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Figure 1: Overview of the Sudoku Helper apps we developed for the study on user attention patterns in AR and VR environments.
(a) The AR study setup with a participant wearing the Magic Leap 2 AR headset. (b) The interface of the AR Sudoku Helper
app, showing the visual hints overlaid on a Sudoku puzzle, the progress bar, the timer and the university mascot, Duke Blue
Devil. (c) The VR simulation of the AR app, showing the virtual office setup with the Sudoku puzzle placed on a whiteboard.

ABSTRACT

Virtual reality (VR) simulations have been adopted to provide con-
trollable environments for running augmented reality (AR) experi-
ments in diverse scenarios. However, insufficient research has ex-
plored the impact of AR applications on users, especially their at-
tention patterns, and whether VR simulations accurately replicate
these effects. In this work, we propose to analyze user attention pat-
terns via eye tracking during XR usage. To represent applications
that provide both helpful guidance and irrelevant information, we
built a Sudoku Helper app that includes visual hints and potential
distractions during the puzzle-solving period. We conducted two
user studies with 19 different users each in AR and VR, in which
we collected eye tracking data, conducted gaze-based analysis, and
trained machine learning (ML) models to predict user attentional
states and attention control ability. Our results show that the AR
app had a statistically significant impact on enhancing attention by
increasing the fixated proportion of time, while the VR app reduced
fixated time and made the users less focused. Results indicate that
there is a discrepancy between VR simulations and the AR experi-
ence. Our ML models achieve 99.3% and 96.3% accuracy in pre-
dicting user attention control ability in AR and VR, respectively. A
noticeable performance drop when transferring models trained on
one medium to the other further highlights the gap between the AR
experience and the VR simulation of it.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Mixed / augmented re-
ality; Human-centered computing—Human computer interaction
(HCI)—Interaction paradigms—Virtual reality
1 INTRODUCTION
The deployment of AR applications in diverse environments to pro-
vide real-time information or guidance [67, 63, 9, 15] is becom-
ing a practical reality. While AR has shown its potential to en-
hance user experience and task performance, the integration of AR
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content with real-world tasks raises concerns about the potential
negative impacts of AR content on user attention. Visual clutter
or obstruction of critical information caused by virtual contents
may lead to suboptimal attentional states, such as attention tun-
neling [12, 13, 61] or distraction [26]. Commercial AR applica-
tions can add complexity to intended user attention; informative
virtual contents and advertisements’ virtual contents may compete
for attention. Compared to traditional displays such as smartphones
and computer screens, virtual contents in AR applications can have
more intense, long-lasting impacts on users’ attention, that are dif-
ficult to avoid spatially and temporally [70]. Therefore, it is crucial
to understand the task-detrimental effects of AR content on user
attention and task performance.

Fortunately, eye tracking has been widely adopted in modern
XR headsets [47], making it possible to “look” into user atten-
tion patterns. Attention, a cognitive process directing neurocog-
nitive resources toward behavioral goals, involves multiple brain
networks [11, 31]. Monitoring the dorsolateral prefrontal cortex
(PFC) helps differentiate attentional states [20]. Eye tracking, a
standard method for analyzing attention, reflects how the PFC gen-
erates visual spatial attention signals, which are then translated into
retinocentric signals and conveyed to the frontal eye field [29]. At-
tention researchers have leveraged such link between eye move-
ments and attention by analyzing the spatial allocation of gaze, met-
rics of fixations (maintenance of eye gaze on a single location), and
saccades (instantaneous and ballistic changes of the eyes between
fixation points), as well as many other gaze events. Prior research
has shown that spatial attention drives gaze events such as time-
and-space-instructed saccades [23] and longer fixations at a spatial
location indicate higher processing efforts towards that focus of at-
tention [21]. These findings motivate the usage of eye tracking data
to evaluate attention patterns during AR-assisted tasks [43, 58, 60].

To enable AR quality of experience (QoE) evaluation at scale,
VR simulations for AR [32, 35, 50] have been proposed to provide
controllable and extendable test environments for running tests of
AR apps under diverse situations. Although widely used to justify
the effectiveness of AR applications, it remains unclear whether VR
simulations replicate the same effects that AR apps have on users.



While users were found to maintain close performance and self-
reported similar experiences in VR simulations [32], their behaviors
in certain scenarios can be quite different [7]. Given the limitations
in hardware, interaction methods, and the challenges in replicating
the physicality and real-world content in VR, the lack of objective
user state measurements is particularly concerning when using VR
simulations for AR QoE evaluations. This calls for investigation
into the validity of evaluating user attention patterns in AR with
VR simulations to understand the impact of XR on users.

In this work, we developed a Sudoku Helper app to investigate
how virtual contents affect user attention via eye tracking, for users
wearing AR and VR headsets and with different attention control
abilities. The app provides real-time guidance for solving the puz-
zle and introduces potential distractors at various task stages, en-
abling the comparison of user attention patterns under different AR
and VR conditions. We conducted IRB-approved user studies with
two disjoint groups of 19 participants for the AR and VR apps,
where we collected eye tracking data and user attention labels. We
analyzed the eye tracking-based metrics including fixations, sac-
cades, and region-of-interest (ROI)-based fixation allocation, and
trained transformer-based ML models [73] on eye tracking data to
predict the presence of the distractors and the users’ ability to con-
trol their attention. Our results show that the AR app had a statisti-
cally significant impact on user attention by increasing the propor-
tion of fixated time (PFT) while the VR app had the opposite ef-
fect of decreasing PFT, indicating a potential discrepancy between
VR simulations and AR. Evaluations of the ML models not only
showed the potential of using eye tracking data for user attention
pattern recognition and predicting personal attention control abil-
ity, but also corroborated the gap we found between AR and VR
simulations, calling for more design efforts before using VR sim-
ulations for quantitative QoE evaluation. The code is available on
Github1. Our key contributions are summarized as follows:
• We created an app for Sudoku solving in both AR and VR envi-

ronments that provides step-by-step guidance and potential dis-
tractions, considered engaging by 94.7% participants.

