRICES(p) � Generates
controller matrices

6: M = EstimateForwardDelay +
EstimateBackwardDelay

7: KN = QN
8: for k = N − 1:0 do
9: Lk = Qk + A�k Kk+1Ak

10: Vk =
(
Rk + B�k Kk+1Bk

)−1
B�k Kk+1Ak

11: �k = A�k Kk+1BkVk

12: if k % M == 0 then
13: Kk = Lk − p�k

14: else
15: Kk = Lk

16: return Vk for k = 0, . . . , N − 1
17: procedure CONTROLANDSEND(k, τk−MB )
18: uk = 0
19: MB = EstimateBackwardDelay
20: M = MB+ EstimateForwardDelay
21: if τk−MB == 1 & k % M == 0 then
22: zk−MB = RECEIVEMEASUREMENT(sockID)
23: x̂k = STATEESTIMATE

(
zk−MB , MB, hist

)

24: uk ←−Vkx̂k

25: SEND2IoT(uk)

1) Virtual Controller Placement: Equations (14) and (19)
in Theorems 3 and 7 provide a pair of quantative perfor-
mance values for fog network designers to decide about where
to place virtual controller software by considering inherent
service grade and latency characteristics of available fog end-
points when measurement and channel distortion cannot be
ignored.

Theorem 8: Assume p > 1− q. Then

J�(p,q)(x0, τ0) ≤ J�(1−q,q)(x0, τ0)

and

J�(p,q)(x0, τ0) ≥ J�(p,1−p)(x0, τ0).
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Moreover, the optimum control achieving J�(1−q,q)(x0, τ0)

with partial state information and imperfect match also attains
a performance in between these two bounds.

Proof: The proof follows from similar lines in the
Appendix by observing that the inductive hypothesis holds
for k = cM, . . . , N, and considering the same starting states
and observed system history in the inductive arguments for
any k < cM. It is omitted to avoid repetition.

Remark: Similar to our remarks after Theorems 4 and 6,
we note that the bounds in Theorem 8 are different than those
appearing in Theorems 2, 4, and 6.

VII. UAV TRAJECTORY CONTROL OVER FOG

In this section, we illustrate the utility of our analytical
results derived above in the context of trajectory tracking prob-
lems for UAVs. While this paper applies to all linear systems
with quadratic cost, we note that our model maps well to prac-
tical drone trajectory tracking control problems. For example,
modern high-end DJI quadcopters [59] can be programmed
with a sequence of way-points, and can receive velocity adjust-
ment signals. Our virtual controller model can also be used
to dictate different levels of trajectory tracking precision in
different parts of the trajectory, which is important for prac-
tical drone settings where more precision is required close to
stationary obstacles, other drones, and no-fly zones than in
unrestricted air spaces.

A. State-Space Representation for UAV Control

We consider a planar motion at some certain altitude deter-
mined through a sequence of way-points {x̄k}Nk=0 ⊂ R

2.
x̄k represents the desired position of the UAV at time k�t.
Here, �t is our basic discrete-time unit to communicate loca-
tion/velocity information (obtained through GPS sensors) and
control signals between the fog server and UAV.8

The task of the fog controller is to provide velocity adjust-
ment signals represented by uk (measured in meters per
second) for k = 0, . . . , N − 1 to determine the velocity of
the UAV from time k�t to (k + 1)�t. Succinctly, the state
update equation can be given as

(
xk+1
vk+1

)
=

(
xk +�t(vk + uk)

vk + uk

)
+

(
wx

k
wv

k

)
(21)

where wx
k and wv

k are random (possibly correlated) disturbances
affecting the location and velocity of the UAV due to environ-
mental conditions, such as wind and rain, respectively. After
some manipulations, (21) can be written as

(
ek+1
vk+1

)
= Ak

(
ek

vk

)
+ Bkuk +

(
wx

k + x̄k − x̄k+1
wv

k

)

8The model can be extended to include time-varying discrete-time units.
However, we do not pursue this direction in this paper for the sake of
notational simplicity.

