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ABSTRACT
Mobile augmented reality (AR) has a wide range of promising
applications, but its efficacy is subject to the impact of en-
vironment texture on both machine and human perception.
Performance of the machine perception algorithm underly-
ing accurate positioning of virtual content, visual-inertial
SLAM (VI-SLAM), is known to degrade in low-texture con-
ditions, but there is a lack of data in realistic scenarios. We
address this through extensive experiments using a game
engine-based emulator, with 112 textures and over 5000 trials.
Conversely, human task performance and response times
in AR have been shown to increase in environments per-
ceived as textured. We investigate and provide encouraging
evidence for invisible textures, which result in good VI-SLAM
performance with minimal impact on human perception of
virtual content. This arises from fundamental differences
between VI-SLAM-based machine perception, and human
perception as described by the contrast sensitivity function.
Our insights open up exciting possibilities for deploying am-
bient IoT devices that display invisible textures, as part of
systems which automatically optimize AR environments.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented
reality.
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1 INTRODUCTION
The visual textures in a real-world environment play a promi-
nent role in determining the quality of augmented real-
ity (AR) experiences, because they impact both AR system
performance and, as illustrated in Figure 1, user perception
of virtual content. These effects are in turn subject to other
dynamic factors, including lighting and user motion. Inspired
by works that employ IoT devices to optimize environments
for comfort [1, 29] and energy efficiency [20, 24], and ambi-
ent displays to enhance mental health [9], this motivates the
development of IoT-enabled texture optimization systems
for AR, in which ambient displays automatically provide en-
vironment textures best-suited to current interactions. How-
ever, to inform the design of these systems we must first
quantify the impact of texture, and examine the potential for
textures which satisfy the needs of AR systems and users.
The challenge in identifying optimal environment tex-

tures for AR arises from the conflicting requirements of ma-
chine and human perception. Modern mobile AR systems
rely on visual-inertial simultaneous localization andmapping
(VI-SLAM)-based device pose tracking to accurately position
virtual content; when sufficient texture is not available in
input camera images, VI-SLAM algorithm performance de-
grades [5, 17], and virtual content appears out of position or
unstable [26, 32]. On the other hand, complex background
textures are generally detrimental for human perception in
AR, because they can be distracting or affect virtual content
visibility [30, 37]. Here we compare the effect of texture on
machine perception, i.e., VI-SLAM, with human perception
of texture, to inform the design of environments which sup-
port good tracking performance and are perceived as low in
complexity by AR users.

https://doi.org/10.1145/3570361.3613468
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(a) (b)
Figure 1: Virtual 3D equipment assembly instructions
viewed on aMagic Leap One AR headset, in front of dif-
ferent textures on an IoT ambient display (a smart TV).
Interpreting virtual content in front of a texture prior-
itizing VI-SLAM performance (a) is more challenging
than with a texture prioritizing human factors (b).

We start by quantifying the effect of environment texture
on VI-SLAM performance, using a game engine-based emu-
lator to test device trajectories with existing ground truth in
realistic virtual environments. We then compare VI-SLAM
performance with human (subjective) scores of texture com-
plexity to answer two questions: (1) Is human complexity
perception a valuable predictor of VI-SLAM performance?
and (2) Can we identify what we term invisible textures, tex-
tures humans perceive as low in complexity, yet which result
in near-optimal VI-SLAM performance? To the best of our
knowledge, this work is the most extensive evaluation of the
effect of texture on VI-SLAM performance, and the first to an-
alyze this in the context of human perception of texture. First
we cover related work (Section 2) and detail our VI-SLAM
visual texture experiments setup (Section 3). We present our
results and analyze the relationships between texture and
VI-SLAM performance (Section 4), as well as the relationship
between VI-SLAM performance and human perception of
texture complexity (Section 5), then finish with conclusions
and future work (Section 6). Our key contributions are:
• We perform the most extensive evaluation of the effect
of environment texture on VI-SLAM performance to date,
with 112 textures, five different environment and trajec-
tory combinations, and over 5000 total trials.

• We demonstrate the impact of texture on VI-SLAM per-
formance, with error for the worst-performing texture
ranging from 203–3171% of error for the best-performing
texture, and identify key texture characterization metrics.

• We analyze the relationship between VI-SLAM perfor-
mance and human perception of texture complexity, demon-
strating the problem with using subjective complexity
measures for environment design, and revealing the po-
tential for deploying invisible textures in AR environments.

