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placed inside (b), and the surgical assessment of the trainee’s EVD performance in scores and assessment feedback (c).

ABSTRACT

The integration of Augmented Reality (AR) with the external ventric-
ular drain (EVD) procedure improves catheter placement accuracy
by providing guidance to surgeons through a visualization of the
brain ventricular anatomy and other contextual information. How-
ever, the junior trainees often require feedback about their EVD
performance during the AR-assisted EVD procedure. Therefore,
we present an AR-assisted neurosurgical training tool for EVD
that provides a personalized assessment of the trainees’ EVD per-
formance. We use a sensing-integrated brain phantom model to
compute catheter placement accuracy, surgical task recognition to
identify trainees’ ongoing surgical tasks in real time, and provide
accuracy scores, performance scores, and text feedback. Our user
study with 16 medical and 12 non-medical students shows that the
personalized assessment helped them improve the distance to target
by 36.6% and 31.7% accordingly during a more challenging case of
EVD procedure. Furthermore, most of the students agreed that the
scores and assessment feedback given by our system were helpful in
improving their EVD performance.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented real-
ity; Applied computing—Life and medical sciences—Health care
information systems;
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1 INTRODUCTION

The placement of an external ventricular drain (EVD) is a routine
neurosurgical procedure conducted to redirect cerebrospinal fluid
out of the brain, providing relief from elevated intracranial pressure
associated with conditions like hemorrhage or obstructive tumors.
The conventional method for EVD placement involves freehand
insertion, relying on external anatomic landmarks, often performed
by junior neurosurgical trainees. Due to the number of repetitions
needed to improve catheter placement accuracy [29], junior trainees
are more likely to miss the target point of the foramen of Monro and
make multiple passes of the catheter that can increase the risk of
iatrogenic hemorrhages, infections, or damage to eloquent structures
deep within the brain. Furthermore, distorted anatomies such as
those caused by tumors or hemorrhages result in lower rates of accu-
rately placed EVDs [19]. This requires junior trainees to evaluate
their operative skills based on procedure-based skill assessments [1]
to improve their performance during EVD training.

Recent work in Augmented Reality (AR)-assisted EVD proce-
dures demonstrates that real-time visualization of the brain ventri-
cles [31, 32], optimal location of entry points for catheter [10] and
other contextual information about catheter placement [11, 37] in
AR holograms during the procedure can help surgeons improve the
EVD accuracy. However, junior trainees often need feedback about
their surgical performance, such as catheter handling or real-time
distance to the target point [6]. While computed tomography (CT)
scanning is used to evaluate catheter placement accuracy [23], a
manual assessment by senior faculty or residents using a checklist
or global rating scale [25] is further required to evaluate the trainees’
performance, such as catheter handling, in EVD training. This lim-
its AR-assisted EVD placement training in providing personalized
feedback to the trainees on their EVD performance.

To address these challenges, we designed, developed, and eval-
uated an AR-assisted neurosurgical training tool for EVD place-
ment that integrates automatic segmentation of the brain ventricle,
a sensing-integrated phantom, and surgical task recognition to pro-



vide feedback on the trainees’ surgical performance. Based on the
evaluation of the trainees’ EVD placement performance, we provide
accuracy and performance scores after the completed procedure
with text feedback to instruct the trainees on improving catheter
placement accuracy as shown in Fig. 1c. To the best of our knowl-
edge, our system is the first to provide personalized feedback about
trainees’ performance in EVD placement training. We evaluated our
system by conducting 224 trials of AR-assisted EVD placements
with 16 medical and 12 non-medical students across normal and
abnormal ventricular anatomies via an Institutional Review Board
(IRB)-approved study. Furthermore, we open-sourced our research
artifacts including the implementation of the threshold-based seg-
mentation1, the sensing-integrated phantom model1, and the surgical
task recognition2. Our contributions are as follows:

• We developed an AR-assisted neurosurgical training tool for
EVD placement that provides personalized feedback on trainees’
EVD performance. We compute catheter placement accuracy
by integrating camera sensors into the brain phantom model and
identify trainees’ ongoing surgical tasks using the phantom and
catheter tracking from OptiTrack cameras and hand gesture data
from HoloLens 2 in real time.

• We integrated a threshold-based segmentation of brain ventricular
anatomy to create 8 different brain ventricular models for AR
visualization. We open-sourced our threshold-based segmenta-
tion algorithm and sample datasets. Furthermore, we conducted
the first evaluation of AR-assisted EVD placement training on
automatically-segmented hemorrhage brain ventricles.

• We conducted more than 200 AR-assisted EVD placement trials
with 16 medical and 12 non-medical students, providing person-
alized feedback on their performance. We demonstrated that,
given assessment, both medical and non-medical students im-
proved their catheter placement accuracy during more challeng-
ing EVD cases with hemorrhage ventricular anatomies by 36.6%
and 31.7%, accordingly. Furthermore, our user study showed that
most of the participants agreed that scores and feedback were
helpful in improving their EVD placement performance.

