
Demo Abstract: Catch My Eye: Gaze-Based Activity Recognition
in an Augmented Reality Art Gallery

Tim Scargill
Duke University

Durham, North Carolina, USA
ts352@duke.edu

Guohao Lan
Delft University of Technology

Delft, The Netherlands
g.lan@tudelft.nl

Maria Gorlatova
Duke University

Durham, North Carolina, USA
maria.gorlatova@duke.edu

ABSTRACT
The personalization of augmented reality (AR) experiences based
on environmental and user context is key to unlocking their full po-
tential. The recent addition of eye tracking to AR headsets provides
a convenient method for detecting user context, but complex anal-
ysis of raw gaze data is required to detect where a user’s attention
and thoughts truly lie. In this demo we present Catch My Eye, the
first system to incorporate deep neural network (DNN)-based activ-
ity recognition from user gaze into a realistic mobile AR app. We
develop an edge computing-based architecture to offload context
computation from resource-constrained AR devices, and present
a working example of content adaptation based on user context,
for the scenario of a virtual art gallery. It shows that user activities
can be accurately recognized and employed with sufficiently low
latency for practical AR applications.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality.

KEYWORDS
Augmented reality, eye tracking, activity recognition, edge comput-
ing, augmented reality art gallery

1 INTRODUCTION
Immersive art gallery and museum experiences are highly promis-
ing use cases for augmented reality (AR). These experiences may
take place in an existing institution, such as those already trialed in
the Kunsthalle Munich [7] and Tate Britain [4], or consist entirely
of virtual content presented in the home or classroom, an approach
which holds great potential in democratizing access to artworks.
What both have in common is the capacity to present, alongside
exhibits, additional virtual content, contextualized and personalized
for each user, that improves engagement and educational outcomes.

However, we only wish to display additional virtual content
that is relevant to the user at a given point in time; rendering
too many AR objects at once has been shown to cause a drop
in frame rate due to the associated resource demands, even on
specialized devices like headsets [1], as well as cognitive overload
of users in educational scenarios [3]. We therefore require a method
of detecting which exhibit a user is currently engaging with. The
addition of eye tracking to AR headsets such as the Magic Leap One
and the Microsoft HoloLens 2 raises the prospect of employing a
user’s gaze for this type of context detection. Critically though,
just because a user is looking in the direction of an exhibit it does
not mean they are paying attention to it. Imagine you are having
a conversation with someone standing in front of a painting: the
direction of your gazemight indicate you are looking at the painting,

(a) (b)

Figure 1: Screenshots from Catch My Eye in action on the
Magic Leap One AR headset. Different content is displayed
in a virtual art gallery depending on the user activity, i.e.,
viewing painting or reading the text, that is detected using
the gaze signal captured by the eye tracker.

but it would be distracting if additional virtual content started
playing behind the other person.

We propose a solution by supplementing gaze direction with
gaze-based activity recognition and head pose, to determine if a user
is truly engaging with the content they are looking towards. We
developed a gaze-based activity recognition classifier for the case of
a virtual art gallery in our accompanying paper, EyeSyn [6], and in
this demo we present Catch My Eye, a full working system with a
commercial AR headset and realistic virtual content. An illustration
of Catch My Eye in action is shown in Figure 1. While gaze-based
prediction of user intent has recently been demonstrated in virtual
reality [2], to the best of our knowledge, our work is the first to
incorporate DNN-based activity recognition from user gaze intomobile
AR, which we demonstrate in a context-aware app for the scenario
of an augmented reality art gallery. As shown in Figure 2, we also
propose an edge computing-based system design (below) to ensure
low computational latency for DNN-based context-awareness.

2 SYSTEM DESIGN
The system architecture of Catch My Eye is shown in Figure 2.
We implement an edge computing architecture to obtain online
activity classification results. This architecture enables us to offload
the computationally expensive DNN inference task from resource-
constrained AR devices, while ensuring low latency from data trans-
mission time and avoiding the wider dissemination of sensitive user
gaze data. Communication between the AR device and the edge
server is over a one-hop wireless local area network connection.
We now detail system functionality through an overview of each
of the modules contained in Figure 2.

Motion detection: This module takes the user head pose (posi-
tion and orientation) in each frame of the AR app as input, which is
available as the headset camera pose in standard APIs, and outputs a

https://orcid.org/0000-0002-6583-4976


IPSN ’22, May 04–06, 2022, Milan, Italy Tim Scargill, Guohao Lan, and Maria Gorlatova

Figure 2: The system architecture of Catch My Eye. Gaze
points available through eye tracking are sent from the AR
headset to the edge server. The classification result is sent
back to the headset to display appropriate virtual content.

binary indicator of high user motion (e.g., when the user is walking
or looking around). The time series head pose data is analyzed using
a window size of 0.5s; if the Euclidean distance between the head
positions at the start and end of the window is greater than 0.25m,
or the angle between the start and end head rotations is greater than
30◦, a high level of user motion is detected. This enables us to filter
out time periods during which DNN-based activity classification
is not required: a high level of user motion indicates that a user
is unlikely to be engaging with one of our static art exhibits, and
we can avoid making unnecessary classification requests at these
times by disabling the gaze pre-processing module.