2 RELATEDWORK
Effect of texture on VI-SLAM performance: The vast
majority of AR systems use feature-based VI-SLAM, which is

less robust than direct methods to low-texture environments
[5, 17]. Some VI-SLAM benchmarks provide valuable qual-
itative descriptions of visual inputs [3, 17], however none
quantify environment texture – in general texture in this
context is under-studied. In [30] we examined the effect of
texture on VI-SLAM performance using two characterization
metrics and empty cuboid environments; we build on this
with more characterization metrics, environments represen-
tative of AR scenarios, and a larger set of textures.

Human perception of texture complexity: In contrast,
human perception of texture has received much more at-
tention; we focus on the relationship between texture char-
acteristics and perceived complexity (e.g., [8, 13]). This has
many applications, including product design [13] and video
quality assessment metrics [36]. Qualitatively, a texture’s
‘regularity’, ‘understandability’ and ‘quantity of details’ are
reported as important in complexity perception, with more
regular textures perceived as less complex [8]. A variety of
quantitative metrics have been considered in the prediction
of human complexity perception (e.g., [8, 13]) and we draw
inspiration from this work in our characterization metrics.
Effect of texture on human perception in AR: The

cognitive states of human occupants are affected by envi-
ronment textures. Occupants may report being distracted
by textures [30] or complete tasks less effectively in tex-
tured environments [10]. Users of AR devices with optical
see-through displays (e.g., Microsoft HoloLens and Magic
Leap headsets) may also experience impaired virtual content
visibility due to background texture. Studies of text legibil-
ity reported increased error rates and response times with
textured backgrounds [11], and higher background texture
contrast results in higher response times and greater per-
ceived virtual content transparency in optical see-through
AR [37]. This motivates our search for invisible textures with
low perceived complexity and low contrast (Section 5).

3 VI-SLAM VISUAL TEXTURE
EXPERIMENTS SETUP

In this section we detail the texture datasets and character-
ization metrics we used for our experiments, the setup of
our VI-SLAM visual texture evaluations, and the VI-SLAM
sequence configurations we tested in our experiments.

3.1 Visual Texture Datasets and
Characterization Metrics

For our VI-SLAM texture experiments we chose the texture
images used in [8], for which image files, texture characteri-
zationmetrics and human subjective scores of complexity are
available. This set of 112 textures comprises two datasets: 54
images from the VisTex dataset [25], and 58 images from the
RawFooT dataset [16].We quantified texture properties using
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Table 1: Characterization metrics used to quantify the
properties of textures in our VI-SLAMvisual texture ex-
periments (GLCM = gray-level co-occurrence matrix).

Metric Description
Brightness Normalized mean pixel intensity

Contrast_RMS Root mean square contrast
Entropy Shannon entropy [34] of pixel

intensities
Laplacian Variance of the Laplacian [12]
Corners Number of corners detected by the

FAST algorithm [28], using OpenCV
Contrast Contrast derived from GLCM [22]

Correlation How correlated each pixel is with its
neighbors, derived from GLCM [22]

Energy Sum of squared GLCM elements [22]
Homogeneity Distribution of GLCM elements with

respect to the diagonal [22]
Freq. Factor Ratio between the frequency

corresponding to 99% of the image
energy and Nyquist frequency [7]

Edge Density Density of edge pixels as defined by
the Canny edge detector [27]

11 characterization metrics, detailed in Table 1. For each tex-
ture we calculated Brightness, Contrast_RMS, Entropy,
Laplacian and Corners using Python. We obtained Con-
trast, Correlation, Energy, Homogeneity, Freq. Factor
and Edge Density from [8]. Higher values indicate greater
texture for Contrast_RMS, Entropy, Laplacian and Cor-
ners, Contrast, Freq. Factor and Edge Density. Lower val-
ues indicate greater texture for Energy and Homogeneity;
for Correlation lower values indicate randomly arranged
pixels rather than recognizable textural elements.

3.2 VI-SLAM Evaluation Setup
To study the effect of texture in controlled experiments we
implemented the open-source game engine-based VI-SLAM
evaluation methodology we developed in [30]. As such we
used the ground truth pose in existing SLAM datasets (e.g.,
[17, 33]) to create camera images in virtual environments,
and combined them with the original inertial data to form
new VI-SLAM sequences. We created new virtual environ-
ments with our textures in Unity 2020.3.14f1 (see Section 3.1),
then generated new sequences for different combinations of
environments, trajectories and textures (see Section 3.3).