2 RELATED WORK

AR-assisted EVD. The AR visualization of the intracranial anatomy
enhances the surgeon’s perception by improving the field of view in
neurosurgery [13,15,26]. In the EVD placement procedure, the brain
ventricle holograms provide guidance to surgeons for more accurate
targeting of the foramen of Monro, hence improving catheter place-
ment accuracy by reducing the distance to the target [5]. Prior work
in AR-assisted EVD reports that the distance to the target was re-
duced over 40% [11,24,36] compared to trials without AR guidance
(freehand). The AR guidance enhances the surgeons’ perception
intraoperatively; however, junior trainees and medical students often
require feedback to improve their surgical performance in train-
ing [3, 4]. Therefore, we integrate sensing with a brain phantom to
provide catheter placement accuracy to trainees in real time, and sur-
gical task recognition to provide feedback on the trainees’ catheter
handling. Furthermore, prior work has only been evaluated on stan-
dard brain ventricular anatomy [11, 31, 36]. Hence, we introduce
automated brain ventricular segmentation to conduct user studies in
more challenging EVD insertion scenarios (e.g., hemorrhage).

Phantom Models with Sensing. Phantom models, widely em-
ployed for realistic simulation in surgical training, have traditionally
been utilized for post-trial analysis, involving measurements of fac-
tors like positioning or the length of skin incisions [27]. However,
there is potential for sensorized phantom models to offer real-time

1https://github.com/AREVD
2https://github.com/Duke-I3T-Lab/Hand-gesture-recognition

Figure 2: Overall architecture of our AR-assisted neurosurgical
training system.

contextual information to trainees during surgical procedures. Previ-
ous studies have demonstrated the incorporation of various sensors
within phantom models for data collection in surgical applications,
such as electrodes within a liver phantom for detecting the position
of an inserted needle [35], strain sensors for impact sensing [17],or
wire coil sensors for measuring distances [33]. In EVD training, the
conventional approach involves a post-analysis that includes scan-
ning the brain phantom. This method proves to be both costly and
time-consuming in evaluating catheter placement accuracy, making
it impractical for providing immediate feedback to trainees after
their trials [5, 34]; thus, trainees are not able to receive feedback on
their catheter placement performance right after the trials. In con-
trast to related work primarily geared for post-analysis purposes [2],
we propose a phantom model with embedded camera sensors, allow-
ing for the real-time computation of catheter placement accuracy to
enhance AR guidance and provide immediate assessment to trainees.

Surgical Task Evaluation. In surgical training, skill-based evalu-
ation is used for trainees to learn and improve their surgical skills in
medical training. This evaluation is commonly performed by senior
faculty or residents observing the training session to evaluate the
trainees’ performance using criteria based on surgical tasks [22].
During the EVD procedure, the surgeon’s operative skills such as
completion time and handling of the catheter are important metrics
for surgical performance evaluation [1]. Recent work demonstrates
the use of deep learning-based methods [7, 12] to automate surgical
evaluation. Prior work in surgical AR guidance system for neonatal
endotracheal intubation (ETI) [40] is the most relevant to our work.
However, it assesses ETI performance based on the motions of a
laryngoscope and a manikin. It does not take full advantage of the
AR headset, leaving the integrated hand gesture tracking untouched.
Therefore, we propose the first AR-based training system for EVD
that fuses the position and orientation of the phantom model and
catheter with trainees’ hand gesture data to provide feedback about
EVD performance through real-time surgical task recognition.

3 OVERALL ARCHITECTURE

In this section, we describe the hardware setup of our AR-assisted
system in Section 3.1, the automatic segmentation module with the
evaluation of Dice coefficients across CT scans of various brain
ventricular anatomies in Section 3.2, the automatic computation of
catheter placement accuracy using a sensing-integrated phantom in
Section 3.3, surgical task recognition module in Section 3.4, and the
criteria for surgical performance evaluation in providing scores and
feedback to trainees in Section 3.5.

3.1 Hardware Setup
Fig. 2 shows the hardware for data collection and data processing
included in our setup. To overlay brain ventricle and catheter holo-
grams in AR, we used six Flex 3 OptiTrack cameras with lens specs
of 57.5 degrees in the field of view (FoV) to track the phantom model,
the localization marker (following a state-of-the-art approach [11]),
and the EVD catheter in real time, as shown in Fig. 1a. We used the
localization marker to compute the transformation of world coordi-



Figure 3: Segmentation results with varying slice thickness across
various brain ventricular anatomies.

nates between the HoloLens 2 and the OptiTrack system to ensure
high accuracy of image registration. The Transmission Control Pro-
tocol (TCP) is used as a data communication protocol between the
HoloLens 2 and the desktop server that transmits optical marker
location captured by the OptiTrack system, keeping the latency low
with 12.32ms averaged over 15 trials. Using the transformed coor-
dinate system, we created an AR app using Unity 2021.2.11f1 to
display the brain ventricular anatomy and the guidance (i.e., text
holograms for distance to target and angle of insertion).

