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ABSTRACT
Simultaneous localization and mapping (SLAM) takes in
sensor data, e.g., camera frames, and estimates the user’s
trajectory while creating a map of the surrounding environ-
ment. However, existing SLAM evaluation methods are not
reference-free, requiring ground-truth trajectories collected
from external systems that are infeasible for most scenar-
ios. In this demo, we present Deep SLAM Error Estimator
(DeepSEE), a framework that collects features from a stan-
dard visual SLAM pipeline as multivariate time series and
uses an attention-based neural network to estimate the track-
ing error at run time.We evaluate DeepSEE in a game engine-
based virtual environment, which generates the visual input
for DeepSEE and provides the ground-truth trajectory. Demo
participants can navigate the virtual environment to create
their own trajectories and view the online pose error esti-
mation. This demo showcases how DeepSEE can act as a
quality-of-service indicator for downstream applications.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile
computing systems and tools.
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Figure 1: Our demo system architecture, which showcases
DeepSEE evaluated in a virtual environment to calculate the
estimated pose and corresponding pose error at run time.
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1 INTRODUCTION
Simultaneous localization and mapping (SLAM), the process
of mapping an environment while concurrently tracking
the pose of a device within that environment, is employed
across various mobile systems, including augmented real-
ity headsets, unmanned aerial vehicles, and autonomous
cars [1, 4, 13]. However, even state-of-the-art SLAM algo-
rithms exhibit pose-tracking errors due to challenging input
data, e.g., textureless environments. The magnitude of these
errors can vary dramatically, ranging from as low as a few
millimeters to greater than one meter [3, 4, 7, 9].
Existing evaluation methods require external pose mea-

surements as ground-truth references to analyze the per-
formance of SLAM pose tracking. Traditionally, tracking
evaluations [3, 7, 14] are performed by comparing estimated
trajectories to the ground-truth poses obtained from opti-
cal tracking systems (e.g., in [8, 12]), but considerable setup
and calibration time for each new environment makes them
impractical for most scenarios. Recent work [2] has shown
promise in estimating the absolute trajectory error (ATE)
from input data characteristics. However, this work does not
implement online estimations. In addition, compared with
relative error (RE), which evaluates sub-trajectories and thus
provides a fine-grained evaluation of pose tracking, ATE is a
coarse metric for the overall trajectory and thus cannot act
as a timely evaluation at run time [14].
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We present Deep SLAM Error Estimator (DeepSEE), a
DNN-based solution which is the first to provide real-time,
online, reference-free estimates of short-term SLAM tracking
error (in terms of the sub-trajectories used to calculate RE).
We implement DeepSEE on top of a state-of-the-art visual
SLAM algorithm, ORB-SLAM3 [4]. Figure 1 illustrates our
demo pipeline, showing that DeepSEE can be seamlessly inte-
grated into existing mobile systems with minimal overhead,
and provides estimated pose error as a quality-of-service
indicator for downstream applications.

2 SYSTEM DESIGN
Figure 1 shows our demo system architecture. We build a
virtual environment in a game engine, which renders camera
frames based on user input. Visual SLAM takes in camera
frames to estimate the user’s pose; meanwhile, DeepSEE
collects features from the SLAM pipeline and uses a pose
error estimation model to estimate the pose error.

Virtual environment: We evaluate DeepSEE in a game
engine-based virtual environment. The game engine moni-
tors user inputs from a keyboard that allows users to explore
virtual environments and renders camera frames in first-
person perspective as the visual input for DeepSEE. Com-
pared with a real-world evaluation, the virtual environment
makes the ground-truth trajectory more easily accessible
and allows us to quickly adapt to various environments by
loading different game engine settings [5, 6, 10].

Visual SLAM: This module estimates the user’s trajectory
and builds a map of the surrounding environment based on
camera frames. It has three main modules, tracking, local
mapping, and loop closure, which conduct different levels of
optimization for pose estimation and mapping [1, 4].
Feature collection: We implement this module on top

of a visual SLAM pipeline to collect features from the visual
input and the internal status of the three main SLAM mod-
ules, including image contrast, matched inliers, local bundle
adjustment error, and global bundle adjustment error, from
the visual input, the tracking, local mapping, and loop clo-
sure modules, respectively. The features are sampled at the
camera frame rate and recorded over a fixed period, forming
multivariate time series for pose error estimation. To reduce
the data collection overhead and latency, we implement this
module using multi-threading, allowing concurrent feature
collection through shared memory.
Pose error estimation model: We formulate the pose

error estimation task as a supervised multivariate time series
regression problem, whose features are the multivariate time
series we collect from the visual SLAM pipeline and its vi-
sual input. We assign the pose errors between the estimated
trajectory and the ground-truth trajectory to the time series
as their labels. The model architecture uses multi-head atten-
tion layers to extract features and uses fully connected layers

Figure 2: DeepSEE in action. Demo participants interact with
a virtual environment; DeepSEE estimates the pose error of
visual SLAM running in the virtual environment.

for regression. To train our model, we generate our training
set from both virtual environments and real-world SLAM
benchmarks, including the SenseTime SLAM benchmark [7].

3 INTERACTIVE DEMONSTRATION
The demonstration follows the pipeline shown in Figure
1. It allows participants to gain insights into 1) how their
movements in the virtual environment and visual input char-
acteristics impact the SLAM tracking error, and 2) how the
proposed multivariate time series regression model estimates
the pose error. We provide an annotated demo video online.1
The virtual environment is built in a game engine, Unity

2021.3.8f1 [11]. We run DeepSEE in Ubuntu 22.04 on a Razer
laptop (CPU: Intel i7-12800H; GPU: Nvidia RTX3080Ti). As
shown in Figure 2, participants use a keyboard to move
around the virtual environment, in the first-person perspec-
tive rendered by the game engine. DeepSEE takes in the
camera frames generated during a participant’s interaction
with the virtual environment to run visual SLAM and collect
features to estimate pose error. It takes the ground-truth
trajectory and the trajectory estimated by the visual SLAM
algorithm to compute and visualize ground-truth pose error.
Participants can compare their movements in the virtual

environment with pose error results to understand how mo-
tion and visual input data characteristics impact SLAM per-
formance, and how the proposed pose error estimationmodel
performs compared with the ground-truth pose error. In our
evaluations, we measure our model’s performance on tra-
jectories 𝐴0 ∼ 𝐴7 of the SenseTime SLAM benchmark [7],
with leave-one-out cross-validation. DeepSEE estimates the
relative pose error with a root mean square error (RMSE)
of 8.45 cm, which outperforms the baseline [2], a random
forest regression method with RMSE of 13.81 cm, by 38.8%.
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