• We directly compared attention patterns captured via eye track-
ing in AR and VR and found that VR simulation can induce
higher perceptual load and decrease user focus, while cognitive
load increased in AR.

• We trained ML models on eye tracking data to predict the exis-
tence of distractors and user attention control ability. The model
performance drop when transferred between AR and VR further
highlights the gap between AR and VR simulation.
The rest of the paper is arranged as follows. In Section 2 we

cover related work, then in Section 3 we describe the app we devel-
oped. We then present the user study design in Section 4, followed
by the analysis of the collected data and machine learning perfor-
mance on those data in Section 5. We discuss the limitations and
future work in Section 6, and conclude the paper in Section 7.

2 RELATED WORK

Impact of AR on user attention. AR can affect user attention in
distinct ways compared to traditional information medium. Tech-
niques like omnidirectional attention funnel [4, 53] use spatial cur-
sors to rapidly direct user attention to tracked objects, and for head-
mounted AR eye tracking can be further utilized to provide adaptive
guidance [52]. On the other hand, the potential negative impacts of
AR on user attention that come together with security risks brought
by buggy or malicious applications [2, 34] have also been reported.
AR guidance was found to induce safety risks for drivers [64], while
in the healthcare domain attention tunneling [12, 13, 61] and dis-
traction [26] caused by the AR guidance system have been found to
be detrimental to task performance, though no justification was pro-

1https://github.com/Duke-I3T-Lab/XR_Attention_Sudoku

vided on the determination of those suboptimal attentional states.
Our work additionally leverages eye tracking data to quantitatively
analyze the attention patterns.
User context sensing with eye tracking. A rich body of work
on user context sensing is based on eye tracking, including emotion
recognition [59, 62, 74], engagement detection [11, 57] and biomet-
ric identification [24, 40, 41]. These works used gaze points and
pupil sizes as input to train machine learning models either with
hand-crafted features for traditional ML models or with raw gaze
data for deep learning models such as convolutional neural net-
works (CNNs). Recently, the idea of user context sensing with eye
tracking has been extended to AR applications, as CAPturAR [68]
leveraged egocentric camera feeds to provide fine-grained user ac-
tivity recognition, and GazeGraph [33] used gaze data to detect one
of six predefined activities performed by the users. Visual attention
has also been investigated in AR applications when advertisements
are displayed [72] and in a simulated driving scenario [16], though
those works only focused on the spatial distribution and first-order
statistics of the gaze data. Our work further extends the use of eye
tracking to the recognition of user attention patterns in AR applica-
tions, training an end-to-end transformer-based model on the col-
lected eye tracking data to predict whether the user is being dis-
tracted and the ability of the user to control their attention.
VR simulations of AR. VR simulations of AR have been recog-
nized as a useful technique for evaluating AR applications in a more
flexible manner [32, 35, 50], as they can provide fully controlled
conditions, bypass hardware limitations of current AR devices (e.g.,
small field of view (FOV) [51]) and guarantee safe access to diverse
environments that are hard to access in the real world. However, de-
spite the advanced rendering quality provided by modern game en-
gines, even highly realistic virtual environments still lack the phys-
icality and real-world context inherent to AR applications, not to
mention the differences in hardware and interaction methods [35].
In the context of VR eye tracking, gaze behaviors in VR have been
studied in comparison to those in the real world among a number of
tasks. Despite slight differences in gaze spatial distribution, human
visual behaviors in VR has been proved to align with those in real-
ity [3, 14]. AR shares similar characteristics in FOV [51, 69] with
VR, and both AR and VR applications can lead to decreased blink
rate [27, 28, 42] that might end up causing eye fatigue, which can
also increase blink rate after prolonged usage [17]. To the best of
our knowledge, our work is the first to directly compare attention
patterns revealed by eye tracking in AR and VR, and our results
raise concerns about investigating user attention in VR simulations
as an all-encompassing evaluation of the AR counterparts.

3 TASK FORMATION FOR ATTENTION PATTERN ANALYSIS
IN EXTENDED REALITY

To investigate user attention patterns when using XR headsets, we
propose a task of Sudoku solving for attention pattern analysis, rep-
resenting AR applications that provide guidance while being poten-
tially distracting at the same time. Sudoku is a logic-based, combi-
natorial number-placement puzzle whose objective is to fill a 9×9
grid with digits so that each column, row, and 3×3 box contains
all of the digits from 1 to 9. Solving a Sudoku is an attention-
demanding task that leaves space for guidance. Additionally, Su-
dokus are classified into well-established difficulty levels, so that
we can control the cognitive load implied by the task to avoid bias
among trials. We develop our AR and VR apps on a Magic Leap 2
and an HP Reverb G2 Omnicept Edition, respectively, of which we
will introduce the implementation details in the following sections.