On top of standard marker-based tracking for AR-assisted EVD
systems, we added a sensing-integrated phantom model and a sur-
gical task recognition module. We used a Raspberry Pi 4B to con-
nect with camera sensors embedded inside the phantom model as
a low-cost portable solution, sending the catheter placement accu-
racy results to HoloLens 2 via TCP. Furthermore, we used Nvidia
Jetson Xavier NX to run the inference for surgical task recognition.
Although we could have run the inference on the desktop server
with GPU, due to the modularity and compatibility in collecting and
processing the data, we ran the surgical task recognition module
on Nvidia Jetson by receiving hand gesture data from HoloLens 2
and phantom and catheter tracking data from the OptiTrack cam-
eras, then sending the inference results to HoloLens 2 via the User
Datagram Protocol.

3.2 Automatic Segmentation of Brain Ventricle

Prior work in automatic segmentation algorithms demonstrates the
use of deep learning [8, 21] or threshold-based [30] approaches to
segment a brain model. This model can be automatically displayed
in AR for surgical planning [23] or guidance in EVD procedures
[31]. However, only the standard brain ventricular anatomy has
been evaluated in state-of-the-art AR-assisted EVD [11, 31, 36].
Hence, we integrated threshold-based automatic segmentation with
our AR system to segment non-standard brain ventricular anatomies,
creating more challenging scenarios during EVD training. We used
threshold-based segmentation over deep learning since we only need
to segment the lateral ventricle and the foramen of Monro, as seen in
Fig. 1c, which are distinct regions in the brain that can be segmented
by a specific value of the threshold. We evaluated our segmentation
by comparing dice coefficients across 8 different anatomies from an
open-source anonymous patients’ database [20].

Our automatic segmentation segments the brain ventricle using
CT Digital Imaging and Communications in Medicine (DICOM)
images as inputs, then visualizes the segmented ventricular model
as a hologram in AR. We first created a 3D matrix and converted the
raw voxel values to Hounsfield units through linear transformation
for standardization across different scanners in the DICOM. We
resampled the slices to standardize pixel and slice spacing to 1 cubic
mm. We then set a threshold with a lower value of -10 and an
upper value of 15 to capture values corresponding to the ventricle.
We performed erosion to remove non-ventricle regions from the
model. Because the ventricles shrink after erosion, we then dilated
them to their original sizes. Once we obtained the 3D ventricular

Figure 4: Captured images from the two camera sensors inside the
phantom model with the catheter tip labeled as red points and the
metal bead as the target location of the foramen of Monro.

model, we created a mesh representation of the model using the
marching cubes algorithm. The mesh is constructed by connecting
the ventricle vertices to create the ventricle faces. These data are
then sent over from the edge server to HoloLens 2 via TCP. For
validation, we segmented eight different brain CT scans (C1-C8) to
evaluate the accuracy of the automatically-segmented ventricular
model for different scenarios of the EVD procedures, as shown in
Fig. 3. More information about our algorithm and the evaluation of
datasets can be found in our repository1.

3.3 Sensing-integrated Phantom

Existing phantom models used in AR-assisted EVD placements
require CT scanning to evaluate catheter placement accuracy [5, 34].
To automate the EVD evaluation without the need for CT scanning,
we designed a sensing-integrated phantom model to calculate the
distance to the target in real time. Inspired by prior work [2], we
used two stereo camera sensors attached to adjacent sides of our
custom brain mold to capture image frames in real-time within the
phantom skull, as shown in Fig. 1b. The locations of the catheter tip
and foramen of Monro are identified and triangulated to calculate
the distance to the target, as shown in Fig. 4. This real-time data
is sent to a HoloLens 2 over a wireless network and displayed as
textual guidance to allow trainees to understand the accurate depth
of the catheter insertion.

Our custom-designed brain mold with camera sensors filled with
colorless gelatin to imitate the realistic brain texture is shown in
Fig. 1b. We used Arducam wide-angle OV5647 camera sensors that
support a frame rate of up to 15fps at a resolution of 2592x1944.
The camera sensors are equipped with an M12 lens that captures a
wide angle of the image inside the brain mold to ensure the catheter
tip is visible on the captured images in all trajectories. A Raspberry
Pi 4B is used to obtain captured images from the camera sensors
for triangulation and send the results to HoloLens 2 over a wireless
network. Additionally, we placed an LED at the corner of the mold
between the two camera sensors to enhance the brightness of the
captured images. We painted the catheter tip with a green polish
to identify its location through image filtering. We filled the inside
of the mold using a transparent gelatin solution to provide realistic
textural feedback to the trainees.