where ek = xk − x̄k, Ak =
(

I2 �tI2
0 I2

)
and Bk =

(
�tI2

I2

)

for k = 0, . . . , N − 1.9 This is similar to the linear IoT node
model in Section IV, with drift terms x̄k − x̄k+1 providing
desired trajectory information. Hence, the optimum control
trying to minimize drifted state measurements will direct the
UAV along the desired path. To this end, we minimize the
following cost J = ∑N

k=0 E[|ek|2 + α
(|vk|2 + |uk|2

)
] in an

attempt to balance trajectory deviations and energy expendi-

ture, which leads to Qk =
(

I2 0
0 αI2

)
, Rk = αI2 and α ≥ 0

being a design parameter. In this cost expression, we note that
the terms containing |ek|2 measure the total deviation from the
desired trajectory, whereas the remaining terms act as a proxy
for the total energy spent to follow it.

B. Trajectory Tracking Performance

We consider a target located at a given position in space.
The objective of the UAV is to approach the target (represented
by a red cross in the figures below), make a circle around it
and then turn back to its starting position. The disturbances
in location and velocity are jointly Gaussian with mean zero

and the covariance matrix � =
(

σ 2
x I2 ρI2

ρI2 σ 2
v I2

)
.

In Fig. 4, we show the realizations of the vehicle trajectory
for different values of the fog controller reliability parameter
p. In this figure, we set the system parameters α, σx, and σy to
0.1 in order to delineate the trajectory tracking performance of
the fog controller with respect to its reliability and delay. We
chose ρ to have a correlation coefficient of 0.5 in all cases. In
the upper figures, we observe that our optimum fog controller
without delay is able to stabilize the UAV around the prede-
fined desired trajectory. As expected, the performance of the
fog controller in tracking the desired trajectory improves when
p increases. In particular, the UAV almost perfectly tracks the
desired trajectory for values of p above 0.5, which can used,
for example, as the minimum level of virtual controller reli-
ability for control services to be provisioned over fog in this
particular case.

In the lower figures in Fig. 4, on the other hand, we illustrate
the performance of the fog controller with delay M = 3�t.
Even with a very reliable fog controller, we observe substan-
tial negative effects of delay. In particular, the fog controller
loses its ability to guide the UAV around the desired trajectory
starting from p = 0.5 and downward even with small distur-
bance. These observations perfectly illustrate the potential of
our analytical expressions to guide the design and engineering
efforts to offer control-as-a-service over fog by considering
reliability and delay constraints.

Second, we investigate the effect of environmental distur-
bances on the trajectory tracking performance of a UAV fog
controller in Fig. 5. We set p to 0.75 and α to 0.1, and
chose ρ to have a correlation coefficient of 0.5 in all cases.

9More explicitly, the randomly varying velocity process of the UAV can
be written as v(t) = vk + uk + w(t) for k�t < t ≤ (k + 1)�t, where w(t) is
the stochastic disturbance process inflicting the UAV motion. Then, wx

k is the
integral of w(t) from k�t to (k + 1)�t, and wv

k is the value of w(t) at time
(k + 1)�t.
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Fig. 4. Effect of reliability on the trajectory tracking performance of a UAV fog controller. α = 0.1, σx = 0.1, σv = 0.1, and ρ = (σxσv/2) for all figures.
The upper figures are for the case without delay, whereas the lower figures are for the case with delay M = 3�t.

Fig. 5. Effect of environmental disturbances on the trajectory tracking performance of a UAV fog controller. p = 0.75, α = 0.1, and ρ = (σxσv/2) for all
figures. The upper figures are for the case without delay, whereas the lower figures are for the case with delay M = 3�t.

Fig. 6. Effect of the energy weight parameter α on the trajectory tracking performance of a UAV fog controller. p = 0.75, σx = 0.25, σv = 0.25, and
ρ = (σxσv/2) for all figures. The upper figures are for the case without delay, whereas the lower figures are for the case with delay M = 3�t.