We executed sequenceswith a state-of-the-art, open-source
monocular VI-SLAM algorithm, ORB-SLAM3 [5] (default pa-
rameters). We ran them on a desktop PC (Intel i7-9700K
CPU, Nvidia GeForce RTX 2060 GPU), using a virtual ma-
chine with 4 CPUs and 8GB RAM – computational resources

representative of a mobile AR device. To evaluate trajectories
we used the toolbox in [38]. We used the same performance
metrics as [30]: median RE, the median of the translational
component of relative error for each trial, and robustness, the
mean percentage of input frames tracked over all trials.

3.3 VI-SLAM Sequence Configurations
The aim of our VI-SLAM experiments was to examine the
effect of texture across a variety of scenarios. To this end we
created five sequence configurations, each with a different
combination of virtual environment and device trajectory.
We created two virtual environments in Unity, Room and
Table. Room was a 6m×6m×6m empty room designed to test
textures in isolation; for each new sequence a texture was
applied to the walls, floor and ceiling. Table was designed to
replicate the scenario of an AR-assisted assembly or repair
task: an 8m×8m×4m factory environment including a robotic
arm and a table with a motorbike engine on it. To create each
sequence in Table the texture was applied to the 1.5m×1.5m
table top. Images of these environments can be found at
https://github.com/timscargill/Invisible-Textures/.

To generate sequences in our environments we used four
trajectories from two VI-SLAM datasets. From TUM VI [33]
we used room5, a trajectory with rapid motion representative
of a dynamic AR user, with camera views scanning almost
all environment regions. From SenseTime [17] we used A3,
A5 and A6, trajectories more representative of an AR user en-
gaged in an assembly or repair task, with slower motion and
the camera angled downwards throughout. We ran room5
andA6 in Room, andA3,A5 andA6 in Table, for five sequence
configurations: Room_room5, Room_A6, Table_A3, Table_A5
and Table_A6. Table_A3 starts by focusing on the wall and
floor before focusing on the table top; Table_A5 starts by
focusing on the table top before moving to an area of the
floor; Table_A6 remains focused on the table top throughout.

4 VI-SLAM VISUAL TEXTURE
EXPERIMENTS RESULTS

Next we present our VI-SLAM texture experiments results,
first covering performance variation with texture, then the
relationships between texture properties and performance.

4.1 VI-SLAM Performance Variation with
Visual Texture

Figure 2 shows VI-SLAM performance variation across tex-
tures, with each data point representing results for one tex-
ture over 10 trials. For median RE (Figure 2a–e), the greatest
variation was observed with the most challenging inertial
data, Room_room5, with median RE ranging from 2.1cm to
66.6cm – median RE for the worst-performing texture was
3171% of median RE for the best-performing texture, despite

https://github.com/timscargill/Invisible-Textures/
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Figure 2: Median RE (a–e) and robustness (f–j) for the five sequence configurations in our VI-SLAM visual texture
experiments. We observed notable performance variation across textures in all configurations, with median RE
for the worst-performing texture ranging from 200% to 3171% of median RE for the best-performing texture.

high robustness (> 96%) in both cases. In fact, texture had a
large impact on median RE in all configurations; in the least
challenging configuration with the least performance varia-
tion, Table_A5, median RE for the worst-performing texture
(7.5cm) was still 203% of median RE for the best-performing
texture (3.7cm). This illustrates the impact of texture selec-
tion, and how errors occur even while tracking functions.
For robustness (Figure 2f–j), performance variation was

greater in Room than Table. In Room_room5 eight textures
failed completely on all trials (robustness = 0%) and seven
further textures resulted in robustness < 10%; in Room_A6 13
textures failed on all trials. As with median RE, greater per-
formance variation was observed in the RawFooT dataset due
to the presence of more low-texture images than in VisTex.
Our robustness results demonstrate that in scenarios where
camera views contain a single texture (e.g., a wall, a floor), the
choice of that texture is critical for ensuring tracking functions
at all. Environment designers should avoid large low-texture
regions to avoid these tracking losses, during which virtual
content will be unreliable or disappear completely.