3.1 AR Sudoku Helper Application
The workflow of our developed AR Sudoku Helper app is shown
in Figure 3. The AR app is designed with an edge server [30, 38],
running in geographic proximity of the AR headset, to provide nec-
essary computational power for digit recognition and hint genera-
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(a) Type 1: last remaining cell (b) Type 2: last possible digit (c) Type 3: last free cell (d) Type 4: warning w/ reference (e) Type 5: warning w/o reference

Figure 2: Examples of 5 types of hints to help solve the Sudoku. (a) A 7 should be filled in the last remaining cell in the bottom-middle box;
(b) The last possible digit in the top-right of the center box is 1; (c) A 1 should be filled in the last free cell of the last row; (d) A warning with
reference to another 3 in the 7th column; (e) Though not clear from the current puzzle, the 4 in yellow does not match the solution.

tion. At the beginning of each round of interaction, our app uses
the RGB camera in the front of the AR headset to capture an image
of the Sudoku puzzle and send it to the server for the recognition
of the puzzle and the digits. The server then computes the current
progress of the user and generates a hint for the next step, which
will be sent back to the AR headset and rendered as virtual con-
tents. The user will continue to add digits until the puzzle is com-
pleted. Throughout the procedure, eye tracking data, gaze-targeted
AR contents and whether a distraction is present will be recorded.
Next we will separately introduce the server (backend edge server)
and the client (AR headset) components of the app.

Figure 3: Workflow of the AR Sudoku Helper app.

3.1.1 Server Implementation
The edge server is in charge of generating hints that guide the users
to complete the Sudoku given an image of the puzzle. The follow-
ing three modules are involved in the server implementation, with
the first two inspired by an online tutorial [55]:
Sudoku puzzle detection and grid extraction. Using the Python
OpenCV library [5], we first extract the largest convex contour with
4 corners and apply a four-point perspective transform to obtain a
top-down birds-eye view of the puzzle. We then divide the puzzle
into 81 equal-sized cells to extract the digits in each cell.
Digit recognition. An Efficient-CapsNet [44] model is applied for
digit recognition. If new digits are recognized, the progress (the
percentage of the puzzle being filled) will be updated and the rec-
ognized puzzle will be sent to the hint generation module.
Hint generation. The hint generation module takes the recognized
puzzle as input and generates hints correspondingly. If the recog-
nized digit matches the solution of the puzzle, the server will gen-
erate the hint for the next valid move, in one of the three types [6]:
1. Last remaining cell. For one specific digit that is absent in one

box, row or column, by eliminating cells that are in the same
row, column or box of another instance of that digit, there is
only one remaining cell that can be filled with that digit.

2. Last possible digit. For one of the empty cells, based on the
existing digits in its row, column, and box, there is only one
possible number that can be filled in that cell.

3. Last free cell. Only one cell is free in a row, column or box.
In cases where the recognized digit does not match the solution,
the server will generate a negative hint, which highlights the cell
that the user filled in incorrectly with (type 4) or without (type 5)
a reference digit. Examples of all types of hints are shown in Fig-
ure 2. The server communicates with the client via TCP, through
which the AR headset sends the raw captured image of the puzzle

to the server, and the server responses with a message containing
the current progress and the hint to be displayed.

3.1.2 Client Implementation
The client, namely the AR headset, is in charge of capturing the
image of the Sudoku puzzle, rendering AR contents based on server
responses and collecting eye tracking and app-specific data.
Sudoku image capturing. We use Vuforia image target detection
to track the puzzle image, which remained reliable even when the
user adds more digits, as the Sudoku image itself is full of edges
and corners that made it feature-rich. Images of the puzzle are sent
to the server every 1.5 seconds to provide a smooth experience for
the user while ensuring timely recognition of the digits.
AR guidance and distractors. The client interface is shown in
Figure 1b. Upon receiving the response from the server, the client
will render the transparent visual hints in the form of rectangle cov-
ers on the puzzle, in the color of blue and green for positive hints
and red or yellow for negative hints (see Figure 2 for examples).
We additionally add the following AR components in the app:
• A progress bar on top of the puzzle board, showing the percent-

age of cells already correctly filled in the puzzle.
• A timer at the bottom of the puzzle board, counting down from

a 20-minute limit.
• A university mascot (Duke Blue Devil) dancing at the bottom-

right of the puzzle. When a mistake is recognized, the mascot
will shake its head. Additionally as a distractor, every 1.5s the
mascot has a 7% chance to start running around the puzzle.

• Audio hints in the form of a man’s voice of the digit to fill being
played repeatedly when a hint of type 2 or 3 is received.
The user interface closely resembles that of a commercial Su-

doku helper app, featuring elements that convey information, en-
hance user enjoyment, and subtly reveal the app’s creator. We envi-
sion this design as representative of a typical AR application, which
offers guidance while maintaining an element of distraction.
Data collection. The headset records eye tracking data, includ-
ing gaze directions, eye center positions and, eyes open amount at
60Hz. For the identification of different periods and attention labels
during the session, whether the audio hint is activated and whether
the university mascot is running will also be recorded at each times-
tamp. We also record the gaze targets of the user, including the
puzzle board, the progress bar, the timer, the mascot, and the hints
overlaid on the puzzle board.

3.2 VR Simulation of the AR Sudoku Helper Application
To explore the validity of evaluating attention patterns in AR with
VR simulations, we developed a VR Sudoku Helper app that mim-
ics the AR app. While sharing the same task and virtual elements
as described in Section 3.1.2, due to the nature of the fully virtual
world and hardware limitations of the headsets we created the app
such that it is different from the AR app in the following aspects:
Interaction method. Digit input in the VR app relies on the con-
troller. Users can point the ray from the controller at a cell and
use the trigger at the back to select. The joystick is used to scroll
between digits, and the trigger is then used to confirm.



Puzzle size and placement. To accommodate the controller-based
interaction, a larger puzzle in VR is vertically positioned on a vir-
tual whiteboard in front of the user, perceived to be slightly beyond
an arm’s length with a diagonal viewing angle of 35◦, intentionally
placed far away to avoid depth perception issues due to different
user poses. The puzzle horizontally placed in AR has a diagonal
viewing angle of 15◦–25◦ depending on the user’s writing pose.
Hint generation. In VR the puzzle and every entered digit are
readily known to the server, making the hint generation time shorter
and more stable than that in AR without the need to run the digit
recognition model.
Data collection. The AR headset records eye tracking data at
60Hz. The VR headset is equipped with Tobii eye tracking sen-
sors that collect gaze directions and pupil dilation at 120Hz, but do
not record eye center positions or eye open amounts. Both devices’
eye tracking accuracy is within 1 degree.