In the upper figures, we again observe that our optimum
fog controller is able to stabilize the UAV around the pre-
defined desired trajectory, albeit having more jitters around

the way-points with harsher environmental conditions. In par-
ticular, we see that there is a constant fight between efforts
from the fog controller to track the desired path and random
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disturbances due to environmental conditions such as wind
to deviate from the desired path. In all cases, the UAV does
never go uncontrolled, which is a positive indication for the
perfectly matched fog controller from the perspective of pre-
venting potential collisions with other vehicles or obstacles
existing in close geographical distances. In the lower figures
in Fig. 5, on the other hand, we observe that the jitters due
to environmental disturbances are more pronounced for the
fog controller with delay. The UAV motion almost resembles
a random walk around the desired trajectory, which is cer-
tainly not desirable for many mission critical applications. This
observation is mainly because of the accumulation of random
disturbances until a delay-spread corrective action against tra-
jectory deviations is taken by the fog controller. These results
signify the importance of dynamic provisioning of quality of
control service over fog through a lever to adjust fog node reli-
ability and delay, especially in cases when the jitter around a
desired trajectory is detrimental for the mission executed by
the UAV such as surveillance monitoring of a geographical
region, a remote first-aid operation and a remote swimmer
rescue operation by means of drones.

In Fig. 6, we study the effect of the system-level parame-
ter α on the trajectory tracking performance of the UAV fog
controller. In this figure, we set p, σx, and σv to 0.75, 0.25,
and 0.25, respectively. We chose ρ to have a correlation coeffi-
cient of 0.5 in all cases. The parameter α helps us to adjust the
weight associated with the total energy spent during the jour-
ney of the UAV around the desired trajectory. By increasing
the value of α, the importance ranking of the energy spent rises
with respect to the relative importance of how well the UAV
tracks its trajectory. This change of perspective results in dete-
riorations in the trajectory tracking performance of the UAV
controlled over fog, as illustrated in Fig. 6. In particular, the
already poor trajectory tracking performance of the UAV fog
controller with delay becomes much worse as such the UAV
deviates significantly from the desired trajectory with increas-
ing values of α (i.e., smaller and distorted circles around the
target and incomplete paths) when there is delay to commu-
nicate measurements and control signals between the virtual
fog controller and the velocity control unit of the UAV. An
important engineering implication of these results is the more
evident importance of the delay when the energy is at stake
to control a UAV over the fog.

VIII. DISCUSSION

In this section, we provide a further discussion of our results
and some other potential applications.

A. Linear IoT Control Systems

There is a recent surge of interest in control applications
of the IoT technology and cyber-physical systems as well as
related security and privacy issues [60]–[65]. Similarly, we
have also considered an IoT control system in this paper
but assumed that the controller software is virtualized over
a fog endpoint existing in a fog computing environment. To
discover design insights for control-as-a-service and identify
fundamental tradeoffs between latency and reliability in such

a fog computing environment, we have studied the behavior of
optimum stochastic control policies in the form of a modified
linear quadratic regulator (LQR).

LQR is an important tool in a more general class of optimal
control techniques [16], [55]. We have illustrated an applica-
tion of our results for the case of a drone trajectory tracking
problem in Section VII. In addition to the drone trajectory
tracking problem, the other well-known applications of LQR
include aircraft motion control (linearized around equilibrium
flight conditions), missile trajectory tracking problem, atti-
tude control of a spacecraft and robot control [55], [66].
These examples, although not directly related to the IoT field,
are given for expository purposes to indicate the abundance
and importance of physical systems with linear state update
dynamics in control theory.

Considering similarity of fundamental physical laws gov-
erning real-life dynamical processes, they also indicate the
relevance of linear system update dynamics as our modeling
assumption for IoT node processes in this paper as well as in
other studies [65], [67]–[69]. In [65], a security analysis of
linear IoT control systems in terms of their stability, control-
lability and observability under outsider attacks is performed.
In [67], a linear PD-controller is proposed to control the tail
behavior of a biologically inspired flying robot. In [68], an
optimal H∞ controller is proposed for a multiscale linear IoT
system with quadratic cost. Its performance is compared with
that of LQR in a hierarchical building temperature control
problem. In [69], a wireless power transfer system is mod-
eled as a state-space linear time-invariant system monitored
and controlled by an IoT network. Kalman filtering is used
for state estimation and LQR is used to control the wireless
power transfer system. Indeed, the model in [69] perfectly fits
into our framework, where the controller is virtualized at a fog
server closer to the network edge. More generally, in these use-
cases and in many others where the system dynamics can be
modeled as linear or can be linearized around an equilibrium
point, our results will apply directly.