We evaluated the accuracy of the distance to the target from
our triangulation algorithm by comparing the computed distance
to the ground truth obtained from CT scans using a Nikon XTH
225 ST, a high-resolution micro X-ray CT scanner. We used a 3D
graphical software, Avizo, to render the 3D volume and measure
the Euclidean distance between the catheter tip and the foramen
of Monro for ground truth. The average Euclidean distance error
was 0.386mm (standard deviation, SD = 0.349mm). The latency for
HoloLens 2 to receive the distance to the target from Raspberry Pi
4B was 116.8ms, on average over 15 trials, at an image resolution of
320x240. More information about our implementation can be found
in our repository1.



Figure 5: Overall pipeline of the surgical task recognition module.

3.4 Surgical Task Recognition

We formulated surgical task recognition as a multivariate time-series
classification problem. Our model utilizes data aggregated from
various sensors over time, formatted as a multivariate time series, to
predict the category of the surgical task being performed. We used
five features: (1) the orientation and (2) position of the phantom
model, (3) the orientation and (4) the position of the catheter, and (5)
the trainee’s hand gestures, which include 25 coordinates encompass-
ing hand joints, fingertips, and the wrist. These features enable the
classification of four essential EVD surgical tasks: catheter holding,
catheter insertion, stylet removal, and miscellaneous movements.
The latter category encompasses actions not included in the first
three. Fig. 5 shows the overall pipeline of our module. More details
about our model can be found in our repository2.

Data Collection and Labeling. We used OptiTrack cameras to
track the orientations and positions of both the phantom model and
the catheter and MRTK2 on HoloLens 2 to capture the trainee’s
hand gestures. We implemented a sliding window buffer to store
the last two seconds of the five features to infer ongoing surgical
tasks. To train our model, we collected the five features from 10
trainees. Each trainee was instructed on the EVD procedures and
subsequently performed 10 EVD trials. During these trials, we
manually labeled the collected feature data by observing trainees’
gestures. To ensure the diversity of the dataset, the trainees were
not instructed on specific gestures to perform the EVD. On average,
each trainee completed the EVD procedure in 30.04 seconds.

Model Architecture and Data Preprocessing. Prior work shows
the effectiveness of a hybrid model architecture, where convolutional
layers extract implicit representations among different features, and
gated recurrent units (GRU) capture the temporal patterns in time
series data [16,28]. Inspired by this, we implemented a hybrid model
architecture, as shown in Fig 5. In our data preprocessing phase,
to ensure our model is invariant to the phantom model’s absolute
position and hand landmarks’ absolute coordinates, we repositioned
the phantom model’s location as the origin and centered the hand
landmarks relative to the trainee’s wrist position. This preprocessed
data is then stored in a sliding window buffer to keep the last 2
seconds of features to create time series data. We also adopted time
series augmentation, e.g., adding jitters and window warping [18]
in the data preprocessing, to generate more data and improve the
model generalizability.

Evaluation. We evaluated our model using leave-one-out cross-
validation (LOOCV), which takes each trainee’s data as the vali-
dation set and the rest nine trainees’ data as the training set. With
LOOCV, we can evaluate the model performance on unseen individ-
ual data for all ten trainees in our dataset. The confusion matrix in
Fig. 6 shows the model’s classification accuracies for different sur-
gical tasks: 65.5%for catheter holding, 70.6% for catheter insertion,
81.4% for stylet removal, and 90.1% for miscellaneous gestures.
Furthermore, the performance metrics of our model, as shown in

Figure 6: Confusion matrix of
surgical task recognition.

Table 1: Evaluation of the surgi-
cal task recognition using differ-
ent evaluation metrics.

Evaluation
Metrics

Evaluation
Scores

Accuracy 0.760
Precision 0.786
Recall 0.759
F1 0.765

Table 1, including accuracy, precision, recall, and F1 score, are
all exceeding 0.75. This demonstrates the model’s robust perfor-
mance in surgical task recognition. On average, the HoloLens 2
took 116.67ms to collect features, send them to the Nvidia Jetson
for inference, and then receive the results back, across 10 trials. This
latency was adequate for calculating the performance score for the
feedback provided to the trainees.

3.5 Surgical Performance Evaluation
The purpose of surgical performance assessment is to provide con-
structive feedback to trainees and improve specific technical skills
during training. More objective assessments of surgical performance
using checklists or global rating scales [25] have been used as con-
ventional methods for providing reliable and valid assessments to
the trainees. Motivated by this, we automated the assessment of
EVD performance for our system to provide feedback to the trainees
on their EVD performance after the EVD procedure is completed.
The feedback comprises three components: accuracy score, perfor-
mance score, and text feedback. The accuracy score is an evaluation
of the EVD placement accuracy, and the performance score is an
evaluation of the trainees’ catheter handling and eye gaze focus
on AR contextual guidance. In coordination with an expert neuro-
surgeon, we assigned 5 different scores for each criterionbased on
the percentiles of AR-assisted EVD performance results from our
prior training with medical students [11]. This aligns with the target
group of participants in our user study (in Section 4), allowing us to
evaluate their EVD accuracy and performance. Lastly, we generated
text feedback based on the criteria of low accuracy and performance
scores to provide instructions on how to improve the scores.

