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Mobile Augmented Reality

• Augmented reality (AR): the overlaying of 
virtual content onto a view of the real world

• Mobile AR facilitates this through portable, 
handheld or wearable devices

• Wide variety of use cases, from e-commerce 
to education and medicine 



Mobile AR Devices

• Specialized headsets (Microsoft 
HoloLens 2, Magic Leap One)

• Smartphones and tablets, supported 
by ARCore (Android) and ARKit (iOS)

• Onboard sensors map environment 
and track device pose within it
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AR Device Depth Sensors

• Headsets and high-end smartphones and 
tablets equipped with depth sensors

• Time-of-Flight (ToF) cameras provide 
real-time depth data; low power, high 
frame rate

• Raw depth maps incomplete due to 
range limitations and reflectance 
properties
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Virtual Object Scale Errors

• Existing depth map completion methods (e.g., [1, 2])  
result in inaccurate depth maps, causing errors in the 
size of rendered virtual objects

• Majority of respondents to our online survey on 
previous AR experiences indicated virtual object size 
errors are a somewhat frequent or a very frequent 
issue in mobile AR

[1] Jonathan T Barron and Ben Poole. 2016. The fast bilateral solver. In ECCV.
[2] Yinda Zhang and Thomas Funkhouser. 2018. Deep Depth Completion of a Single RGB-D Image. In IEEE CVPR.



InDepth Paper Contributions
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• ToF18K dataset: 18.6K depth maps + RGB

• New DNN architecture which obtains accurate 
depth maps with latency as low as 8.7ms

• Mean absolute error of depth estimates of        
20cm compared to 78cm in ARCore DepthLab

• In a user study 87% more participants rated virtual 
objects the correct size with InDepth than DepthLab



Time-of-Flight (ToF) Depth Cameras

• Consist of infrared emitter and receiver, measure properties 
of reflected light to estimate distance

• We focus on indirect ToF: modulate light to detect phase shifts

• Currently used on Samsung Galaxy Note 10+, Huawei P40 Pro, 
Microsoft HoloLens 2 and Magic Leap One
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ToF18K Dataset: Limitations of ToF Cameras

• 18.6K depth maps (plus RGB images) collected on a Samsung Galaxy 
Note 10+, in variety of indoor scenes
§ 47.2% of total depth pixels were missing
§ 50% of captured maps had more than 40% missing pixels
§ Errors due to distance and surface brightness or orientation
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Sample Issues in Depth Maps

• Measurement errors and artifacts caused by:
§ Distant surfaces, surfaces parallel to camera axis 
§ Very bright or dark materials
§ Undesired reflections
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DNN Architecture

• Two-branch encoder to extract features from RGB and depth inputs
• Dilated decoder block for depth data (right)
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Data Augmentation and Training

• Trained on Matterport 3D RGB-D dataset [3]

• Depth artifacts added based on our ToF18K dataset

• Custom hybrid loss function: weighted sum of Virtual Normal Loss [4], 
gradients of depth estimation error, and BerHu loss

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva, Shuran Song, 
Andy Zeng, and Yinda Zhang. 2017. Matterport3D: Learning from RGB-D Data in Indoor Environments. In 
International Conference on 3D Vision (3DV).
[4] W. Yin, Y. Liu, C. Shen, and Y. Yan. 2019. Enforcing Geometric Constraints of Virtual Normal for Depth Prediction. 
In IEEE ICCV.



Data-Driven DNN Evaluation

Method MAE (m) RMSE (m) 1.25 Latency (ms)

Bilateral filtering 0.774 1.978 0.613 1457.1

Markov random fields 0.618 1.675 0.651 685.0

Anisotropic diffusion 0.610 1.653 0.663 896.0

[Zhang and Funkhouser, CVPR 2018] 0.461 1.316 0.781 4036.6

[Huang et al., ICCVW 2019] 0.342 1.092 0.850 70.2

InDepth DNN 0.294 1.008 0.876 8.7

Metrics: MAE: Mean Absolute Error; RMSE: Root Mean Square Error; 1.25: percentage of pixels 
within the 1.25 error range; inference latency.
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Software Components and Testbeds

• Realized with OpenCV, PyTorch, and TensorRT

• Two edge testbeds (workstation-class and embedded-class)



System Performance Evaluation

Edge testbed 
latency (ms)

w-class e-class

End-to-end 26.3 36.5

Communication 
overhead 13.1 9.2

Image pre-
processing 4.5 10.8

DNN inference 8.7 16.5
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Accuracy MAE (m) RMSE (m) 1.25

Real-world 
experiments

0.238 0.468 0.941

Matterport 
3D reference

0.294 1.008 0.876



Comparison with State of the Art

• ARCore DepthLab: open-source software to view and interact with 
depth maps, generated by the ARCore Depth API for Android

• Higher depth estimation error than InDepth 
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User Experience: InDepth vs State of the Art

• Participants rated images of real painting in virtual frame

• 87% more participants rated virtual objects rendered with InDepth of 
the correct size compared to DepthLab
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Conclusions and Future Work

• InDepth DNN infers depth for missing regions in a depth map with a 
low latency; outperforms state of the art in both data-driven and user 
evaluations

• Future work includes incorporating technique into a full AR system 
with 6DoF tracking

• Fascinating opportunities for user studies which explore other types of 
virtual content errors
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