While we acknowledge that the differences between the AR and
VR apps can introduce confounding factors to the comparison of
user attention patterns, we note that, unfortunately, current VR
simulations cannot fully represent AR experiences (e.g., controller
must be used for high-precision input [25] in VR. Scene under-
standing functions, such as object detection, in AR often lead to
unstable response times [18]), and it is difficult for VR simulations
to replicate this instability. We believe that the comparison of AR
and VR user attention can still provide valuable insights under the
current circumstances, but further research is needed to ground the
findings and further inform the design of VR simulations.

3.3 System Implementation Details
We developed both apps in Unity 2022.3.6f1. The server was im-
plemented with Python 3.8.11 and the Efficient-CapsNet model was
implemented with TensorFlow [1]. We adopt the same Sudoku puz-
zles from puzzles.ca [49] for both studies. The average latency of
hint visualization, measured from the time the image is captured
to the point when hint gets rendered on the client, is 254ms in AR
and 11ms in VR. As the average time for a user to fill in a cell was
typically greater than 2s, the latency was considered acceptable for
hint generation in AR. Subjective feedback from the users on the
latency can be found in Section 5.1.

4 AR AND VR ATTENTION ANALYSIS USER STUDIES

In order to evaluate the impacts of AR on user attention and the
validity of evaluating them in VR simulations, we conducted two
user studies approved by the Duke University Institutional Review
Board. The objective of the studies is to gather eye tracking data
and user attention labels from participants as they solve Sudoku
puzzles in both AR and VR environments. We will then analyze
these data to determine whether the two media have varying impacts
on users with different levels of attention control ability. Machine
learning models were also trained on the data for the prediction of
the presence of distraction and personal attention control ability.

4.1 Study Procedure
The same procedure was employed in both studies. Upon arrival,
participants were first asked to read and sign the consent form.
Next, participants were instructed to complete the attention con-
trol test known as the Flanker Squared task proposed by Burgoyne
et al. [8], in which they would consecutively identify the central
target stimulus amidst surrounding distractors in a 90s period to
obtain a score. Participants would then fill in a questionnaire about
their familiarity with XR and Sudoku and be introduced to the task.
A demonstration video would then be played while the researcher
further helped with interpreting the guidance and distractors. Af-
ter eye calibration, participants would first work on an easy-level
puzzle for 3 minutes wearing the headset. This trial was unguided,
meaning that AR users would only see the Sudoku printed on a
physical paper, and VR users would see the virtual Sudoku alone.

Then they would perform a 20-minute session of solving a hard-
level puzzle with all virtual contents present. Users were instructed
to try not to make mistakes during the task to ensure that attention
was paid properly. The session would end immediately after the
puzzle was solved or the 20-minute limit was reached. Post-task,
participants filled out a questionnaire and received a Duke souvenir
as compensation. Each session lasted approximately 45 minutes.

4.2 Participants and Environment
We recruited 19 different participants from our university campus
for each study via email, electronic flyer and poster. Users would
indicate their preferences when signing up and we balanced the two
groups if they did not express a preference. Among the 19 AR study
participants (mean age: 22.8 ± 3.3 years, range: 18–32 years; 6
female), 7 wore glasses, 2 reported to have used AR headsets at
least once or twice a week before, 8 had worn an AR headset once
or twice, and 9 had never worn an AR headset. 14 of them self-
reported to be at least “moderately familiar” with Sudoku solving,
while 10 had solved Sudoku puzzles with hints. For the 19 VR
study participants (mean age: 24.7 ± 5.3 years, range: 21–42 years;
8 female), 8 wore glasses, 3 had used VR headsets at least once or
twice a week before, 8 had worn a VR headset once or twice, and
8 had never worn a VR headset. 13 were at least “moderately fa-
miliar” with Sudoku solving, while 12 had solved Sudoku puzzles
with hints. The AR study was conducted in a quiet room with con-
trolled lighting conditions, while the VR study was conducted in a
different quiet room without lighting being controlled.

5 ANALYSIS AND RESULTS

We collected data from 38 participants and present the results in
this section. The average completion time was 17.4 ± 2.8 mins for
the AR study and 15.4 ± 3.4 mins for the VR study. The average
attention control score (ACS, higher indicates better attention con-
trol ability) for the AR group was 39.0 ± 10.8, while the VR group
scored 36.2 ± 8.8. In the following sections we use non-parametric
tests for the analysis of the data (Mann-Whitney U tests for com-
parisons between AR and VR and Wilcoxon signed-rank tests for
paired comparisons within each group) due to the small population
size of our data.

5.1 Questionnaire Results
In the post-study questionnaire we asked the participants whether
they found the experience to be engaging (questions adopted from
the Game Experience Questionnaire [48]), whether they found each
of the virtual contents to be useful or distracting, whether they made
mistakes during the session and reasons for the mistakes. The an-
swers to those questions are summarized in Figure 4. Out of the
five-point Likert scale answers, we group “agree” and “strongly
agree” as positive responses and report the positivity rate of those
responses in the following sections. The participants’ free-text re-
sponse are quoted with the participant number, P.
Engagement. Both AR and VR users reported high engagement
level with the task, with a positivity rate of 94.7% on “being fully
occupied” for both studies and only 10.5% and 5.3% for “thought
about other things” in the AR and VR study, respectively.
Usefulness of XR contents. The AR users reported positivity rates
of 78.9% for the usefulness of visual hints, 21.1% for the progress
bar, 31.6% for the timer, 5.2% for the mascot’s pose change and
89.5% for the audio hints. In VR the positivity rate was 68.4% for
the visual hints, 21.1% for the progress bar, 63.2% for the timer,
10.5% for the mascot’s pose change and 68.4% for the audio hints.
We found the contents that are not directly related to the puzzle
solving task to be reported less useful than the visual and audio
hints. The mascot was reported to be the least useful in both stud-
ies, which is consistent with our design of the mascot more as a
distractor than a guidance. The higher positivity rate on the use-
fulness of the timer and progress bar indicated that the users might



