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ABSTRACT
Object detection (OD) is crucial for numerous emerging visual
sensing applications. As OD models trained on unrepresentative
data usually yield poor performance, collecting high-quality data
in the local environment is recognized to be essential for improv-
ing model accuracy. Yet, the question of how to collect this data
is currently largely overlooked; unsupported data collection tends
to produce datasets with a significant proportion of redundant or
uninformative data, hindering effective model training. To address
this challenge, we design a real-time data importance estimation
method and integrate it into BiGuide, a bi-level image data acquisi-
tion systemwe create for OD tasks. BiGuide assesses the importance
of the captured images in real-time based on informativeness and
diversity estimations and dynamically guides users in collecting
useful data via image-level and object instance-level guidance. We
prototype BiGuide in an edge-based architecture using commodity
smartphones as mobile clients, and evaluate its performance via an
IRB-approved study with 20 users. Our evaluation demonstrates
that OD models trained on the data collected by BiGuide outper-
form models trained on the data collected by two baseline systems,
achieving detection accuracy improvements of up to 33.07% and
14.57%, respectively. Over 85% of the users found BiGuide fast,
helpful, and easy to understand and follow.

KEYWORDS
Data acquisition, visual sensing, informativeness and diversity esti-
mation, user guidance, object detection.

1 INTRODUCTION
Accurate object detection (OD) using deep learning plays a cru-
cial role in a wide spectrum of applications, including video ana-
lytics [58, 66], autonomous driving [18, 69], and augmented real-
ity (AR) [3, 29]. Despite the existence of OD models pre-trained
on large-scale general-purpose datasets such as ImageNet [16] or
COCO [28], adapting the model to the task-specific data domain is
necessary to achieve high performance in many practical scenarios.
Fine-tuning, as well as more advanced domain adaptation meth-
ods [25, 52] deployed on task-specific small-scale datasets, have
been proven to yield significant performance improvements. How-
ever, thesemethods typically assume the existence of a pre-collected
useful and representative target domain dataset. The question of
how to obtain such a dataset in the real-world scenario for effec-
tive adaptation has unfortunately received only limited attention.
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Figure 1: BiGuide in action. The user points the camera to-
ward the objects and observes in-situ guidance.

Unsupported data collection tends to yield datasets with a signifi-
cant proportion of redundant or uninformative data, which not only
wastes human effort but also hinders effective model training. With-
out appropriate guidance, the performance is inferior even when
collecting a large-scale dataset compared to collecting a smaller
dataset with proper guidance, as validated in our experiments (§7.4).

To obtain useful data, various data-importance-aware acquisition
methods have been proposed for environment monitoring [26, 55],
spatial mapping [32, 67], and deep learning-based OD tasks [24, 62].
Yet, when deploying thesemethods to collect target data for building
high-performance OD models, two practical challenges arise.

First, some methods [13, 26, 32, 67] employ exhaustive search
algorithms to determine optimal sensor locations and angles from
preset alternatives to collect useful data. Such approaches necessi-
tate considerable time both to retrain the OD model and to assess
the performance changes with every addition of new data to the
dataset. This process is impractical during data collection, which
demands estimating the importance of the current image and mak-
ing decisions on its acceptance or rejection in real-time. Moreover,
in real-world situations, performance changes are usually not mea-
surable in the absence of labeled data.

Second, some approaches [24, 62] aim to collect diverse data by
maximizing the coverage of viewpoints. These methods are con-
strained by physical obstacles in real-world environments, making
it difficult for the collected data to fully cover the desired view-
points of the objects. Thus, the collected images are sometimes
even less valuable than the images collected by users without any
constraints, as demonstrated in §7.4.

To move beyond these limitations, we present BiGuide, the first
data acquisition system that instructs users in collecting diverse and
informative data for training ODmodels, as demonstrated in Figure 1.
Unlike previous works that are restricted to predetermined view-
points, BiGuide sets a new direction by instructing users to collect
useful data with flexible and adaptive guidance. It provides both
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image- and object instance-level guidance generated based on the
estimation of data importance. The image-level guidance instructs
users to change their camera locations to capture images from
different perspectives. The instance-level guidance directs users
to adjust object poses, enhancing the variety and diversity of the
instances in captured data. With this bi-level guidance, users can
acquire data that helps the model learn better representation and
improves model generalization. Furthermore, BiGuide dynamically
adapts the guidance during data collection to ensure positive user
experience without sacrificing the usefulness of the collected data.

The core capabilities of BiGuide are made possible by estimating
data importance in an online and real-time manner. Some existing
deep learning-basedmethods [6, 22] estimate data importance based
on informativeness, such as evaluating the model’s confidence in
prediction results, while others [8, 14, 20, 60] estimate it based on
diversity, by examining distances between samples or by analyzing
the distribution of the given dataset to select representative samples
that capture its characteristics. Yet, these approaches have limita-
tions when dealing with images captured in succession during data
collection. These limitations include the inherent uncertainty of
prediction confidence caused by the domain gap, the requirement
to access the entire dataset for evaluating representativeness, or
the necessity for exhaustive pair-wise data comparison. In our data
importance estimation method, we design an adaptive acceptance
determination strategy to combat the inherent uncertainty of infor-
mativeness estimation and formulate the image- and instance-level
diversity scores to assess the data diversity online and in real-time.

We build BiGuide, estimate its latency through system profiling,
and conduct an IRB-approved user study with 20 participants to
evaluate system effectiveness. To illustrate the versatility of our
system, we conduct the user study in different scenarios, including
an indoor office environment and an outdoor wildlife exhibit at
the Duke Lemur Center. These scenarios ensure a diverse range
of data collection situations, considering factors such as locations,
lighting conditions, and object variability. We highlight the useful-
ness of the data collected by BiGuide through both supervised and
unsupervised learning approaches. Furthermore, qualitative user
feedback indicates that BiGuide is perceived as fast, helpful, and
easy to understand and follow. We share the collected datasets and
the code via Github1.

Our key contributions can be summarized as follows:
• We develop BiGuide, a bi-level data acquisition system that gen-
erates real-time and in-situ guidance to dynamically instruct
users to collect useful data for training accurate OD models.
• We design a data importance estimation method to enable BiGu-
ide to estimate the informativeness and diversity of the succes-
sively captured images in an online, real-timemanner, to actively
guide data collection.
• We implement BiGuide in an edge-based architecture, using
commodity smartphones as mobile clients, and evaluate it via a
user study with 20 participants in a controlled indoor scenario
and a dynamic wildlife scenario with unpredictable conditions.
OD models trained using data collected by BiGuide achieve up
to 33.07% and 14.57% higher detection accuracy compared to
OD models trained with data collected by baseline systems.

1https://github.com/BiGuideCollection/BiGuide

Below, we review related work in §2, present themotivation in §3,
describe the system overview in §4, introduce the main components
of BiGuide in §5 and §6, evaluate BiGuide in §7, and discuss and
conclude the paper in §8 and §9.