Accuracy Score. The distance to the target from the sensing-
integrated phantom module, d, and the angle of the catheter, θ , are
important metrics for the optimal EVD catheter trajectory [9, 39].
Therefore, we formulated the score with these two criteria obtained
from the sensing-integrated phantom and the OptiTrack tracking of
the EVD catheter. The total accuracy score, which is calculated on a
scale of 0-10, assigns equal weight to both the distance to the target
(d) and the angle of the catheter insertion (θ ), as outlined in Eq. 1.

Sa = ∑(0.5θ +0.5d) (1)

Performance Score. Catheter placement accuracy is not the only
criterion that matters in performance evaluation during EVD training.
Trainees also get evaluated on other criteria such as the handling
of the EVD catheter or knowledge of the procedure [1, 14]. Hence,
we developed a performance score that comprises four criteria of
the time spent on each surgical task (i.e., ch for catheter holding, ci
for catheter insertion, and cr for stylet removal), as shown in Eq. 2,
and the percentage of eye gaze focus on AR guidance, g. The total
performance score is out of 10 and the weight is evenly distributed
between each criterion, as shown in Eq. 3.

S(ch,ci,cr) = ∑(0.25ch +0.25ci +0.25cr) (2)

Sp = ∑(S(ch,ci,cr)+0.25g) (3)



Assessment Feedback. During the conventional assessment,
trainees receive either verbal or written instructions based on the
checklist or scores determined by the senior faculty [25]. Hence,
in addition to the accuracy and performance scores, our system
provided a textual assessment to the trainees in their AR view about
the instructions on how to improve the scores after each trial. For
a low score on the distance to the target, the trainee is instructed to
reduce the distance between the catheter tip and the target point, and
for a low score on the angle of the catheter insertion, the trainee is
instructed to adjust the angle of the catheter insertion to be closer to
90 degrees. Furthermore, for the time spent on each surgical task,
the trainee is instructed to reduce the time spent on surgical tasks
with low scores. For a low score on the percentage of eye gaze
focus on AR guidance, the trainee is instructed to utilize the AR
guidance more. This assessment was only visualized in AR when
each criterion of the score was lower than the maximum score of 10.

4 USER STUDY DESIGN

In our user study, each participant was asked to perform eight AR-
assisted EVD trials; the first four EVD trials were performed on
standard ventricular anatomy (SVA) and the last four EVD trials
were performed on a hemorrhage ventricular anatomy (HVA). HVA
had an asymmetrical shape that created challenges in estimating the
location of the foramen of Monro and an optimal trajectory. The
first 2 trials were conducted on SVA without assessment, followed
by another 2 trials with assessment, then 2 trials were conducted
on HVA without assessment, followed by another 2 trials with as-
sessment. We recruited 16 medical and 12 non-medical students by
emailing medical schools in our metropolitan area. Our user study
was approved by our institution’s IRB.

Participant Selection. Out of 16 medical students, 9 were year 1
students and 7 were year 3-4 students. Out of 12 non-medical stu-
dents, 7 were graduate students and 5 were undergraduate students.
The age range of all participants was 20-50 years (MEAN = 25.1,
SD = 6.04). Among all the participants, half of them were male and
the other half of them were female. None of the participants have
performed the EVD procedure; however, 3 of the medical students
have participated in an EVD simulation in the past. Among all the
participants, 4 of them use an AR headset frequently (more than once
a week) and 3 of them use it infrequently (less than once a week). 13
of them had worn an AR headset once or twice, and 8 of them had
never worn an AR headset before. None of the participants had any
eyesight-related conditions such as strabismus or colorblindness.

AR-assisted EVD Trials. We used two different ventricular
anatomies of anonymous patients to vary the level of difficulty in AR-
assisted EVD placement. The SVA in Fig. 7a presents a symmetrical
brain ventricle with the foramen of Monro in a red hologram, and
the HVA in Fig. 7b presents an asymmetrical shape.

The steps for our AR-assisted EVD trials were as follows: par-
ticipants first watched the instructional video about freehand EVD,
recorded by a neurosurgeon with 9 years of clinical experience3.
The participants were not instructed on specific gestures for holding
the catheter during the procedure. The eye calibration on HoloLens
2 was performed to ensure the rendering of holograms at accurate
locations and the collection of accurate eye gaze data of the par-
ticipants. Upon the initialization of the AR app on HoloLens 2,
the participants detected the localization marker to enable AR visu-
alization, allowing participants to start the catheter insertion with
constant guidance of displaying the distance to the target and the
angle of insertion. During the procedure, the scores and assessment
feedback were constantly updated based on the participants’ hand
movements. Once the participants placed the catheter at the esti-
mated target point, they removed the inner stylet, and final scores
and assessment feedback were displayed in front of their AR view.