Figure 4: Survey responses indicating user engagement levels and perceived usefulness or distraction of each XR content element.
still appreciate the additional information provided by XR that is
not directly related to the task. Overall, 84.2% and 68.4% users
were positive towards the Sudoku Helper app being useful in AR
and VR, respectively, though the difference between their ratings
was not found significant (p = .36) through a Mann-Whitney U test.
Distraction caused by XR contents. The proportion of AR users
that agreed or strongly agreed with each element being distracting
was 21.1% for the visual hints, 0% for the progress bar, 21.1% for
the timer, 10.5% for the mascot’s pose change, 26.3% for the mas-
cot’s running around the puzzle and 10.5% for the audio hints. For
VR, we found the proportions to be 15.8% for the visual hints, 0%
for the progress bar, 10.5% for the timer, 10.5% for the mascot’s
pose change, 15.8% for the mascot’s running around the puzzle and
15.8% for the audio hints. We found the mascot’s running behav-
ior that was designed as a distractor, was reported to be overall not
distracting, most likely due to the fact that users were highly en-
gaged in the Sudoku solving task, being in the state of flow [65]
that made them ignore distractions. For the 5 AR users that agreed
or strongly agreed to the mascot’s running being distracting, 4 of
them had an ACS < 39 (mean ACS of the AR group); while all 3
VR users that found it distracting had an ACS < 36.2 (mean ACS of
the VR group), showing that the users with lower attention control
ability were more likely to be affected by the distractors. However,
although self-reported results indicated almost no effect from the
distractors, quantitative analysis of the eye tracking data revealed
different attention patterns during those distracted periods, which
we will discuss in Section 5.2.4.
Subjective feedback on hint generation. No VR users mentioned
anything about the hint generation in their free-text responses. Two
AR users mentioned that the hints were “slow,” with P7 saying that
“The only thing was sometimes it took some time for the headset to
recognize the number I wrote” and P13 mentioning that it was “Too
slow for someone who already knows how to play.” At the same
time, P19 mentioned that “It was easy to use,” while P6 said that “I
liked the hint they were very timely and accurately overlayed.” The
mixed feedback on the hint generation speed did show a difference
in the user experience between the AR and VR studies, which we
will further discuss in Section 6.
Mistakes. 12 and 18 participants self-reported to have made mis-
takes during the session for the AR and VR studies, respectively.
However, only 2 users in each study considered “not paying at-
tention” as the reason for their mistakes, while 9 and 10 users at-
tributed their mistakes to “being confused by the hints” in AR and
VR, respectively. Given that the users did not go through a guided
tutorial trial where they can familiarize themselves with the hints
prior to the 20-minute session, the level of understanding of the
hints might be a factor that affected their performance. We envision
fine-grained analysis on periods before mistakes (which can be in-
dicators of more subtle suboptimal attentional states) to be enabled
by creating a more controllable task where suboptimal attentional

states would be the only reason for mistakes.

5.2 Attention Pattern Analysis with Gaze Data
5.2.1 Setup for Gaze Event Extraction
Prior to the extraction of gaze events such as fixations, saccades and
smooth pursuits, the VR data were first downsampled from 120 Hz
to 60Hz to match the AR data frequency. We used the I-VT algo-
rithm [56] with a velocity threshold of 30 deg/s to detect fixations.
Gaze movements above the threshold were considered as saccades,
except for smooth pursuits which we defined as gaze movements
that did not target both on-puzzle and off-puzzle targets with a ve-
locity between 30 deg/s and 100 deg/s (thresholds were chosen fol-
lowing Tobii’s practice [46]). We reported fixation-related metrics
after aggregating smooth pursuits with fixations, as they both indi-
cate the focus of visual attention [10]. For ROI analysis, we defined
five ROIs as hints, progress bar, timer, mascot and puzzle, and an-
alyzed fixations on each ROI.

In other to compare differences in user attention patterns during
their XR experiences, we extracted five representative periods out
of each user study session as described below:
• The unguided period (UG) when the user was solving the easy-

level puzzle without any other virtual contents;
• The entire session of solving the hard-level puzzle using the Su-

doku Helper app (UA);
• The no-distraction period (ND) during which the mascot was

not running and the audio hint was not played;
• The mascot-running period (MR) when the mascot was running

around the puzzle;
• The audio-playing period (AP) when the audio was played.

We analyzed metrics related to fixations and saccades (Figure 5)
and ROI-based fixation distributions during these periods. We con-
ducted within-group comparisons between UG and all other periods
to test for the effect of virtual elements in the app on gaze patterns,
plus ND vs. MR and ND vs. AP for the effect of specific distract-
ing stimulus (total 6), as well as between AR and VR users in each
period (total 5) to test for the effect of media.