2 RELATEDWORK
Object Detection. OD models can be trained using supervised
learning methods [3, 29, 58] with annotations such as object la-
bels and bounding boxes, or unsupervised learning methods [53]
without annotations. The standard approach for improving the OD
model performance for a specific application or a specific set of
conditions is to first pre-train the model on a large-scale general-
purpose dataset (such as ImageNet [16] or COCO [28]), and then
fine-tune it via a small set of custom target domain data collected
specifically for the application [40]; this approach is known to lead
to dramatic performance improvements over using the pre-trained
model without further customization [25, 52]. However, the ques-
tion of how to collect representative target domain data is currently
largely overlooked. BiGuide is designed to help in collecting useful
data for training high-performance OD models.
Active Data Acquisition. Active data acquisition methods in-
volve user responses [33, 44]. Our work complements existing ac-
tive methods by developing techniques for data-importance-aware
acquisition. Prior works focus on data-importance-aware acqui-
sition for mobile sensors (robots [26, 55], unmanned aerial vehi-
cles [32, 67]) via the so-called active sensing in various tasks (spatial
mapping [32, 67], environment monitoring [26, 55]). These methods
do not involve users and additionally require an exhaustive search
for optimal sensor locations and angles from preset alternatives.
Some efforts [24, 62] focus on data acquisition guidance for OD
tasks, which employ a coverage-based method to guide users to
capture the object of interest from diverse viewpoints. However, its
reliance on preset viewpoints presents an inherent limitation; in
real-world applications, these viewpoints are not always accessible
due to physical obstacles (e.g., walls, windows). Additionally, not
all data collected from different viewpoints contributes to model
training. Our evaluations in §7 show that a coverage-based method
not only underperforms compared to BiGuide but also compared to
another baseline method that collects data without assistance.
Active Learning. Active learning [11] maximizes model perfor-
mance by selecting important data from a pool of collected samples
or data streams. In this context, data importance is typically assessed
through informativeness and diversity [23]. Informativeness-based
approaches assess data importance by evaluating the model’s pre-
diction confidence using measures such as entropy, least confidence,
and smallest margin [6, 22, 35]. However, relying solely on informa-
tiveness can be problematic because domain shift undermines con-
fidence evaluation [27]. Diversity-based approaches [4, 14, 48, 60]
select representative samples by examining distances between sam-
ples or clustering data and picking samples across clusters. Recent
deep active learning developments have emphasized the efficacy of
combining informativeness and diversity measures. Weighted-sum
methods [9, 61, 63] balance these two objectives with additional
hyperparameters or determinantal point processes. Two-stage opti-
mization methods [4, 49] select an informative subset and refine it
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(a) (b) (c)
Figure 2: Example images from the lemur dataset: (a) jumping
lemur, (b) lemur on a cloudy day, (c) lemur behind a cage.
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Figure 3: ThemAPvalues ofODmodels trained on the subsets
with low and high (a) informativeness; (b) diversity.

for maximum diversity. These hybrid strategies outperform single-
objective methods in various tasks [65], inspiring the design of
BiGuide. Yet, these methods either require access to the entire
dataset for representativeness evaluation or employ exhaustive
pair-wise data comparison, making them unsuitable for real-time
scenarios where new data samples are acquired successively and re-
quire prompt evaluation. We design BiGuide to estimate the infor-
mativeness and diversity of images in an online, real-time manner
to actively guide data collection.

3 MOTIVATION
Our work is motivated by an ongoing collaborative study with the
Duke Lemur Center to deploy a mobile AR app with a robust species
(lemurs) detector. The center is home to various lemurs, located
in different areas. We are designing our app to detect lemurs in
changing environmental conditions, such as after rearrangements
of the exhibits, under different weather conditions, in different
enclosures, and at different times of the day. When building the de-
tector, we observe data informativeness and diversity to profoundly
impact model performance, based on which we further develop
our BiGuide system. To showcase our observations, we conduct
small-scale experiments using the lemur dataset collected for the
aforementioned study.
Lemur Dataset. Lemurs of various species in the Duke Lemur
Center are exhibited in rotation under different weather condi-
tions and usually remain active within their spacious enclosures,
as depicted in Figure 2. From visitors’ viewing points outside these
enclosures, we can take images of lemurs with different poses, as
lemurs change their positions and activities from time to time. We
collected a dataset including four lemur species, not only from the
center but also from YouTube videos and two image search plat-
forms offering copyright-free images (Flickr [19] and Wikimedia
Commons [56]). The species are black-and-white ruffed lemurs,
Coquerel’s sifakas, red ruffed lemurs, and ring-tailed lemurs. The
dataset includes 499 images of lemurs, with 401 images in the train-
ing set and 98 images in the test set. These images encompass
lemurs in motion, influenced by different weather conditions. We
manually labeled the dataset and shared it via GitHub1.
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Figure 4: BiGuide System architecture.

Experimental Setting. We use Faster-R-CNN [45] with VGG16
backbone pre-trained on the COCO dataset. Performance is mea-
sured via mean average precision (𝑚𝐴𝑃 ) with an intersection over
union threshold of 0.5 [31].
Impact of Data Informativeness. To estimate data informative-
ness [6, 22, 35], we measure the model’s confidence in its prediction
results by the least confidence method [35]. We conduct 3 trials to
randomly extract 2 subsets with low (<0.4) and high (≥0.4) informa-
tiveness values from the training set, each containing 20 samples.
We train the model on these subsets separately. The average model
performance impacted by the informativeness values is shown in
Figure 3a. When the model is trained on high-informativeness
data, its performance shows a remarkable improvement of 12.55%
compared to the model trained on low-informativeness data, even
though there are no obvious visual differences between low- and
high-informativeness subsets for the human eyes.
Impact of Data Diversity. To investigate the impact of data diver-
sity [8, 20] on model performance, we conduct 3 trials to manually
extract 2 subsets of 20 samples from the training set. One subset is
crafted to exhibit high data diversity, characterized by perceptually
distinct samples (e.g., with different poses, in varied locations). Con-
versely, the other subset is designed to exhibit low data diversity
(e.g., with similar poses, in comparable locations). We train the
model on these subsets separately, and show the average results in
Figure 3b. The𝑚𝐴𝑃 of the model trained on high-diversity data is
28.92% higher compared to the model trained on low-diversity data.
This indicates data with various object appearances and environ-
mental conditions enables training more accurate OD models.

4 SYSTEM OVERVIEW
The overall system architecture of BiGuide is shown in Figure 4.
BiGuide comprises two major components: data importance estima-
tion and guidance generation and adaptation. They are deployed
on the edge server such that no significant computation overhead
is introduced on the mobile device. In addition to the server, there
is a mobile app running on a mobile device which wirelessly sends
images captured by the user to the edge, receives real-time data
acquisition guidance from the edge, and presents it to the user, as
depicted in Figure 1. The images collected with BiGuide’s assistance
are used to train OD models, whose performance is evaluated in §7.
Data Importance Estimation. As the server receives an image,
BiGuide evaluates its importance through measures of informa-
tiveness and diversity (§5). The informativeness is determined by
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the prediction confidence of the OD model (§5.1). To complement
the importance assessment, we design the image- and instance-
level diversity scores of the current image to quantify how much it
contributes to the diversity of the collected images at both image
and instance levels (§5.2). Probability functions are then applied to
determine the acceptance or rejection of the image based on the
informativeness and the diversity scores (§5.3).
Guidance Generation and Adaptation. Guidance generation
and adaptation (§6) consists of two steps: bi-level data acquisition
guidance generation (§6.1) and dynamic guidance adaptation (§6.2).

Bi-level data acquisition guidance generation: Based on the ac-
ceptance or rejection decision determined above, the server either
accepts the captured image and sends feedback to notify the user, or
rejects the image and generates image- or instance-level guidance to
help the user collect informative and diverse data. Image-level guid-
ance instructs users to change their camera location to get different
image backgrounds, while instance-level guidance instructs users
to change the object’s pose or wait for the object’s pose change to
get more diverse instances of the objects.