4.2 Relationships between Visual Texture
Properties and VI-SLAM Performance

First we consider robustness, i.e., how one selects textures to
ensure tracking functions. The most common reason for low
robustness in Roomwas low Brightness. In Room_room5 the
five textures with the lowest Brightness (< 0.14) failed on all
trials, while six of the remaining 10 textures with robustness
< 10% had Brightness < 0.25. In Room_A6, the six textures
with the lowest Brightness (< 0.18) failed on all trials, while

five of the remaining seven textures which failed had Bright-
ness < 0.25. Because the texture covers all surfaces in Room,
the light illuminating a texture is largely determined by how
much light it reflects (the Brightness); hence textures with
low Brightness result in texture not being visible due to low
illuminance. The only low Brightness textures with high
robustness had high Laplacian – strong edges visible even
at low illuminance. Other textures which resulted in robust-
ness < 10% had lowContrast_RMS. Our results indicate that
environments with low illuminance require textures with
high edge strength (Laplacian), or alternatively, textures
with lower edge strength require higher illuminance.

To examine the relationships between texture properties
and tracking errorwe calculated the distance correlation coef-
ficients [35] (chosen to detect non-linear and non-monotonic
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Figure 4: Median RE vs. Entropy for the four SenseTime sequence configurations in our VI-SLAM texture experi-
ments. We observed a negative correlation for all configurations, but notable outliers were textures with low Edge
Density (Room_A6 and Table_A3) and the five highest Edge Density values (Room_A6 and Table_A6).

relationships) between our characterization metrics (Sec-
tion 3.1) and median RE. Figure 3 shows a heatmap of these
correlation coefficients for each sequence configuration. In
general the coefficients for Room_room5 are the lowest be-
cause the challenging inertial data contributes to error to
a greater degree. In trials with high RE in Room_room5 the
pose estimate diverged dramatically from the ground truth
at similar points in the trajectory, characterized by rapid mo-
tion combined with challenging environment regions, e.g.,
dark corners or views of a small area with low texture. We
note that textures with high Brightness and Edge Density,
such that visible texture covers all environment regions, re-
duces the likelihood of large errors, but characterization of
challenging regions is a topic of our ongoing work.
Taking next configurations with SenseTime trajectories

(Room_A6, Table_A3, Table_A5 and Table_A6), Figure 3 shows
higher correlation coefficients between characterization met-
rics and median RE than for Room_room5. For Room_A6, the
strongest correlation is for Corners, and textures with low
Corners resulted in higher error; in Room the lack of texture
from other objects means we rely more on the chosen texture
for tracking. For Table_A3 and Table_A5, the strongest corre-
lations are with Entropy and Energy – Figure 4 shows how
in general greater Entropy (complexity) results in lower
median RE. However, these correlation coefficients are lower
for Room_A6 and Table_A6 due to the effect of other factors.
For Room_A6 a number of RawFooT textures with high En-
tropy but low Edge Density (< 0.1) resulted in high error
(also the cause of outliers for Table_A3); as we observed for

Room_room5, if camera views contain only a small part of a
texture without edges, then tracking quality is degraded. For
both Room_A6 and Table_A6 the five VisTex textures with
the highest Edge Density (> 0.32) had high Entropy but
resulted in high error. Our hypothesis is that limited camera
resolution combined with fine texture makes feature match-
ing less reliable, and we are investigating this in our ongoing
work. Overall, our experiments show that even when envi-
ronments contain other textured objects, choosing surface
textures with sufficient Entropy and Edge Density should
be priorities for designers of environments that host AR.

5 VI-SLAM PERFORMANCE AND HUMAN
PERCEPTION OF TEXTURE

Our first motivation for studying the relationship between
VI-SLAM performance and human perception of texture
complexity was to determine whether the latter is a good
predictor of the former. AR environment design guidelines
(e.g., [23]) are based on the assumption that human percep-
tion of complexity is positively correlated with VI-SLAM
performance, such that choosing a texture higher in per-
ceived complexity results in more accurate positioning of
virtual content. However, we see from Figure 5 that this is
not always the case: textures with high human complexity
scores can result in high median RE, while some textures per-
ceived as low in complexity result in near-optimal VI-SLAM
performance. This indicates that we cannot rely on human
perception of complexity to predict VI-SLAM performance,
and prompts the development of other prediction methods.
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Figure 5: Median RE vs. human complexity scores (from [8]) for textures in our experiments. If an environment
designer chooses a texture with a high human complexity score (> 60), it can still result in sub-optimal VI-SLAM
performance, while some textures with low human complexity scores (< 40) provide near-optimal performance.
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(a) (b) (c)
Figure 6: (a) Textures with low median RE and low
perceived complexity forRoom_A6,Table_A3,Table_A5
and Table_A6; (b) best Table texture prioritizing VI-
SLAM; (c) bestTable texture prioritizing human factors.