5.2.2 Fixation Metrics
We computed mean fixation duration (MFD), fixation rate (FR) and
the proportion of fixated time (PFT) for each period in AR and VR.
Mixed-design ANOVA (with XR medium as the between-subject
factor and period as the within-subject factor) showed a signif-
icant interaction effect [F(4,144) = 47.06, p < .001, n2

p = .57]
and main effect of period [F(4,144) = 11.23, p < .001, n2

p =

.24] on MFD, a significant interaction effect [F(4,144) = 37.96,
p < .001, n2

p = .51] and main effect of period [F(4,144) = 79.01,
p < .001, n2

p = .69] on FR, and a significant interaction effect
[F(4,144) = 27.72, p < .001, n2

p = .43] and main effect of period
[F(4,144) = 59.58, p< .001, n2

p = .62] on PFT, suggesting that the
effects of XR contents on fixation were significant, and such effects



Figure 5: Metrics of gaze events in different periods. UG: unguided; UA: using app; ND: no distraction; MR: mascot running; AP: audio
playing.

varied across XR medium. The effect of XR medium was not found
significant on any of these metrics, but given the significant inter-
action effects, we also conducted between-group comparisons for
each period [22]. Using Bonferroni correction, we set the signifi-
cance level at p < .0083 for within-group comparisons and p < .01
for between-group comparisons (corrected from p < .05).

As shown in Table 1, distinct effects of virtual contents were
found on MFD and FR of AR and VR users. In AR, MFD was
found to increase in UA, while FR decreased. The average pro-
portion of fixated time (PFT) also went up from 81.6% in UG to
85.7% in UA, with similar increases in ND (85.5%), MR (85.7%)
and AP (86.8%). On the contrary, VR users had a lower MFD in
UA except for the AP period, with an increase in FR except for
the AP period as well, with the significant changes of FR from UA
to MR found to be of opposite directions in AR vs. VR. When us-
ing the VR app, PFT did not change significantly except for the
AP period, where a significant increase was observed. Based on
research by Liu et al. [37], prolonged fixation duration and fewer
fixation counts correlate with increased cognitive load (mental ef-
fort to complete a task). Conversely, shorter fixation duration and
more fixation counts are associated with increased perceptual load
(sensory demands on the perceptual system). Our findings indicate
that the visual components of the AR and VR app had distinct ef-
fects: the AR app may raise cognitive load, while the VR app may
heighten perceptual load.

Additionally, the MFD of the UG period was found to be signif-
icantly longer in VR than in AR (p = .002, A = .21) together with
a lower FR (p < .001, A = .81), which aligns with prior findings
that fixation durations are typically longer in VR [3] due to lack of
objects to fixate at. This trend was reversed when the app was used
and more visual contents were added, as MFD became longer in
AR for the UA (p < .001, A = .83), ND (p < .001, A = .87) and
MR (p < .001, A = .85) periods, with lower FRs and higher PFTs
as well (all tested significant). Resutls indicate that AR experience
largely differs from VR, and assuming VR simulation to always be
a valid representation of AR experience might not be appropriate.

Furthermore, the effect of audio on fixation metrics was signif-
icant in both AR and VR, leading to an increase in MFD (AR:
p < .001, A = .33; VR: p < .001, A = .03) and decrease in FR
(AR: p < .001, A = .70; VR: p < .001, A = .94) when compared
with the ND period, resulting in a significantly higher PFT in VR
(p < .001, A = .02; AR had p = .02). Such results indicate that
the audio hints had a medium-agnostic, attention-enhancing effect
on the users, potentially increasing the cognitive load by urging the
users to fill in the digit faster. In the future we plan to explore the
impact of audio stimulus in a broader sense with more types of au-
dio hints applied.

5.2.3 Saccade Metrics
The saccade mean velocity (SMV) was computed for each pe-
riod. Mixed-design ANOVA showed a significant interaction effect
[F(4,144) = 9.00, p < .001, n2

p = .20] and main effect of period
[F(4,144) = 10.91, p < .001, n2

p = .23] on SMV, but the effect of
XR medium was not found to be significant. The same Bonferroni
correction was applied on SMV comparisons. We did not conduct

Table 1: Differences in fixation metrics between UG and other pe-
riods. Vargha and Delaney’s A effect size is reported together with
the p-values of the Wilcoxon signed-rank test. The effect size is in-
terpreted as small (.56), medium (.64) and large (.71) if a decrease
in the metric was found (A > .5), otherwise (A < .5) as large (.29),
medium (.36) and small (.44) if an increase was found. Significant
increases are marked in bold and decreases are marked in italics.

Period
UA ND MR APXR Metric

A p A p A p A p

AR
MFD .11 < .001 .12 < .001 .11 < .001 .06 < .001
FR .89 < .001 .88 < .001 .89 < .001 .94 < .001

PFT .17 < .001 .18 < .001 .17 < .001 .16 < .001

VR
MFD .62 .28 .73 .03 .70 .02 .13 < .001
FR .37 .23 .27 .01 .30 .007 .85 < .001

PFT .50 .99 .58 .52 .59 .31 .06 < .001

pairwise comparisons between AR and VR saccade metrics due to
differences in puzzle board sizes.

We found SMV to decrease comparing the UG period with the
UA period in both AR and VR, with an 8.7% decrease from the
average 61.0 to 55.7 deg/s in AR (p < .001, A = .80) and a 4.1%
decrease from 63.1 to 60.5 deg/s in VR (p < .001, A = .63), sug-
gesting that more contents displayed in a constrained region tend
to suppress fast saccades. Meanwhile, though not found signifi-
cant in the current study, audio had opposite effects on SMV in AR
and VR comparing ND to AP, as in AR audio made saccades faster
from 55.7 to 58.8 deg/s (p = .03, A = .37) while in VR slower from
60.5 to 56.5 deg/s (p = .01, A = .66). We suspect that such differ-
ence might be due to the difference in how the audio hints in the
real world and in VR were perceived, as in AR users may have the
intuition to search for the source of the sound in the real world.
5.2.4 Fixations on ROIs
Starting from this section, we use “PFT” as the proportion of fixated
time on each ROI to the total fixation time of that user. Mixed-
design ANOVA shown that in the four periods where all ROIs were
present, periods were found to have a significant effect on the PFT
on the mascot [F(3,108) = 26.13, p < .001, n2