Dynamic guidance adaptation: The recent acceptance or rejection
results are recorded to determine the sensitivity of the guidance
as the user continues to capture images. When captured images
keep getting rejected, the centers of the diversity-based acceptance
probability functions are adjusted to increase the acceptance rate.
Conversely, if accepted images contribute no new information, the
centers are adjusted to decrease the acceptance rate.

5 DATA IMPORTANCE ESTIMATION
In this section, we introduce our data importance estimation ap-
proach, which evaluates the informativeness (§5.1) and diversity
(§5.2) of the captured images, as depicted in Figure 5. Based on the
data importance, we propose an adaptive acceptance determination
strategy (§5.3). Note that the applied OD model is pre-trained on
the large-scale, pre-existing dataset that contains the same classes
as the data being collected. This pre-training equips the model with
the capability to extract general features.

5.1 Informativeness Estimation
To evaluate the informativeness of the captured image, we quan-
tify the amount of useful information for model training in the
image. Following recent works [6, 22, 35], we measure the image
informativeness via the OD model’s prediction confidence, which
encompasses both class and bounding box prediction confidence of
the image. High informativeness indicates that the OD model is un-
certain about the prediction results of the image, suggesting that it
contains valuable information for the model. Formally, given the or-
dered set of prediction confidence scores 𝑃 = {𝑝𝑚}𝑑𝑚=1 produced by
the OD model, where 𝑑 represents the number of predicted bound-
ing boxes and 𝑝𝑚 is the𝑚-th confidence score in 𝑃 , we calculate
the informativeness 𝐼 as follows:

𝑚★ = arg max
𝑚∈{1,· · · ,𝑑}

𝑝𝑚, (1)

𝐼 = 1 − 𝑝𝑚★, (2)
where𝑚★ is the index of the predicted bounding box with the high-
est confidence score in 𝑃 . The informativeness estimation process
is shown schematically in Figure 5. The core driver of the latency of
this component is the inference time to execute an OD model that
takes the image captured by the user as input. As the image size

Figure 5: Informativeness and diversity estimations. We ob-
tain the informativeness 𝐼 based on the prediction confidence
and calculate the diversity scores 𝐷img, 𝐷ins based on the im-
age and instance features extracted by the OD model.

remains constant during the data collection, the time complexity
of the informativeness estimation is constant, denoted as 𝑂 (1).

5.2 Diversity Estimation
To avoid collecting repetitive images, we design a complementary
estimation method called diversity estimation. It consists of fea-
ture extraction and diversity scores formulation at both image and
instance levels.
Bi-level Feature Extraction.To efficiently and accurately evaluate
data diversity, we analyze the currently captured image using its
low-dimensional embedding in the feature space, which has higher
information density than the raw image. In the context of OD,
images are typically treated as a combination of background and
object instances. Therefore, we analyze bi-level features of the
currently captured image, including the image feature ℎimg and
instance feature ℎins. Following common practices in the field [52],
we extract the image feature ℎimg from the last layer of the OD
model’s backbone, denoted as 𝑓img. In addition, to enable more
efficient computation while still preserving the crucial information
required for accurate diversity estimation, we further reduce the
dimension of the extracted feature by channel-wise max pooling:

ℎimg = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝑜𝑜𝑙 (𝑓img (𝑥 ) ), (3)
where 𝑥 is the image fed to the OD model. To obtain the instance
feature, we first extract a set of instance features 𝐻 ins using the
instance feature extractor 𝑓ins immediately preceding the detection
head 𝑓head, upon which we apply the same channel-wise max pool-
ing to reduce the dimension. This ordered set of instance features,
paired with the corresponding predicted bounding boxes in the
same order, can be expressed as:

𝐻 ins = {ℎins𝑚 }𝑑𝑚=1 = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑃𝑜𝑜𝑙 (𝑓ins (𝑓img (𝑥 ) ) ), (4)

whereℎins𝑚 represents the𝑚-th instance feature in𝐻 ins. To avoid an-
alyzing wrongly predicted instances during data collection process
in which ground-truth instances are not available, we further select
the instance with the highest confidence in its predicted bounding box
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as the only instance used to form the instance feature. Specifically,
we select ℎins = ℎins

𝑚★ as the final instance feature. The entire bi-level
feature extraction process is an inherent part of model inference,
entailing no additional computational overhead.
Bi-level Diversity Scores Formulation.With the extracted fea-
tures, we then formulate the image-level and instance-level diver-
sity scores of 𝑥 in relation to the collected image set 𝑆 containing 𝑠
images. By measuring the distance from the newly added sample
to the cluster centers of existing samples and the representative
samples, these scores quantify the potential improvement in the
diversity at both image and instance levels. Given the similarity of
the formulation of image- and instance-level scores, we focus on
explaining the details of the image-level diversity score as follows.

We first compute a set of prototypes [38, 50] used in the estima-
tion process.We denote the set of extracted image features from 𝑆 as
𝐻 = {ℎ𝑖 }𝑠𝑖=1, whereℎ𝑖 represents the image feature of the 𝑖-th image
in the image set 𝑆 . To enable more efficient computation, we then fit
the commonly used principal component analysis (PCA) model [1]
to 𝐻 and project vectors in 𝐻 onto a low-dimensional space to get
vectors 𝑉 = {𝑣𝑖 }𝑠𝑖=1 with 𝑣𝑖 = 𝑃𝐶𝐴(ℎ𝑖 ). Following the convention
in PCA method used for dimensionality reduction [37, 64], we em-
pirically set |𝑣𝑖 | = 15 to preserve the variance. After that, we use
one of the fastest clustering methods, 𝐾-means clustering [57], to
divide 𝑉 into 𝑧 clusters, where 𝑧 is determined optimally by the
Elbow method [7]. We then obtain the vector sets of different clus-
ters, {𝑉𝑘 }𝑧𝑘=1, and prototypes (also called cluster centers), {𝑐𝑘 }𝑧𝑘=1,
where𝑉𝑘 and 𝑐𝑘 are the vector set and prototype of the 𝑘-th cluster.

After obtaining the prototypes of the collected images, we ap-
ply the fitted 𝑃𝐶𝐴 to the image feature ℎimg of 𝑥 to get the low-
dimensional vector 𝑣 img. To quantify how much the diversity of
the image set 𝑆 can be improved at the image level by adding 𝑥 to
the set, we formulate the image-level diversity score 𝐷 img of 𝑥 as:

𝐷 img =
1
2

(
min

𝑖∈{1,· · ·𝑠}
∥𝑣𝑖 − 𝑣img ∥ + min

𝑘∈{1,· · · ,𝑧}
∥𝑐𝑘 − 𝑣img ∥

)
. (5)

For the formulation of the instance-level diversity score 𝐷 ins, the
only difference with the process above is substituting the image fea-
ture with the instance feature. A higher diversity score indicates a
larger distance between the feature of the current image or instance
and its closest feature, as well as the closest cluster prototype. This
signifies that the captured image differs from previous images and
can potentially enhance the knowledge learned by the OD model.

The diversity score calculation primarily involves PCA and 𝐾-
means, with a time complexity of 𝑂 (𝑧 · 𝑠), which grows linearly as
more data is collected in 𝑆 . This complexity can be reduced to𝑂 (𝑧)
by limiting the size of 𝑆 . Thus, inspired by [39], we adopt the ‘first in,
first out’ (FIFO) principle to limit the size of representative images
in 𝑆 , as recent data is more related to the current environment.
With consideration of both efficiency and accuracy for BiGuide, we
empirically set the size of 𝑆 to be 20 images per class.