B. Design Implications and Parameter Identification

In cases where the IoT node dynamics are linear (some
examples of which are given above), the analytical expres-
sions we have derived can help to determine the location of
the fog server for executing the controller logic as follows.
Theorems 1 and 5 provide the cost values with and without
perfect match when the IoT node states are fully observed at
the fog server. Comparing these cost values as a function of
reliability and latency parameters, we can pinpoint the loca-
tion of the fog execution point achieving the minimum cost
along the cloud-to-things continuum to place the controller
logic. Similarly, we can use Theorems 3 and 7 to determine
the location of the fog execution point when the IoT node
states are partially observed at the fog server.

These are practical and quantitative design rules to pro-
vision control services over fog, eliminating the costly and
lengthy trial-and-error process and system-level simulations
in IoT control system design. However, the parameters for the
linear state-space IoT node model in (1) and the appropriate
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cost function in (6) do still need to be determined for each
use-case separately based on the system dynamics and control
objectives. This is done for the drone trajectory tracking prob-
lem explicitly. Some other examples in the previous work are
also cited but the details are not included.

Similarly, latency and reliability parameters must also be
determined for each use-case more comprehensively than in
our small-scale experiments by considering the level of con-
gestion in fog computing systems. Some target latency and
reliability values are available for classical and emerging appli-
cation scenarios in the literature, with latency values ranging
from seconds (e.g., smart-grid) to milliseconds (e.g., robotics,
virtual/augmented reality, and industrial control) and reliability
values ranging from 10−2 (e.g., VoIP) to 10−8 (e.g., industrial
control) [70]–[72]. These application specific requirements
provide a good starting point for pruning the fog execution
points unable to satisfy them. However, they do not provide
any additional insight about typical latency and reliability
values expected to occur in heterogeneous and dynamically
changing fog computing systems. The statistical characteri-
zation of latency and reliability in fog computing through
extensive data collection and experimentation under varying
operating conditions is an important research direction. This
point requires a more comprehensive experimental study and
collective effort from researchers in the field. A recent work
to characterize task completion latencies in fog computing can
be found in [73].

C. Iterative LQR and Guided Policy Search

Beyond the conventional and emerging applications cited
above, the class of linear controllers we have studied in this
paper also plays a major, and perhaps more exciting, role in
control of nonlinear IoT systems [74]–[77]. A modified version
of the LQR problem is iteratively solved to obtain a locally
optimal controller for controlling a two-link arm and a group
of muscle actuators having nonlinear state update dynamics
in [74]. The linearization is based on the Jacobian of the state
update function around the system trajectory obtained in the
previous iteration. The resulting iterative LQR-based control
policy performs better than nonlinear controllers derived based
on the Pontryagin’s minimum principle, both in terms of its
computational power and cost value.

Series of papers [75]–[77] considered guided policy search
methods for robots to learn visuomotor control policies. The
input is a raw image data, the control policy is a set of weights
of the deep convolutional neural network and the output is a set
of motor torque commands. The optimum control policy and
state update dynamics are highly nonlinear. However, when
the control policy is trained to learn the trajectories generated
by the LQR iteratively, it is shown to converge to a locally
optimum control policy with sufficient level of confidence in
accomplishing the tasks such as shape sorting, screwing a cap
onto a bottle and placing a coat hanger. These examples indi-
cate the potential of our results, albeit with further effort, to
guide the placement of virtual fog controllers even in cases
where the IoT node dynamics are nonlinear. Finally, we have
only considered discrete-time IoT node processes in this paper,

which is possible to obtain by sampling a continuous-time
process. The direct analysis of the continuous-time case can
be carried out by using either the Hamilton–Jacobi–Bellman
equation or the calculus of variations [55].

IX. CONCLUSION

Fog computing presents two levers of reliability and latency
to regulate the performance of virtual control services to
enable/manage smarter IoT endpoints over a network. In
this paper, we have introduced a framework to investigate
the potential of fog computing for this end. Specifically,
we have derived optimum control policies and the result-
ing min-cost performance for controlling stochastic IoT node
processes by considering service reliability and communica-
tion/computation latency over a fog network. Our results reveal
the way in which reliability and latency influence the qual-
ity of virtual control services over fog. In particular, it has
been observed that latency is more critical than reliability in a
fog computing environment since it determines both the fre-
quency of corrective control actions and the timeliness of state
measurements. These results have been illustrated for a drone
trajectory tracking control problem.