p = .42], and the
interaction effect was also significant [F(3,108) = 13.36, p < .001,
n2

p = .27]. We made within-group comparisons of ND vs. MR and
ND vs. AP, as well as between AR and VR users in each period.
Bonferroni correction was applied such that the significance level
was set at p < .025 for within-group comparisons and p < .0125
for between-group comparisons. For the AR users, the PFT spent
on the mascot was similar in all five periods (0.4% in UA and ND,
0.5% in MR and 0.3% in AP), while for the VR users there was a
larger difference when the mascot was running (0.4% in UA, 0.1%
in ND, 1.5% in MR and 0.2% in AP, ND vs MR had p < .001,
A = .001). Note that the percentage reported is about the “fixated
time” on the mascot, excluding short periods of gaze targetting the
mascot but not fixating on it, and 1.5% indicated approximately
1s of fixated time on the mascot out of a 1min period, in a highly
focused task like Sudoku solving. The effect of MR was found to
be strong, and the difference between PFT on the mascot of VR and
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Figure 6: Scatterplot (a) and boxplot (b) of #fixations on the mascot
during the MR period for AR and VR users with different attention
control abilities. (a) >8 fixations on the mascot in AR were only
observed among users with below-average ACS (green ellipse). (b)
AR users with above-average ACS fixated less on the mascot than
those with below-average ACS (not found significant in VR).

AR users in the MR period was significant (VR > AR, p < .001,
A = .83), indicating a larger distraction effect in VR was caused by
the mascot’s running.

We additionally investigated how attention control ability would
affect the users’ distractibility, measured by the number of fixations
they had on the mascot. As shown in Figure 6, in the MR period
we found the AR users who scored below the average ACS of the
AR group fixated 6.4 times on average on the mascot, while those
above average only fixated 2.2 times (p = .01, A = .27), with all
users who fixated on the mascot more than 8 times belonging to the
below-average subgroup. However for the VR users, no significant
difference was found in the number of fixations on the mascot be-
tween the two groups. Such finding agreed with the fact that in AR,
the more cognitively demanding task made the mascot less likely
noticeable, serving as a shield to distraction [19, 54], and that indi-
vidual attention control ability led to different attention patterns in
AR but not in VR.

5.3 Machine Learning on Eye Tracking Data
Using the eye tracking data collected, we trained ML models for
two purposes: (1) predicting whether the user was going through
a distraction brought by the XR content, namely if the mascot
was running (the MR task), where we obtained the labels from our
recorded data; and (2) predicting the user’s attention control ability,
where we categorized the users into three groups of high, medium
and low attention control ability based on their scores in the Flanker
Squared task (the ACS task). The thresholds for the three groups
were chosen based on the reported mean score of 27.38 with a
standard deviation of 13.96 in the study where the task was pro-
posed [8]: we chose 41 (one standard deviation above the mean)
and 27 (the mean) as the thresholds so that the number of users in
each group was relatively balanced. We envision such tasks to be
valuable for future XR applications for two reasons: first, knowing
whether the user is distracted can help build attentive interfaces that
can adapt to the user’s attentional states; second, similar to previous
work on attention-deficit/hyperactivity disorder (ADHD) prediction
using gaze data [45], predicting the user’s attention control ability
can help the app to be personalized for different users, to avoid neg-
ative QoE during AR or VR usage.
Dataset. We extracted windows of 120 frames (≈ 2s) from the raw
gaze data to formulate our time-series dataset for ML model train-
ing. Each data sample X ∈ Rw×m in the dataset is a sequence of
w = 120 frames in which each frame contains m features. We per-
formed tests on multiple combinations of available features. For the
AR data, the full feature set includes gaze directions, eye centers,
eyes open amount and gaze targets, while for VR we used gaze
directions, pupil dilation and gaze targets. We grouped all visual
AR contents into two categories: useful, including all hints overlaid
on the puzzle board and relevant, for the progress bar, the timer
and the university mascot that are part of the app but not directly
helpful to the puzzle-solving task. Such grouping technique can be

generalized to other AR applications that provide highly informa-
tive guidance while displaying less useful but still relevant contents.
The “gaze target” feature is thus a one-hot variable about whether
useful or relevant AR contents, or the puzzle was being targeted.