5.3 Acceptance Determination
To determine whether to accept the image, we formulate acceptance
probabilities, which take in the outputs of the informativeness
and diversity estimations (i.e., 𝐼 , 𝐷 img, and 𝐷 ins), as illustrated
in Figure 4. These acceptance probabilities subsequently serve as
inputs for the guidance generation and adaptation component.

Inspired by previous works [17, 21] that use sigmoid functions to
adapt reinforcement learning policies to real-world environments,
we adopt the sigmoid function in adaptive acceptance determina-
tion to respond to changing environments instead of using a fixed
threshold. We formulate the sigmoid function-based acceptance
probability 𝑃 infoaccept as a function of the informativeness:

𝑃 info
accept =

1
1 + 𝑒−𝑏 (𝐼−𝑎)

, (6)

where 𝑎 and 𝑏 control the center and the width of the sigmoid
function, respectively. Similarly, we formulate the image-level (or
instance-level) acceptance probability as a function of the image-
level (or instance-level) diversity score:

𝑃
img
accept =

1
1 + 𝑒−𝑏img (𝐷 img−𝑎img )

, 𝑃 ins
accept =

1
1 + 𝑒−𝑏ins (𝐷 ins−𝑎ins )

, (7)

where 𝑎img (or 𝑎ins) and 𝑏img (or 𝑏ins) control the center and the
width of the sigmoid function, respectively. For 𝑃 infoaccept and 𝑃

img
accept

(or 𝑃 insaccept), a lower value of 𝑎 and 𝑎
img (or 𝑎ins) shifts the sigmoid

function to the left, increasing the probability of acceptance. We
keep the shape of the sigmoid function in (6) fixed during the data
acquisition process, as the pre-trained OD model remains consis-
tent. We also find from experiments that the values of 𝑏img and
𝑏ins, which determine the width of the sigmoid function in (7), are
insensitive to the data collection process. As a result, we only dy-
namically adjust 𝑎img and 𝑎ins during the data collection. (6) and (7)
are monotonic, smooth, differentiable [30], which avoids undesir-
able abrupt changes in the acceptance probabilities and ensures
that images with high informativeness or diversity are more likely
to be accepted. At the same time, for images with highly confi-
dent predictions (i.e., with low informativeness scores) or with
low diversity scores, 𝑃 infoaccept, 𝑃

img
accept and 𝑃

ins
accept are larger than 0,

which means that these images also have a chance of being ac-
cepted. Not rejecting all these images altogether can combat the
inherent uncertainty in calculating the prediction confidence (us-
ing (2)) of the pre-trained OD model due to the domain shift. This
also compensates for the potential unreliability of the diversity
estimation (using (5)) resulting from the limited size of 𝑆 .

Adjusting the acceptance probabilities will change the guidance
sent to the user, as we will show in §6.1. Such adjustments influence
the user’s experience during data collection and the usefulness
of the collected data. For instance, the user’s experience can be
adversely affected if images are rarely accepted. We will provide
details on how to dynamically adjust the acceptance probabilities
and ensure both the user’s comfort and data usefulness in §6.2.

6 GUIDANCE GENERATION AND
ADAPTATION

In this section, we describe the bi-level data acquisition guidance
(§6.1) and outline the dynamic guidance adaptation (§6.2) during
data collection. Details of the guidance generation and adaptation
methods are outlined in Algorithm 1.

6.1 Bi-level Data Acquisition Guidance
Generation

Based on the acceptance determination, we design the bi-level
data acquisition guidance to instruct users’ data collection. This
guidance, at both image and instance levels, aims to direct users to
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Algorithm 1 Guidance generation and adaptation pipeline.
1: Input: The experimentally set threshold 𝑁 for subsequent rejection count;
2: Initialize: Initialize the image set 𝑆 using randomly selected images of the same

classes from the pre-existing dataset (e.g., public dataset or self-collected dataset).
𝑎img ← 0, 𝑎ins ← 0. 𝑐𝑜𝑢𝑛𝑡 lev ← 0;

3: for each captured image 𝑥 do
4: Calculate𝐴img and𝐴ins using (1)–(8);
5: // When both the image-level and instance-level decisions are to accept, accept

the image and notify the user to continue the collection
6: if 𝐴img == 1 and𝐴ins == 1 then
7: Following FIFO principle, update 𝑆 by adding 𝑥 ;
8: for each lev in {img, ins} do
9: // Reset the subsequent rejection count to 0 once an image is accepted
10: 𝑐𝑜𝑢𝑛𝑡 lev ← 0;
11: Update clusters in 𝑆 ;
12: if the number of vectors in each cluster remains the same before and

after the update then
13: 𝑎lev ← 𝑎lev + 0.05;
14: The server notifies the user to continue collecting images;
15: else
16: for each lev in {img, ins} do
17: if 𝐴lev == 0 then
18: 𝑐𝑜𝑢𝑛𝑡 lev ← 𝑐𝑜𝑢𝑛𝑡 lev + 1;
19: if 𝑐𝑜𝑢𝑛𝑡 lev == 𝑁 then
20: 𝑎lev ← 𝑎lev − 0.05;
21: 𝑐𝑜𝑢𝑛𝑡 lev ← 𝑐𝑜𝑢𝑛𝑡 lev − 1;
22: else
23: 𝑐𝑜𝑢𝑛𝑡 lev ← 0;
24: The server sends the bi-level guidance based on the rule in Table 2;
25: if the assigned number of images has been collected then
26: End the data collection process;

Table 1: Bi-level data acquisition guidance generation based
on the image- and instance-level determinations.

HH
HH𝐴img

𝐴ins
1 0

1 Accept; notify
the user to continue

Reject; send instance-
level guidance

0 Reject; send image-
level guidance

Reject; send image-
or instance-level guidance

collect both informative and diverse data. Specifically, to generate
the image-level guidance, we first make an image-level decision𝐴img

about whether to accept the captured image. With the acceptance
probabilities 𝑃 infoaccept and 𝑃

img
accept, we determine 𝐴img as:

𝐴img =

{
1, if 𝑟𝑎𝑛𝑑 (0, 1) ≤ 𝑃

img
accept · 𝑃 info

accept

0, otherwise,
(8)

where 𝑟𝑎𝑛𝑑 (0, 1) generates a random number uniformly distributed
on [0, 1]. When 𝐴𝑖𝑚𝑔 is 1, the currently captured image is accepted
due to its higher chance of being informative and diverse at the
image level. Otherwise, when𝐴𝑖𝑚𝑔 is 0, the image is rejected. Then,
following the guideline in Table 1, we send image-level guidance.
The image-level guidance instructs users to capture images from dif-
ferent perspectives, thereby increasing the image-level diversity of
the collected data. To achieve this, we conducted a small-scale user
study to observe users’ behaviors during data collection and, based
on our findings, formulated the specific image-level instructions to
be randomly sent to users, as outlined in Table 2. It motivates users
to explore different locations and adjust camera angles to capture
images from distinct perspectives.

To generate the instance-level guidance, we follow the same proce-
dure to make the instance-level decision 𝐴ins using the acceptance
probabilities 𝑃 infoaccept and 𝑃

ins
accept. Then, as shown in Table 2, when

𝐴ins is 0, the instance-level guidance is sent to users. It instructs

Table 2: Details of image-level and instance-level data acqui-
sition guidance generated by BiGuide.