This paper offers an initial step to discover the utility of fog
computing for virtual control applications, with several impor-
tant future research directions remaining. First, this paper does
not consider how to provision control services for multitenant
control applications running at the same fog endpoint. In such
cases, a performance criterion must be jointly optimized over
multiple clients by considering their service blockage prob-
abilities and latencies. Second, an imperfect match between
the virtual fog controller and the IoT node process introduces
only an initial setup delay without impacting the frequency of
corrective control to a large extent in some applications. In
such cases, our analysis presented in Section VI still applies,
but with a virtual estimator and controller running at all times
after the initial setup delay. Over a large time-horizon, the
negative effects of initial setup delay can be counteracted and
the reliability may emerge more detrimental than latency in
these cases. Finally, extensions of our results in this paper to
nonlinear IoT node processes are also of interest for control
applications in which the linearity assumption in (1) does not
hold or a reasonable linear approximation for the IoT node
process cannot be obtained.

APPENDIX

PROOF OF THEOREM 2

Consider two different systems, the first one with Markov
transition probabilities 1 − q and q, and the second one
with p and q. Consider the optimum control π� achieving
J�(1−q,q)(x0, τ0) for the first system. We apply the same control
to system 2, although being suboptimum, to obtain the upper
bound. Let J�(1−q,q)

k (xk, τk) and J(p,q)

k (xk, τk) be the cost-to-go
values for systems 1 and 2 under π�, starting at xk and τk. It
is easy to see that

J(p,q)

k (xk, 1) ≤ J�(1−q,q)

k (xk, 1) (22)
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and

J(p,q)

k (xk, 0) ≤ J�(1−q,q)

k (xk, 0) (23)

for k = N − 1, N. Assume the same holds for k + 1 ≤ N − 1
as an inductive argument. Then, we have

J(p,q)

k (xk, 1) = x�k Qkxk +
(
u�

k

)�Rku�
k

+ pE(xk,1)

[
J(p,q)

k+1 (xk+1, 1)
∣∣u�

k

]

+ (1− p)E(xk,1)

[
J(p,q)

k+1 (xk+1, 0)
∣∣u�

k

]

where u�
k is the optimum control applied to system 1 at

time k after observing xk. Using the inductive argument and
observing that J�(1−q,q)

k (xk, 1) ≤ J�(1−q,q)

k (xk, 0), we have

J(p,q)

k (xk, 1) ≤ x�k Qkxk +
(
u�

k

)�Rku�
k

+ qE(xk,1)

[
J�(1−q,q)

k+1 (xk+1, 0)
∣∣u�

k

]

+ (1− q)E(xk,1)

[
J�(1−q,q)

k+1 (xk+1, 1)
∣∣u�

k

]

= J�(1−q,q)

k (xk, 1).

Repeating the same steps for J(p,q)

k (xk, 0) shows that
J�(p,q)

k (xk, τk) ≤ J�(1−q,q)

k (xk, τk) since J�(p,q)

k (xk, τk) ≤
J(p,q)

k (xk, τk), which proves the upper bound. Similar argu-
ments apply for the lower bound, too.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the Internet of Things,” in Proc. ACM MCC, Aug. 2012,
pp. 13–16.

[2] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[3] P. Levine. (Dec. 2016). Return to the Edge and the End of Cloud
Computing. [Online]. Available: a16z.com/2016/12/16/the-end-of-cloud-
computing/

[4] AWS Greengrass. Accessed: Jan. 2018. [Online]. Available:
aws.amazon.com/greengrass

[5] Azure IoT Edge. Accessed: Jan. 2018. [Online]. Available:
github.com/Azure/iot-edge

[6] OpenFog Consortium. (Feb. 2017). OpenFog Reference Architecture.
[Online]. Available: www.openfogconsortium.org/ra/

[7] ETSI Industry Specification Group. Mobile Edge Computing (MEC):
Framework and Reference Architecture. Accessed: Jan. 2018. [Online].
Available: www.etsi.org/technologies-clusters/technologies/multi-
access-edge-computing

[8] H. Esen et al., “Control as a service (CaaS): Cloud-based software
architecture for automotive control applications,” in Proc. ACM SWEC,
Apr. 2015, pp. 13–18.