3The instructional video is provided at https://youtu.be/wCKOd4m7jK4

Table 2: Post-experiment survey questions.

Questions

Q1 The assessment feedback was helpful in identifying areas of im-
provement for my EVD performance.

Q2 I aimed to address the assessment feedback provided to me in
subsequent trials.

Q3 Overall, the assessment feedback was helpful in learning the EVD
procedure.

Q4 Overall, the assessment feedback was helpful in improving my
EVD performance.

Q5 The assessment feedback was more helpful in the following sce-
narios.

Q6 The accuracy score was helpful in improving my EVD accuracy.
Q7 The performance score was helpful in handling the EVD catheter.
Q8 Overall, the scores were helpful in learning the EVD procedure.
Q9 Overall, the scores were helpful in improving my EVD perfor-

mance.
Q10 The scores were more helpful in the following scenarios.

Q11 I didn’t feel tired or fatigued at some point during the experiment.
Q12 The hologram visualization was robust without significant lagging.
Q13 The hologram visualization did not obstruct my view.

Q14 If you have any other comments or feedback about your experi-
ence, please write below:

Survey Questions. The pre-experiment and post-experiment
surveys were given to each participant to fill out before and after the
user study. In the pre-experiment survey, we asked the participants
about prior experiences in AR and EVD. Table 2 shows the list of
post-experiment survey questions in three different categories.

We asked participants a set of questions in three categories: feed-
back, score, and AR experience. For the feedback category, we
asked the participants on a five-point Likert scale if the text feedback
was helpful during the AR-assisted EVD trial (Q1-Q4). We also
asked the participants to select whether the text feedback was helpful
in the SVA, the HVA, both, or neither (Q5). For the score category,
we asked the participants on a five-point Likert scale if the accuracy
and performance scores helped them learn and improve EVD accu-
racy during the AR-assisted EVD trials (Q6-Q9). Similarly, we also
asked the participants to select whether the scores were helpful in
the SVA, the HVA, in both cases, or unhelpful in both cases (Q10).
For the AR experience category, we asked the participants on a five-
point Likert scale if the system was robust without lagging, drift,
and obstruction of view, and if the participants experienced fatigue
(Q11-Q13). At the end of the survey, we asked the participants to
leave any open-ended feedback about the overall experience (Q14).

5 RESULTS

5.1 EVD Accuracy
We evaluated the levels of accuracy improvements between the
first and second trials, as well as between the third and fourth tri-
als on both SVA and HVA, as shown in Table 3. On SVA, the
medical students improved their EVD accuracy similarly for both
trials with assessment and without assessment. The accuracy im-
proved from 5.24mm (SD = 3.00mm) to 3.37mm (SD = 2.53mm;
improvement rate: 35.6%) with assessment and from 5.53mm (SD
= 4.81mm) to 3.41mm (SD = 3.86mm; improvement rate: 38.4%)
without assessment. However, the non-medical students’ accuracy
improvement was higher for trials without assessment than the tri-
als with assessment. The accuracy improved from 20.9mm (SD =
12.7mm) to 10.7mm (SD = 9.99mm; improvement rate: 48.8%) with-
out assessment and from 14.3mm (SD = 11.6mm) to 10.6mm (SD
= 7.94mm; improvement rate: 25.4%) with assessment. These dif-
ferences in improvements between medical and non-medical groups
were statistically significant (p < 0.0001 for trials with assessment
and p = 0.0003 for trials without assessment) using a two-tailed



Table 3: Results of AR-assisted EVD trials on SVA and HVA.

Level of
Expertise Medical Students (n=16) Non-medical Students (n=12)

Assessment No Yes No Yes

Trials on SVA 1 2 3 4 1 2 3 4

Accuracy (mm) 5.24 3.37 5.53 3.41 20.9 10.7 14.3 10.6
Angle (deg) 91.5 90.5 92.1 94.6 92.2 93.1 95.0 93.1

Total Time (s) 129.6 101.2 76.8 76.9 102.1 102.7 96.7 95.4

Trials on HVA 1 2 3 4 1 2 3 4

Accuracy (mm) 5.21 5.05 5.24 3.32 12.3 11.4 10.6 7.25
Angle (deg) 90.9 93.4 92.6 92.5 95.3 91.2 93.3 93.0

Total Time (s) 76.5 90.5 89.0 92.3 72.7 52.9 58.0 54.8

Figure 7: Ventricular holograms used in our study:
symmetrical anatomy for the SVA (a) and asym-
metrical anatomy for the HVA (b), posing different
levels of challenges.

paired Student’s t-test with equal variance. We hypothesize that this
was due to the learning curve of the EVD procedure. Non-medical
students lacked an understanding of the procedure due to the absence
of a medical background. This resulted in large accuracy improve-
ments between the two trials on the SVA without assessment, which
were the first two trials in the user study. However, there was lit-
tle difference in the accuracy improvements of medical students
(35-38%) for trials performed on the SVA with regard to assessment.