Image-level data acquisition guidance

G1 Change your position. G3 Raise your phone.

G2 Tilt your phone. G4 Lower your phone.

Instance-level data acquisition guidance

G5 Change the object’s pose or wait for the object’s pose change.

them to capture images with diverse object poses and appearances
to enhance the variation of the captured data. If users do not adhere
to the guidance when capturing a new image, their captured data
is at risk of being rejected due to a low diversity score. In this case,
BiGuide sends updated data acquisition guidance based on the new
image for users to follow until a captured image gets accepted.

6.2 Dynamic Guidance Adaptation
As discovered in the small-scale user study, a high image acceptance
rate allowed the users to collect data quickly and with ease, but the
users tended to not move around much, resulting in repetitive data.
In contrast, a low acceptance rate forced the users to explore more
viewpoints, leading to more diverse data, but also resulting in user
frustration and dissatisfaction. We thus enhance BiGuide with the
dynamic guidance adaptation method described below.

Algorithm 1 summarizes the adaptation of the acceptance prob-
abilities in response to different situations. Let lev ∈ {img, ins}
signify the image- or instance-level. In the first situation, the cen-
ters 𝑎img and 𝑎ins of acceptance probabilities 𝑃 img

accept and 𝑃
ins
accept are

dynamically adjusted based on the count of subsequently rejected
images at each level (lines 17-23). We denote the count of subse-
quently rejected images as 𝑐𝑜𝑢𝑛𝑡 lev. When 𝑐𝑜𝑢𝑛𝑡 lev ≥ 𝑁 , with 𝑁
being the threshold for the subsequent rejection count, the center
𝑎lev of 𝑃 levaccept is slightly decreased by 0.05 to increase the image
acceptance rate. We experimentally set 𝑁 to 3 to ensure good user
experience and the usefulness of the collected data. During the
initial explorations, we found that this gradual increase in the ac-
ceptance rate was perceptible to users, effectively reducing fatigue
while maintaining an acceptable standard of data quality. In the
second situation, if accepted images do not contribute new informa-
tion to the collected image set 𝑆 , 𝑎lev is slightly increased by 0.05
to decrease the image acceptance rate (lines 10-13). To determine
whether an accepted image brings new information, we calculate
the difference in the number of vectors within each cluster before
and after the cluster update. This difference indicates the variation
in clusters of data features after adding the newly captured image.
This adaptive approach ensures a positive user experience without
sacrificing the data importance of the collected images.

7 SYSTEM EVALUATION
7.1 Experimental Setup
System Implementation. We implement BiGuide in an edge-
based architecture using three commodity smartphones as the mo-
bile clients: (1) Google Pixel 3 XL, (2) Google Pixel 7, and (3) Sam-
sung Galaxy Note10+. We design a mobile app on smartphones
running Android 11 using Unity 2020.3.14f and ARCore 4.1.7. Data
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importance estimation (§5) and guidance generation and adapta-
tion (§6) are executed on the edge server with an Intel i7 CPU, an
NVIDIA 3080 Ti GPU, and 64GB DDR5-4800 RAM. For data im-
portance estimation, we employ YOLOv5 [68] for fast OD model
inference, which is independent from OD models trained post data
collection. Communication between the server and smartphones
occurs over one-hop 5 GHz WiFi (802.11n), with images resized to
3×1480×720 and JPEG compressed to reduce latency. We select the
hyperparameters outlined in §5 and §6 via a small-scale user study
based on user perception of the quality of their experience. These
parameters are kept the same in all experiments, demonstrating
their consistency and insensitivity across various scenarios.
Baselines and Variant. We benchmark the performance of BiGu-
ide against two baselines and one BiGuide variant. All these systems
use the same mobile app but differ in the guidance generation pro-
cess on the server. The baselines are as follows:

(1) Coverage-based system (CovGuide). Inspired by [24], Cov-
Guide employs coverage-based guidance to instruct users to capture
images from a set of pre-defined viewpoints that cover the entire
object as comprehensively as possible.

(2) Free Guidance system (FreGuide). The FreGuide system can be
viewed as a variant of BiGuide, without modules of data importance
estimation and guidance generation and adaptation. Instead, during
the pre-study briefings, FreGuide’s users are told to move frequently
and collect data as diverse as possible. FreGuide transfers the freely
captured images from the mobile phone to the server and generates
guidance that notifies users to continue capturing images.

We also investigate the importance of guiding users with both
image- and instance-level guidance by comparing BiGuide with
ImGuide, which provides only image-level guidance generated
based on informativeness and image-level diversity estimations.

To fairly compare the importance of the data collected by all
systems, we instruct users to capture an equal number of images
for each class and ensure that objects of interest are clearly in view.
Evaluation Metrics. We evaluate BiGuide on a collection of quan-
titative and qualitative metrics.

Data usefulness: To assess the usefulness of the collected data, we
evaluate the accuracy of OD models trained using both supervised
and unsupervised learning methods. For the supervised learning
methods, we manually label all the data collected by users (4400
images in total) and train two different OD models, YOLOv5 and
Faster-R-CNN, which are independent from the OD model used
in BiGuide’s data importance estimation. For the unsupervised
learning methods, we adopt the SOTA method - CutLER [53]. To
evaluate the performance of these models trained on the collected
data, we pre-collected 110 images for each class under varying
lighting and weather conditions to ensure fairness in the evaluation
results. In total, we amassed 770 images in the indoor test set and
330 images in the wildlife test set, as presented in §7.2. With the
diverse test set, we measure the system performance via𝑚𝐴𝑃 as
introduced in §3. In all experiments, we apply the commonly used
data augmentation methods [34] and use SGD with a learning rate
of 0.001 as the optimizer to train the models for 50 epochs.

Other metrics: To examine the system efficiency, we measure
the communication and computation latency (in𝑚𝑠) of BiGuide.
To measure users’ movements during data collection, we use the
motion sensors embedded in mobile devices and record the data

Location 1

Mobile phone

Location 2

Scissors

Location 3

Ball

Light bulb

Location 5

Mug

Location 6 Location 7

Remote control

Tin can

Location 4

Figure 6: Example images of 7 objects positioned in 7 loca-
tions in the indoor scenario. These objects were placed in a
controlled environment.

Edge 
ServerRouter

User

Mobile 
Device

Object

Figure 7: System setup in the Duke Lemur Center.

through our mobile app. With the recorded data, we analyze the
average change of Euler angles per second (𝑑𝑒𝑔𝑟𝑒𝑒/𝑠) to assess the
user’s movement. A larger change in Euler angles per second indi-
cates more frequent and pronouncedmovement.We also assess user
engagement, preferences, and users’ satisfaction via a Qualtrics-
based [42] post-experience questionnaire, as detailed in §7.6.

7.2 User Study Setup
User Study Scenarios. To evaluate the performance and the gen-
eralization ability of BiGuide, we conducted an IRB-approved user
study encompassing two distinct scenarios. We chose the two sce-
narios to represent potential real-world use cases of BiGuide, par-
ticularly catering to individuals or small business stakeholders who,
due to limited budgets or lack of experience in extensive data collec-
tion and model training, are in search of a lightweight solution for
their specific object detection needs. These applications are often
built on personalized data, which can significantly differ from the
public datasets used to pre-train OD models. Therefore, it’s crucial
to collect data that is both informative and diverse, enabling the
effective fine-tuning of an OD model with reduced effort.