Gaze pre-processing: This module is only enabled when low
user motion is detected, in which case we consider the user may be
engaging with an exhibit. Here we collect and process the 3D gaze
points provided by the on-board eye tracker. We remove raw gaze
samples that are corrupted (e.g., the eye tracker fails to estimate gaze
when the user is blinking or the user’s eyes are closing). The Magic
Leap One leverages the confidence level to assess its confidence on
the correctness of the gaze estimation results. In our current design,
we filter out gaze samples with a confidence level lower than 0.6.
We use a sensing window size of 10s, convert the collected gaze
samples within the sensing window to JSON format, and send them
to the edge server via an HTTP PUT request.

Gaze graph modeling: After receiving the gaze data on the
edge server, we perform data normalization and outlier filtering
on the gaze points. We then model the processed data as a spatial-
temporal graph [5] to ensure better system robustness against the
heterogeneity of gazes among different users.

Activity classification: Our classification model (for details see
Section 5.2 of our accompanying work, EyeSyn [6]), takes a 128×128
gaze heatmap as input (the graph representation of the gaze points),
and outputs one of three common activities performed by users
while engaging with our virtual exhibits: Reading text, Viewing
painting, and Watching video. If the classification confidence score
is less than 0.5, we consider it a ‘null’ result.

Virtual contentmanagement: The gaze vector calculated from
a gaze point, and where it first intersects with the spatial mesh of
either the real world or a virtual object, indicates when a user is
looking towards an exhibit without it being occluded. We then
use the activity classification result to confirm whether a user is
engaging with that exhibit (i.e., their activity matches the type of

virtual content). While a user remains engaged with an exhibit, the
relevant additional virtual content is activated.

3 INTERACTIVE DEMONSTRATION
We use the same architecture shown in Figure 2 for our demonstra-
tion. It is performed on a Magic Leap One running Lumin SDK 0.26,
and an AR app built with Unity 2019.4.4f1. We run the edge-based
gaze graph modeling and activity recognition on a desktop com-
puter with an Intel i7-9000 3GHz CPU and an Intel UHD Graphics
630 GPU. A video of the demonstration is available online.1 In a
live demo a laptop will be used as the edge server.

Prior to the demo, an administrator has placed persistent AR
content related to different artists around the room; for each artist
there is a painting, a piece of text, and a video. When the user starts
the AR app, ‘Gathering data’ appears in green text to indicate the
app is gathering a sufficient window of gaze data to serve as input
to the gaze-based activity recognition classifier. Once this data is
available, a result from the activity classification module is rapidly
received (end-to-end system latency is less than 200ms). Because
the result, Viewing painting (displayed in green text) matches the
content type, a painting, specific virtual content is activated to
accompany the landscape painting: a cloud and rain (shown in
Figure 1a), plus music inspired by the region.

When the activity classification result indicates the user has
stopped viewing the painting, the accompanying virtual content
is deactivated. Green text now shows the result is Reading text,
and because the user is looking towards a piece of text, the accom-
panying virtual content is displayed: buttons to the left and right
of the text which link to related information (Figure 1b). When
the user returns to view the painting, the activity change is once
again detected; the content that accompanies the text is deactivated
and the content accompanying the painting is reactivated. In a live
demo, users will be able to examine additional exhibits.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CSR-1903136 and
CNS-1908051, NSF CAREER Award IIS-2046072, and an IBM Faculty
Award.

REFERENCES
[1] Jaewon Choi, HyeonJung Park, Jeongyeup Paek, Rajesh Krishna Balan, and Jeong-

Gil Ko. 2019. LpGL: Low-power graphics library for mobile AR headsets. In
Proceedings of ACM Mobisys 2019.

[2] Brendan David-John, Candace Peacock, Ting Zhang, T Scott Murdison, Hrvoje
Benko, and Tanya R Jonker. 2021. Towards gaze-based prediction of the intent to
interact in virtual reality. In Proceedings of ACM ETRA 2021.

[3] Matt Dunleavy, Chris Dede, and Rebecca Mitchell. 2009. Affordances and limita-
tions of immersive participatory augmented reality simulations for teaching and
learning. Journal of Science Education and Technology 18, 1 (2009), 7–22.

[4] Facebook. 2019. Augmenting abstraction: Facebook expands AR experiences
with Tate. https://tech.fb.com/augmenting-abstraction-facebook-expands-ar-
experiences-with-tate-britain/

[5] Guohao Lan, Bailey Heit, Tim Scargill, and Maria Gorlatova. 2020. GazeGraph:
Graph-based few-shot cognitive context sensing from human visual behavior. In
Proceedings of ACM SenSys 2020.

[6] Guohao Lan, Tim Scargill, andMaria Gorlatova. 2022. EyeSyn: Psychology-inspired
Eye Movement Synthesis for Gaze-based Activity Recognition. In Proceedings of
ACM/IEEE IPSN 2022.

[7] T-Systems. 2022. Impressionismmeets augmented reality. https://www.t-systems-
mms.com/en/references/kunsthalle-muenchen.html

1https://sites.duke.edu/timscargill/catchmyeye-demo/

https://tech.fb.com/augmenting-abstraction-facebook-expands-ar-experiences-with-tate-britain/
https://tech.fb.com/augmenting-abstraction-facebook-expands-ar-experiences-with-tate-britain/
https://www.t-systems-mms.com/en/references/kunsthalle-muenchen.html
https://www.t-systems-mms.com/en/references/kunsthalle-muenchen.html
https://sites.duke.edu/timscargill/catchmyeye-demo/

	Abstract
	1 Introduction
	2 System Design
	3 Interactive Demonstration
	Acknowledgments
	References