On the contrary, the average distance to the target did not show sig-
nificant improvements for trials on HVA without assessment for both
medical and non-medical students. The accuracy stayed consistent
from 5.21mm (SD = 3.73mm) to 5.05mm (SD = 3.71mm; improve-
ment rate: 3.08%) for medical students, and from 12.3mm (SD =
10.6mm) to 10.6mm (SD = 11.4mm; improvement rate: 7.72%) for
non-medical students. However, with assessment, the average dis-
tance to the target was improved for both medical and non-medical
students. The accuracy was improved from 5.24mm (SD = 3.41mm)
to 3.32mm (SD = 3.48mm; improvement rate: 36.6%) for medi-
cal students, and from 10.62mm (SD = 9.97mm) to 7.25mm (SD =
6.25mm; improvement rate: 31.7%) for non-medical students. These
improvements were found to be statistically significant using a two-
tailed Student’s t-test (p = 0.0182) with equal variance. We believe
that providing assessment to trainees has the potential to improve
catheter placement accuracy in more challenging EVD scenarios
such as HVA, which poses difficulties in identifying target locations
and determining optimal trajectories. However, the learning curve
over the trials remains a limitation of our study due to the lack of
randomization in the trial order.

5.2 Total Completion Time
For the trials on SVA, both medical students and non-medical stu-
dents completed the procedure with assessment in a shorter time
(76.8s and 76.9s for medical; 96.7s and 95.4s for non-medical stu-
dents) than without assessment (129.6s and 101.2s for medical;
102.1s and 102.7s for non-medical students) on average. We be-
lieve that the assessment feedback helped students identify areas of
improvement, resulting in less time spent determining trajectories
and completing the procedure. However, for the trials on HVA,
medical students spent a longer time completing the procedure with
assessment (89.0s and 92.3s) than without assessment (76.5s and
90.5s), while non-medical students spent a shorter time completing
the procedure with assessment (58.0s and 54.8s) than without as-
sessment (72.7s and 52.9s) on average. We hypothesize that due to
the higher levels of difficulty in determining trajectories for trials
on HVA, medical students spent more time addressing the assess-
ment feedback provided to them and changing their approaches to
improve their performance.

5.3 Survey Response
Our post-experiment survey responses are summarized in Fig. 8.
We define positivity rate as the percentage of participants’ responses

in the “strongly agree” and “agree” categories. The participants’
free-text responses are quoted with the participant number, P.

AR feedback. The participants mostly agreed that the text feed-
back was helpful in identifying areas of improvement (positivity rate:
71.4%) and improving the overall EVD performance (positivity rate:
75.0%). 92.9% of the participants agreed or strongly agreed that they
aimed to address the assessment feedback in subsequent trials. How-
ever, only 53.6% of the participants agreed or strongly agreed that
the assessment feedback was helpful in learning the EVD procedure.
Overall, most of the participants agreed that the assessment feedback
was equally helpful for both cases of AR-assisted EVD trials on
SVA and HVA (74.1%) while a lower percentage of participants
agreed for only SVA (18.5%) and both equally unhelpful (3.7%).
This aligns with the high percentage of accuracy improvements for
AR-assisted trials with assessment on both SVA and HVA seen in
Table 3. The participants provided additional feedback that real-time
assessment during the surgical procedure would be useful (P11, P12,
P17). Two participants felt that the assessment was very helpful
(P8, P20). In future work, we will provide assessment feedback
during the EVD procedure based on the real-time evaluation of the
participants’ surgical performance.

Scores. Similarly, the participants agreed that scores were helpful
overall in learning the EVD procedure (positivity rate: 64.3%) and
improving the EVD performance (positivity rate: 71.4%). How-
ever, lower positivity rates were recorded on the helpfulness of each
category of the scores: accuracy score in improving the EVD accu-
racy (53.6%) and performance score in handling the EVD catheter
(46.4%). The participants who provided additional feedback felt that
more context about the criteria of scores would be helpful (P2, P8,
P12). In the future, we plan to provide the breakdown of their scores
in each criterion. Overall, most of the participants agreed that the
scores were equally helpful for both cases of AR-assisted EVD trials
on SVA and HVA (74.1%) while a low percentage of the participants
agreed that they were only helpful for SVA (7.4%) and for HVA
(7.4%). Only 11.1% of the participants reported that the scores
were equally unhelpful for both cases of SVA and HVA, which was
higher than the percentage reported for assessment feedback (3.7%).
We think this was due to assessment feedback providing detailed
instructions on how to improve their performance, while scores only
provided them with a numerical evaluation of their performance.