Indoor scenario: Users were guided on collecting data in an indoor
environment, which is commonly encountered in OD tasks (e.g.,
interaction with objects in AR applications [10]). Inspired by the
commonly used public indoor-focused CORe50 dataset [15], we set
up the indoor scenario in a typical office environment. We included
seven object classes that are also present in CORe50, namely: mobile
phone, scissors, ball, tin can, light bulb, mug, and remote control.
These objects were placed in seven distinct locations within a con-
trolled environment (see Figure 6). Users moved around different
locations to collect images of the objects.

Wildlife exhibits scenario: To evaluate our system in a more chal-
lenging environment, we set it up in the Duke Lemur Center (see §3),
as depicted in Figure 7. This scenario involves outdoor scenes with
dynamic objects, specifically lemurs. Users were tasked with cap-
turing images of three lemur species in the center: blue-eyed black
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Exhibit 1

Blue-eyed black 
lemur Ring-tailed lemur Red ruffed lemur

Exhibit 2 Exhibit 3

Figure 8: Example images of 3 lemur species enclosed in 3
distinct exhibits in the wildlife exhibits scenario. Images
obtained in this scenario are more complex due to lemurs’
varying poses and sizes, as well as diverse backgrounds.

Table 3: Communication latency when using Google Pixel 3
XL, Google Pixel 7, and Samsung Galaxy Note10+.

Image encoding (𝑚𝑠) Info. transm. (𝑚𝑠)

Google Pixel 3 XL 77

87Google Pixel 7 49

Samsung Galaxy Note10+ 55

lemur, ring-tailed lemur, and red ruffed lemur, as depicted in Fig-
ure 8. Different lemur species were housed in distinct enclosures,
requiring users to move between these separate areas. Users’ vis-
its were scheduled at different times on seven days, aligning with
the center’s general tour schedule. This led to users encountering
different weather conditions, including sunny and rainy days. On
warm, sunny days, the lemurs are more active, engaging in activities
like climbing and exploring; on cold, rainy days, the lemurs tend to
gather and rest inside their cages. Compared to the images collected
in the indoor scenario, the wildlife images present greater complex-
ity and detection challenges due to the lemurs’ varied poses and
sizes, occlusion from cages, and unstable lighting conditions [36].
Study Protocol. For the evaluation of BiGuide, we recruited 20
participants from the Duke community, comprising 12 males and 8
females, ranging in age from 19 to 35 years; 10 participants were
assigned to the indoor object scenario, and the remaining 10 to the
wildlife exhibits scenario. During the data collection process, each
participant collected 20 images for each object in their assigned
scenario, using BiGuide and one or more of the alternative systems
described in §7.1 above. In the indoor scenario, where the environ-
ment was controlled, the viewpoints for CovGuide were marked
on the floor, positioned 1 meter away from the object, and spaced
at regular 15-degree intervals to ensure comprehensive coverage.
To fully cover the viewpoints for CovGuide in the wildlife exhibits
scenario, where users’ activities are restricted to certain walkways
at a distance from the lemurs, users were instructed to move one
step forward in these designated areas after capturing each image.
We prepared a set of system usage instructions, which can be found
on GitHub1. Each participant began by reviewing these instructions
and was told to collect images with as much diversity as possible.
For BiGuide, we explicitly instructed users to follow the guidance
displayed on the phone screen. Subsequently, they embarked on
the data collection process using the data collection systems. The
participant moved around the scene with the commodity smart-
phone we provided (Google Pixel 3 XL, selected from the range of
mobile phone models we tested to best represent a less expensive

device), taking images of various objects from different viewpoints.
We measured that each participant spent around 15 minutes using
each system. For example, in the indoor scenario, to collect 140
images, it required 5 − 11 minutes for CovGuide, 4 − 14 minutes
for FreGuide, and 8− 15 minutes for BiGuide. This results in a total
data collection time of over 10 hours.

7.3 System Profiling
We examine the communication and computation latency of BiGu-
ide and baselines.
Communication Latency. Communication in our system, encom-
passing on-device image encoding and information transmission
via WiFi, involves sending images from the device to the server
and guidance back to the device. Our communication latency mea-
surement begins when the user presses the screen button and ends
when the device receives the guidance, excluding the server’s guid-
ance computation time. We measure communication latency over
10 trials with Google Pixel 3 XL, Google Pixel 7, and Samsung
Galaxy Note10+ and show the results in Table 3. The image encod-
ing latency when using Google Pixel 3 XL is 77𝑚𝑠 , which is longer
compared to Google Pixel 7 (with a latency of 49𝑚𝑠) and Samsung
Galaxy Note10+ (with a latency of 55𝑚𝑠). We therefore use Google
Pixel 3 XL during the user study to demonstrate that BiGuide can
be used on lower-end mobile devices without compromising its per-
formance and user experience. The communication latency can be
further reduced by decreasing the image size, or adopting wireless
networks with higher channel throughput.
Computation Latency. CovGuide and FreGuide have no compu-
tational overhead, as no computation happens on the server. The
computation latency of BiGuide consists of data importance esti-
mation, guidance generation and adaptation. The average latency
over 10 trials is 50 ms when using YOLOv5 in the data importance
estimation. When integrating Faster-R-CNN with BiGuide, latency
increases by 115𝑚𝑠 compared to YOLOv5. Thus, we use YOLOv5
in the user study to provide faster feedback. This computation la-
tency could be further decreased by using lighter OD models, more
powerful edge servers, or reduced image size.
End-to-end Latency. The end-to-end per-image-capture latency
experienced by BiGuide’s users during our user study is 214 ms on
average, with a median of 172 ms. Such latency is perceived to be
“quick” bymore than 85% of the users as reported in §7.6. This can be
attributed to the typical user behavior, where users spent about 2328
ms ± 661 ms adjusting their positions between consecutive image
captures, allowing BiGuide’s guidance to appear promptly before
users could determine their next step. Moreover, the nature of our
photo-taking task reduces latency impact. It aligns closely with low
attention tapping tasks, such as tapping a location and expecting
simple feedback, where a latency of 300ms is acceptable [46]. It also
mirrors interactions where users initiate an action (like a button
press or voice command) and await visual feedback; in such cases,
a latency of up to 200 ms often goes unnoticed [43, 47, 51].

7.4 Identification of the Best Baseline with a
Small-scale User Study

We conducted a small-scale user study to identify the best baseline
for comparison with BiGuide. In this study, we recruited one user in
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Figure 9: The𝑚𝐴𝑃 of the YOLOv5 (-Y) and Faster-R-CNN (-
F) trained using supervised learning with varying numbers
of images collected using CovGuide (Cov), BiGuide (Bi) and
FreGuide (Fre). BiGuide outperforms CovGuide by 4.47% ∼
33.07%. FreGuide also outperformsCovGuide by 0.83% ∼ 9.92%.