Our second motivation was the study of what we term
invisible textures, textures with near-optimal VI-SLAM per-
formance (median RE < 110% of the best-performing texture)
but perceived by humans as low in complexity. The textures
with the lowest human complexity score among those with
near-optimal VI-SLAM performance for Room_A6, Table_A3,
Table_A5 and Table_A6 are shown in Figure 6a. These tex-
tures had sufficientEntropy (> 6.0) andEdgeDensity (> 0.1),
and for the Table configurations, lowContrast_RMS (< 0.11).
No single texture had near-optimal VI-SLAM performance
for all Table configurations; the texture in Figure 6b, with a
somewhat high complexity score (51) and Contrast_RMS
(0.20) was closest to meeting these criteria. This illustrates
the challenge of selecting ‘simple’ textures that result in near-
optimal VI-SLAM performance for a variety of trajectories.

Indeed we note from [37] that the contrast in the textures
in Figure 6a and 6b may still cause visibility problems on AR
devices with optical see-through displays. We therefore fur-
ther restrict our definition of invisible textures to those with
lower Contrast_RMS (< 0.05), as well as a human complex-
ity score < 50. Prioritizing these human factors, the texture
with the best VI-SLAM performance is shown in Figure 6c;
this fine, low-contrast texture results in a maximum 0.2cm
increase in median RE compared to the best-performing tex-
ture in the Table configurations, and a 1.0cm increase in the
Room configurations, acceptable in many scenarios.
This ability to achieve good VI-SLAM performance with

low contrast textures less visible to humans is explained by
a fundamental difference between machine and human per-
ception. Texture visibility for humans is described by the
contrast sensitivity function [4], with decreasing pixel inten-
sity difference (contrast) resulting in decreasing visibility.
Detection of recognizable features in VI-SLAM on the other
hand is based on a fixed and relatively low threshold of pixel
intensity difference [28]. This insight, along with our exper-
imental results, indicate that as long as we select a texture
with sufficient Entropy and Edge Density, we can minimize
human perception of that texture by reducing contrast down to
the threshold required for feature extraction in VI-SLAM, with
relatively little impact on VI-SLAM performance. Moreover,
human contrast sensitivity decreases both at high spatial
frequencies (i.e., high Edge Density), and in certain areas

of the visual field [14, 15]. This indicates that we may be
able to further reduce the perceptual impact of low-contrast
textures to the point where they are truly invisible to the
naked eye, either by increasing Edge Density or placing
texture away from the center of a user’s gaze. We are in-
vestigating this and the influence of other factors such as
illuminance, viewing angle [2] and camera image resolution
in our ongoing work.

The promise of even near-invisible textures raises exciting
prospects for optimizing AR environments using distributed
systems. Just as IoT light bulbs can be used to optimize envi-
ronment illuminance [31], we envision employing ambient
displays to optimize environment texture. As shown in Fig-
ure 1, displaying a texture which prioritizes human factors
(Figure 6c) makes interpreting virtual content easier than a
texture prioritizing VI-SLAM performance (Figure 6b). Mo-
tivated by the asymmetries of human contrast sensitivity
across the visual field, these textures should adapt in real
time to the pose and eye movements of AR users (similar to
[6]), as well as their cognitive states, current task, and virtual
content properties. This in turn prompts the development of
systems and networks capable of consolidating and acting
upon contextual data with sufficiently low latency (e.g., edge
architectures [21, 39]), and which adapt texture optimization
techniques to current network conditions.

6 CONCLUSIONS AND FUTUREWORK
In this paper we compared machine and human percep-
tion of environment texture for AR, revealing evidence for
invisible textures, that result in good VI-SLAM performance
with minimal impact on human perception of virtual con-
tent. Arising from the differences between VI-SLAM feature
detection and the human contrast sensitivity function, the
characteristics of these textures inform environment design
for AR, including IoT-enabled texture optimization systems
using ambient displays. In future work we will develop and
test these systems, which will automatically display textures
according to the current context of AR interactions. As part
of this work, we will create and evaluate invisible textures
manufactured to our specifications, investigate methods of
adapting them in real time, and explore other types of am-
bient displays, e.g., light projections [18, 19]. We will also
examine the effect of texture for other VI-SLAM algorithms,
and determine optimal VI-SLAMparameters for performance
and resource management with different textures.
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