AR Experience. Overall, the participants appreciated that the AR
experience provided hologram visualizations without obstructing
their view (positivity rate: 85.7%), that there was no significant
lagging (positivity rate: 82.1%), and that they did not feel tired or
fatigued during the trials (positivity rate: 60.7%). However, a sig-
nificant number of the participants stated in the additional feedback
that they observed “the drift or jump of catheter hologram” (P2, P7)
and “misalignment of the catheter when rotating the stylet” (P6).
Additionally, some participants felt that “the catheter hologram was
difficult to align” (P8, P15) and that the “blocking of optical mark-



Figure 8: Survey responses on a five-point Likert scale for (a) categories of AR feedback, scores, and AR experiences and (b) comparison on
the helpfulness of AR feedback and scores between EVD scenarios on SVA and HVA.

ers might have impacted the results” (P10). While the overall AR
experience received high positivity rates from the participants, the
occlusion of optical markers and more robust tool tracking remain
as future work to improve the robustness of our system.

Additional Feedback. In the open-ended feedback, participants
were positive about the AR system as a training tool for practicing
EVD and improving their performance. The participants thought that
the system was “a cool technology” (P6, P7, P17), “great experience”
(P2), “robust enough to allow me to understand the procedure” (P13),
and “helpful practice” (P6). The participants also stated that “AR
made the procedure richer and engaging” (P3), “the distance and
angle guidance assisted in estimating the target point” (P19, P21,
P22, P26), and “this was a lot of fun” (P7, P9). The overall positive
feedback from all participants demonstrates the potential of our AR-
assisted EVD system as a future neurosurgical training tool used for
the assessment of medical students’ EVD performance. Our system
could potentially complement traditional skill assessments that use
a checklist or a global scale rating [1, 25], making the assessment
more efficient and interactive, and enabling trainees to practice on
various types of challenging brain ventricular anatomies.

6 DISCUSSION AND FUTURE WORK

Our AR system used a stereo camera setup for triangulating 3D
coordinates and calculating the distance from the catheter tip to
the foramen of Monro. Due to the characteristics of the cameras’
fish-eye lens, the captured images used for both calibration and trian-
gulation were distorted to a higher degree than traditional cameras.
This led to higher errors in triangulation around the edges of the
images. We plan to improve the current triangulation method by
using a larger number of sample images during calibration as well
as experimenting with different calibration methods that suit the
qualities of fish-eye images. Additionally, our participants reported
a mismatch between the distance values reported by the textual guid-
ance and the catheter hologram visualization. We plan to calculate
the transformations necessary to obtain the location of the catheter
tip in the same plane as the HoloLens 2 coordinate system, which
will improve the accuracy of the catheter hologram alignment.

We used the HoloLens 2’s built-in hand gesture tracking to collect
the trainees’ hand movements during the AR-assisted EVD proce-
dure. However, due to the limited FoV, HoloLens 2 loses track of the
hand gestures when the trainees’ hands are out of the camera view.
This often happens during the stylet removal when the trainees grab
the top of the stylet to pull it out of the catheter. For future work,
we plan to enhance hand gesture tracking by adding other external
camera sensors to the AR headset to run hand gesture detection
separately or using the OptiTrack system to track the hand gestures

with optical markers [38]. This could potentially be enhanced by
future AR headsets that have a built-in camera with better FoV.

One of the limitations of our current AR-based assessment system
is that it only provides feedback on trainees’ performance in terms
of accuracy and time spent for each surgical phase. However, these
metrics do not capture the trainees’ overall behavior and attentional
states, which can also affect their surgical performance. For example,
trainees may perform poorly due to lack of focus, high stress, or
fatigue. Hence, we believe that providing feedback about trainees’
attentional states such as whether the trainee is focused on the task
or not can improve our AR-based assessment in surgical training.
In future work, we will use eye tracking to analyze the gaze-based
attention pattern of trainees to enhance the feedback and alert them
in real time.

7 CONCLUSIONS

This paper presents the first AR-based neurosurgical training tool
for EVD that provides personalized feedback on surgeons’ perfor-
mance to guide them to improve catheter placement accuracy during
EVD training. We automated the segmentation of brain ventricular
anatomy to enable the AR system to display the ventricular hologram
and provide catheter placement accuracy using a sensing-integrated
brain phantom in real time. Our evaluation with 16 medical and 12
non-medical students demonstrated that the students reduced the
distance to target by 36.6% and 31.7% accordingly for trials on
HVA, which posed more challenges due to asymmetrical shape. In
future work, we will evaluate our system with other brain ventric-
ular anatomies for more challenging EVD scenarios, enhance the
calibration for triangulation, and use additional cameras with better
FoV to enhance hand gesture tracking during the surgical procedure.
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