the indoor scenario and one user in the wildlife exhibits scenario to
collect data using BiGuide and both CovGuide and FreGuide base-
lines. The𝑚𝐴𝑃 of the ODmodels trained using supervised learning,
with varying numbers of images per class collected using differ-
ent systems, is shown in Figure 9. BiGuide outperforms CovGuide
across all OD models and all training data sizes, with an improvement
ranging from 4.47% to 33.07%. Remarkably, for all situations, the
OD models trained with images collected by BiGuide, even with as
few as 5 images per class, consistently surpass the performance of
models trained with a larger set of 20 images per class collected by
CovGuide. The improvement ranges from 2.94% to 22.11%. These
findings indicate that BiGuide requires less collection effort while
achieving higher performance compared to CovGuide. Surprisingly,
FreGuide also outperforms CovGuide with improvements ranging
from 0.83% to 9.92%. We believe the spatial constraints imposed by
both scenarios were the primary reason for the poor performance
of CovGuide. Taken from a set of fixed viewpoints, the images
collected under CovGuide lack diversity and variability, especially
in settings where the scene is complex and objects of interest are
dynamic, such as at the Duke Lemur Center. Moreover, not all data
collected from different viewpoints contribute to model training. As
a result, OD models trained with these data struggle to generalize
well to different viewpoints and variations in the real world, where
users detect objects with mobile devices. Therefore, we identify that
FreGuide serves as the most suitable baseline for comparing the
performance of BiGuide. We also observe that while FreGuide and
CovGuide show no improvement or even degrade with increased
data collection, BiGuide consistently improves. This distinction lies
in BiGuide’s encouragement of diverse data collection, contrasting
with the tendency of FreGuide and CovGuide to limit diversity.2

7.5 Data Usefulness in Supervised and
Unsupervised OD Model Training

To comprehensively validate the usefulness of the collected data,
we conduct a user study with 20 users to collect data to train OD
models using both supervised and unsupervised approaches.
Data Usefulness in Supervised OD Model Training. The𝑚𝐴𝑃
of the OD models trained using supervised learning, with varying
numbers of images per class collected by FreGuide and BiGuide,

2The data distribution comparison can be found in our GitHub.1
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Figure 10: The𝑚𝐴𝑃 of the models trained using supervised
learning with varying numbers of images per class collected
by FreGuide and BiGuide.

Table 4: The average𝑚𝐴𝑃 gap between all OD models trained
with data collected by FreGuide and BiGuide under non-
expert group and expert group.

Scenarios Non-experts Experts
Indoor +10.74 +11.18

Wildlife exhibits +9.28 +6.54

is shown in Figure 10. We observe that BiGuide consistently sur-
passes FreGuide by 4.53% ∼ 14.57% in the indoor scenario and
2.86% ∼ 10.00% in the wildlife exhibits scenario. Notably, as the
number of training samples per class increases from 5 to 20, the
performance gap between BiGuide and FreGuide becomesmore pro-
nounced. For instance, when evaluating the data using YOLOv5 and
Faster-R-CNN in the indoor scenario, the performance gap increases
from 4.53% to 14.57% and from 5.80% to 13.23%, correspondingly.
Similarly, in the wildlife exhibits scenario, the gap widens from
4.21% to 10.00% and from 2.86% to 7.39%. This suggests that users
tend to collect redundant data without guidance, whereas BiGuide
ensures data diversity and usefulness by employing dynamic data
acquisition guidance during the data collection process.

We further analyze the above results with respect to the level of
user expertise and user movement.

Analysis based on user expertise: Users were identified to be ex-
perts, who self-identified in the pre-experiment survey as having
a strong machine learning background and being aware of the
need to collect diverse data to train models, and non-experts. 3 out
of 9 experts were assigned to the indoor scenario and 6 experts
were assigned to the wildlife exhibits scenario. We expected that
the usefulness of data collected by non-experts would be boosted
noticeably when using BiGuide, while those collected by experts
might only show a smaller improvement. To analyze the differ-
ence in the usefulness of collected data between experts and non-
experts, we average the supervised learning results across both
YOLOv5 and Faster-R-CNN models, as well as all training data sizes
in two user study scenarios. The analysis results are presented in Ta-
ble 4. Surprisingly, BiGuide consistently outperforms FreGuide by
6.54% ∼ 11.18% in expert groups and 9.28% ∼ 10.74% in non-expert
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Figure 11: Model perfor-
mance v.s. average change of
Euler angles per second for
each user in the wildlife ex-
hibits scenario when using
BiGuide.
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Figure 12: 𝑚𝐴𝑃 of models
trained using unsupervised
learning with varying num-
bers of data collected per
class by FreGuide and BiGu-
ide in the indoor scenario.

groups. It suggests that even users who have a deep appreciation
for the need to collect diverse data still capture redundant data when
collecting images without guidance, whereas BiGuide significantly
enhances the data usefulness with in-situ guidance.

Analysis based on user movement: We analyzed user movement
in the wildlife exhibits scenario, as movements here are more pro-
nounced compared to the indoor scenario, largely due to the large
area of the Duke Lemur Center. We found that users exhibited more
significant movements when using BiGuide compared to FreGuide,
with average Euler angle changes of 93 𝑑𝑒𝑔𝑟𝑒𝑒/𝑠 and 42 𝑑𝑒𝑔𝑟𝑒𝑒/𝑠 ,
respectively. This finding suggests that BiGuide effectively encour-
ages users to actively engage in data collection, resulting in the
acquisition of more useful data. Next, we examined the extent of the
movement among different users who used BiGuide, as shown in
Figure 11. By fitting an exponential trendline, we observe that users
who displayed frequent movement during the user study achieved
higher mAP in the models trained on the data collected by BiGuide.
This further indicates that BiGuide provides helpful guidance to
instruct users to move more frequently. Furthermore, we notice that
the best-performing model (49.4𝑚𝐴𝑃 ) was trained with data from
an active user (91 𝑑𝑒𝑔𝑟𝑒𝑒/𝑠), while the worst-performing model
(32.4𝑚𝐴𝑃 ) used data from an inactive user (49 𝑑𝑒𝑔𝑟𝑒𝑒/𝑠). These
findings reinforce the importance of user activity in data collec-
tion and highlight the benefits of active participation facilitated by
BiGuide.
Data Usefulness in Unsupervised OD Model Training. As un-
supervised learning often achieves lower performance than super-
vised learning [12], data usefulness evaluation using unsupervised
learning is completed as a secondary use case in the indoor scenario
alone, given that the challenging nature of the wildlife data (e.g.,
moving objects, varying weather conditions, and complex back-
grounds) demands more training data to build accurate models.

Figure 12 shows the𝑚𝐴𝑃 of the OD models trained using un-
supervised learning, with varying numbers of images per class
collected by FreGuide and BiGuide in the indoor scenario. We ob-
serve the best unsupervised result to be 41.98% lower than the best
supervised result, which aligns with the performance drop (around
40%) observed in studies comparing supervised and unsupervised
methods on the COCO dataset [28, 54]. We also notice that data
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Figure 13: User study response. Users valued the quick re-
sponse and the ease of understanding and following the guid-
ance, with 85%, 90% and 95% positivity rates, respectively.

collected by BiGuide contributes more to the unsupervised train-
ing. Specifically, BiGuide outperforms FreGuide by 2.92% ∼ 4.66%
as users collect more than 5 images per class, and underperforms
FreGuide by 0.71% when collecting 5 images per class. It proves
that data collected by BiGuide is helpful for unsupervised learning,
even when the data size is small (up to 140 images in the indoor
scenario).