[9] Z. Qi, P. Dong, K. Ma, and N. Sargeant, “A design of in-car multi-layer
communication network with Bluetooth and CAN bus,” in Proc. IEEE
AMC, Apr. 2016, pp. 323–326.

[10] A. E. Abdelaal, T. Hegazy, and M. Hefeeda, “Event-based control as
a cloud service,” in Proc. Amer. Control Conf., Seattle, WA, USA,
May 2017, pp. 1017–1023.

[11] A. Vick, J. Guhl, and J. Krüger, “Model predictive control as a service—
Concept and architecture for use in cloud-based robot control,” in Proc.
IEEE MMAR, Miedzyzdroje, Poland, Aug. 2016, pp. 607–612.

[12] M. Yannuzzi et al., “A new era for cities with fog computing,” IEEE
Internet Comput., vol. 21, no. 2, pp. 54–67, Mar./Apr. 2017.

[13] M. A. A. Faruque and K. Vatanparvar, “Energy management-as-a-service
over fog computing platform,” IEEE Internet Things J., vol. 3, no. 2,
pp. 161–169, Apr. 2016.

[14] Y. Gao et al., “Are cloudlets necessary?” School Comput. Sci., Carnegie
Mellon Univ., Pittsburgh, PA, USA, Rep. CMU-CS-15-139, Oct. 2015.

[15] K. J. Aström and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. Princeton, NJ, USA: Princeton Univ. Press,
2010.

[16] D. Bertsekas, Dynamic Programming and Optimal Control, vol. 1.
Belmont, MA, USA: Athena Sci., 1995.

[17] Amazon Prime Air. Accessed: Jan. 2018. [Online]. Available:
www.amazon.com/Amazon-Prime-Air/b?node=8037720011

[18] A. Khan, E. Yanmaz, and B. Rinner, “Information exchange and decision
making in micro aerial vehicle networks for cooperative search,” IEEE
Trans. Control Netw. Syst., vol. 2, no. 4, pp. 335–347, Dec. 2015.

[19] X. Wang, A. Chowdhery, and M. Chiang, “SkyEyes: Adaptive video
streaming from UAVs,” in Proc. ACM HotWireless, Sep. 2016, pp. 2–6.

[20] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. Whitehouse,
“Reactive control of autonomous drones,” in Proc. ACM MobiSys,
Jun. 2016, pp. 207–219.

[21] P. B. Sujit, S. Saripalli, and J. B. Sousa, “An evaluation of UAV path
following algorithms,” in Proc. IEEE ECC, Jul. 2013, pp. 3332–3337.

[22] S. Kukreti, M. Kumar, and K. Cohen, “Genetically tuned LQR based
path following for UAVs under wind disturbance,” in Proc. IEEE ICUAS,
Arlington, VA, USA, Jun. 2016, pp. 267–274.

[23] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proc. IEEE INFOCOM, San Francisco, CA,
USA, May 2016, pp. 1–9.

[24] H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. IEEE INFOCOM, Atlanta, GA,
USA, May 2017, pp. 1–9.

[25] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog com-
puting networks with fog node cooperation,” in Proc. IEEE INFOCOM,
Atlanta, GA, USA, May 2017, pp. 1–9.

[26] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE INFOCOM, Orlando, FL, USA,
Mar. 2012, pp. 945–953.

[27] V. Liberatore, “Integrated play-back, sensing, and networked control,”
in Proc. IEEE INFOCOM, Apr. 2006, pp. 1–12.

[28] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, “Closed-loop control over
wireless networks,” IEEE Control Syst. Mag., vol. 24, no. 3, pp. 58–71,
Jun. 2004.

[29] K. Gatsis, A. Ribeiro, and G. J. Pappas, “Control with random access
wireless sensors,” in Proc. IEEE CDC, Dec. 2015, pp. 318–323.

[30] K. Gatsis, M. Pajic, A. Ribeiro, and G. J. Pappas, “Opportunistic control
over shared wireless channels,” IEEE Trans. Autom. Control, vol. 60,
no. 12, pp. 3140–3155, Dec. 2015.

[31] O. C. Imer, S. Yüksel, and T. Başar, “Optimal control of LTI sys-
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