7.6 User Study Survey Analysis
Survey Questions. Participants filled pre- and post-experiment
online surveys created with Qualtrics software [42]. These sur-
veys are available on GitHub1. In the pre-experiment survey, to
understand users’ expertise, we collected demographic information
asking questions about prior experience with object detection and
data collection. We assembled a set of questions in different cate-
gories for the post-experiment survey to gather feedback. For the
category of data acquisition guidance, we asked the participants if
the designed guidance was easy to understand and follow and if
the guidance generation was fast. For the category of system expe-
rience, we asked the participants if the system was helpful and if
they felt more confident and more involved when using the system.
All questions in these categories were answered on a five-point
Likert scale. Finally, participants chose their preferred system and
provided open-ended feedback about their overall experience.
Survey Responses. The post-experiment survey responses are
summarized in Figure 13. We define positivity rate as the percentage
of users’ responses in the ‘strongly agree’ and ‘agree’ categories. The
users’ free-text responses are quoted with the participant number,
𝑃 .

System experience: The users largely agreed that BiGuide was
helpful in collecting diverse data, making them feel more confi-
dent and engaged. 100% of participants expressed a higher level of
engagement when using BiGuide compared to FreGuide. 95% of
participants found BiGuide to be helpful in collecting useful data,
and reported feeling more confident about the usefulness of the
collected data. In contrast, only 10% of participants were confident
in the usefulness of the data collected without guidance.

Data acquisition guidance: During the user study, the majority of
participants appreciated the ease of understanding and following
the provided guidance, as well as the system’s fast guidance gener-
ation process (90%, 95% and 85% positivity rates, correspondingly).
This highlights BiGuide’s potential for high-quality data collection.
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Table 5: Ablation study results under two evaluation scenar-
ios. BiGuide surpasses ImGuide by 5.65% ∼ 22.54%.

Indoor scenario Wildlife exhibits scenario

YOLOv5 Faster-R-CNN YOLOv5 Faster-R-CNN

CovGuide 66.88 56.23 29.00 27.93

FreGuide 72.51 63.84 35.11 28.43

ImGuide 74.35 68.81 36.28 32.47

BiGuide 96.89 89.30 41.93 38.87

One participant expressed dissatisfaction with the speed and com-
prehensibility of the guidance, specifically mentioning issues with
the small and hard-to-see buttons and guidance text in the inter-
face (P1). These user interface issues stem from the limited-size
phone screen, where the guidance information is overlaid on the
captured image. Two other participants (P2 and P10) disagreed that
the guidance was fast because they felt uncomfortable pausing to
see feedback while taking pictures. The user experience can be
further enhanced by optimizing the app’s user interface.

System preference: A majority (60%) of users favored BiGuide,
35% found merit in both systems, and only 5% preferred FreGuide.
Participants who liked BiGuide felt that BiGuide is ‘really promising’
(P6, P7, P17) and stated that BiGuide ‘made me more creative in
changing the object’s pose’ (P16, P17, P18), and ‘forced me to move’
(P1, P2, P8, P11). Users who liked FreGuide felt that FreGuide is
‘convenient’ (P1, P2, P10, P15), since they ‘only need to press the
button’ (P1, P11). These insights highlight BiGuide’s potential as
a tool that not only facilitates practical data collection but also
stimulates user engagement and creativity.

7.7 Ablation Study
Comparison with Single-level Guidance. To validate the neces-
sity of using bi-level data acquisition guidance instead of single-
level guidance during data collection, we conduct an ablation study
by examining BiGuide with only image-level guidance, referred to
as ImGuide. The same user study process was conducted by one sys-
tem designer in both scenarios. The𝑚𝐴𝑃 of the OD models trained
using supervised learning, with 20 images per class collected by
CovGuide, FreGuide, ImGuide, and BiGuide, is shown in Table 5.
We observe that ImGuide outperforms FreGuide by 1.17% ∼ 4.97%,
and BiGuide surpasses ImGuide by 5.65% ∼ 22.54%. These findings
demonstrate that both image-level and instance-level guidance are
helpful in data collection process.
The Impact of Data Augmentation. Data augmentation can
also be considered as a procedure to increase data diversity. To
underscore the advantages of using BiGuide for complementing
the conventional and SOTA data augmentation techniques [34],
such as affine transformation, flipping, HSV augmentation, mixup,
AutoAugment, and Copy-Paste, we conduct an empirical evalua-
tion. This entails comparing the performance of YOLOv5 models
trained with and without data augmentation. We use data collected
by FreGuide and BiGuide as detailed in §7.4. The𝑚𝐴𝑃 of the OD
models, trained using supervised learning with 20 images per class,
both with and without data augmentation, is shown in Figure 14.
We observe that data augmentation enhances model performance
by 3.47% ∼ 22.50%, demonstrating its pivotal role in model train-
ing. Meanwhile, with data augmentation, models trained on data
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Figure 14: Results with data augmentation (w/ A) andwithout
data augmentation (w/o A).

collected by BiGuide outperform models trained on data collected
by FreGuide by 4.22% ∼ 21.94%. This occurs because, while data
augmentation can enrich the data distribution [59], it does not offer
additional insights into the local environment. In contrast, data col-
lected by BiGuide encompasses more local information, enhancing
model performance and serving as a valuable complement to data
augmentation techniques.

8 DISCUSSION
Reliability of the Informativeness Estimation. Given that the
OD model remains unchanged during the data collection process,
there is a potential for unreliability in informativeness estimation.
To counter this, we have implemented three approaches to ensure
the reliability of this estimation. Firstly, during data collection, users
were required to collect a predetermined number of images for each
category, eliminating class bias. Secondly, to counteract data bias
resulting from repetitive images with high informativeness, we
integrated a diversity metric. Thirdly, due to the unacceptable la-
tency incurred by updating the OD model during data collection
(4.6min to update the Faster R-CNNmodel on NVIDIA TITAN RTX
GPU, as found in our previous study), we abstained from runtime
OD model updates and introduced randomness into the determi-
nation of image acceptance in §5.3, inspired by the error injection
method [5]. This reduces reliance on pre-trained OD models and
mitigates data bias. For scenarios where users cannot control the
number of images per category, can accommodate model update
delays, or possess more powerful edge servers, BiGuide can be
readily extended to employ SOTA bias-aware informativeness met-
rics [2, 41] or incorporate advanced model update techniques from
active learning research [11, 14, 60].
Refinement of Movement Instructions. In our work so far we
ensure the effectiveness of BiGuide by rejecting redundant images
captured when participants do not move in accordance with the
guidance. However, we do not prescribe specific movements for the
user and do not explicitly monitor her adherence to our guidance.
In our future work, we will enhance BiGuide’s data acquisition
guidance by incorporating more precise instructions, such as the
specific direction of user motion or the specific degree by which
the user needs to adjust her phone. Inspired by active sensing tech-
niques [55, 67], we plan to achieve more explicit guidance by ana-
lyzing the impacts of different user actions on the data importance,
and identifying a user action that maximizes the data importance
to guide user behavior. We will begin by designing a discrete action
space that lists possible user actions. Following this, we will for-
mulate a tractable utility function that quantifies data importance
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as a function of these actions, and solve the utility maximization
problem to obtain the optimal action.

9 CONCLUSION
We develop a novel data acquisition system, BiGuide, to instruct
users in gathering useful data in the local environment for OD
model training. To achieve this, we propose a data importance
estimation method to assess the value of the captured image in real-
time, a bi-level data acquisition guidance to involve users in data
collection, and a dynamic guidance adaptation to ensure a positive
user experience without sacrificing the usefulness of the collected
data. We implement BiGuide in an edge-based architecture, using
commodity smartphones as mobile clients, and compare it with
baseline systems. Extensive experiments demonstrate that OD mod-
els trained on the data collected by BiGuide notably outperform
those trained on the data collected by two baseline systems, increas-
ing detection accuracy by up to 33.07% and 14.57%, respectively.
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