For each AR participant, eyes open amount was first normalized
based on the data collected during the 3-minute easy puzzle solving
period. Additionally, a large-scale VR eye tracking dataset named
GazeBaseVR [39] was used for the evaluation of the effectiveness
of pretraining. The dataset is composed of gaze directions and 3D
eye centers collected at 250Hz. The entire dataset was first down-
sampled by 4 times, and split into windows of 2 seconds for pre-
training. Since the pretraining dataset was collected in VR where
the users primarily looked forward, we converted the collected AR
gaze directions (where the users primarily looked downward at the
puzzle) to the puzzle board’s coordinate system prior to training.
Such conversion also made our AR and VR datasets more compa-
rable when transferring models from one to the other.
Model architecture. The MVTS-Transformer model [73] was used
for the tasks due to its compatibility with time-series data and its
ability to capture long-range dependencies. It is based on the trans-
former [66] architecture where all the features at each timestamp
are first linearly projected to a higher-dimension vector and then
fed into multiple transformer blocks to capture the temporal de-
pendencies. The framework also enables unsupervised pretraining
by mask-recovery, where features at each timestamp are randomly
masked out and the model is trained to predict the masked features
based on the rest of the features. In our implementation, only fea-
tures that exist in both GazeBaseVR and the Sudoku dataset can
be masked out during the pretraining stage, depending on which
features were selected in the AR or VR data.
Model training and evaluation setup. Following the common
practice for time-series data [36, 73], the data splitting process be-
gan by dividing each user’s longitudinal data 8:1:1 into three time
chunks, designated as training, validation, and test sets. From these
segments, 2s windows were extracted and the resulting subsets from
all users were then aggregated into three comprehensive datasets
for training, validation, and testing. For all the tasks we performed,
models were trained with the Adam optimizer using a learning rate
of 0.001 and a batch size of 32 for 40 epochs, and we chose the
best-performing model on the validation set for evaluation. Perfor-
mance metrics including accuracy and macro-averaged one-vs-one
AUC were reported on the the test set. Pretraining was performed
on GazeBaseVR for 5 epochs using the same hyperparameters. We
also performed ablation studies on different sets of features to eval-
uate the importance of each feature for the tasks.
Results. We trained models with different sets of features, with and
without pretraining and report the results in Table 2. Note that due
to the difference in the durations of each period and the specific
population we had on attention control ability, the label distribu-
tions of these tasks were imbalanced. For the AR users, the non-
MR period accounts for 71.8% of the data in the MR task, while
for the ACS task 45.1% were classified “high”; for the VR users,
the non-MR period accounts for 71.9% of the data in the MR task,
while for the ACS task 49.5% were classified “high.”

We found the model for predicting ACS to perform better, with
the model trained with gaze directions, eye centers, eyes open
amount and gaze targets achieving a 99.3% accuracy and 99.9%
AUC on the AR data when fine-tuned on the pretrained model,
showing the effectiveness of pretraining on large datasets. When
training from scratch, the model trained without eyes open amount
performed the best with a 98.8% accuracy and 99.9% AUC, indi-
cating that all these features were beneficial for predicting user-
level traits, showing great potential for using eye tracking data for
user context inference in XR applications. The VR model also per-
formed comparably well using gaze directions, pupil dilation and
gaze targets, achieving a 96.3% accuracy and 99.9% AUC on the



ACS task. However for the MR task, the models performed only
slightly better than guessing it to be the majority class, with AUC
scores ranging around 52% to 58% across all models. We believe
the model performance suffered from the fact that rarely did users
have distinct responses to the mascot running behavior, leading to
different labels assigned to similar gaze patterns. More powerful
distractors that can lead to distinct gaze behaviors might be more
effective, as we plan to implement in the future.

Table 2: ML model performance on predicting MR and ACS.

MR ACS
Scratch Fine-tune Scratch Fine-tuneXR Features

ACC AUC ACC AUC ACC AUC ACC AUC

AR
Dr+A+T .721 .533 .733 .549 .953 .995 .945 .993
Dr+C+T .738 .575 .757 .561 .988 .999 .988 .999

Dr+C+A+T .725 .554 .729 .557 .984 .999 .993 .999

VR Dr+Di+T .772 .525 .764 .565 .950 .992 .963 .996
1 Feature abbreviations: Dr: gaze directions; Di: pupil dilation; A: eyes

open amount; C: eye centers; T: gaze targets.
2 “Fine-tune” indicates fine-tuning after pretraining on GazeBaseVR.
One of the perspectives of VR simulations is that they can be

used to collect large amounts of data for training models that can
be later applied to AR applications (known as domain adaptation).
We additionally evaluated the feasibility of transferring models be-
tween AR and VR (see Table 3) on the ACS task where the models
on its own domain performed well. To make models transferable,
they were trained only on shared features in AR and VR, namely
on gaze directions and gaze targets (Dr + T) exclusively. We found
a performance drop when transferring the models in both directions
and for both tasks, in which the adaptation of the model trained
from scratch on the VR data to AR suffered the most, whose ac-
curacy dropped to 38.8% (-52.0% from its VR performance and
-56.6% from the AR model) and AUC to 46.9% (-49.8% from its
VR performance and -52.2% from the AR model). Such results in-
dicate that the user attention patterns in AR and VR were distinct,
and the models trained on one domain cannot be directly applied
to the other domain. Another valuable finding is that the model
that was pretrained on GazeBaseVR can retain better performance
when transferred from AR to VR (the pretrained model was able to
keep 50.2% accuracy vs. 30.1% for the model trained from scratch),
suggesting that pretraining on a large-scale VR dataset can be bene-
ficial for the model to learn generalizable features. If the tasks were
more similar or the features were more aligned between GazeBa-
seVR and our AR/VR datasets, we believe that pretraining would
help the model to retain acceptable performance when transferred
between different domains, as a promising mitigation of domain
gaps between AR and VR.

6 DISCUSSION AND FUTURE WORK
The results of our study indicate that our AR app had a prominent
effect on enhancing user attention, which might not be replicated
by the VR simulation. While the effect of increasing cognitive load
(increasing MFD and decreasing FR) of our app might be specific
to our task of Sudoku solving, the drastic difference in user gaze
behaviors between AR and VR indicated that the two media are not
interchangeable in terms of accurately replicating user attention
patterns. We also found that the audio hints had a consistent effect
on fixation metrics. However, the opposite effects on saccade met-
rics in AR and VR call for further investigation, likely with a study
specifically tailored for audio stimuli in AR. We also found distrac-
tions to be less distracting than expected, and those in the form of
audio hints might have even promoted user attention instead. Addi-
tionally, we found that ML models worked better for predicting user
attention control ability than for predicting user attentional states,
which can potentially be improved by using more powerful distrac-
tors that lead to more distinct gaze behaviors, for example by vi-

Table 3: Model performance on the ACS task when transferred be-
tween AR and VR. Models were trained using shared features.

Scratch Fine-tuneXR ACC AUC ACC AUC

AR .8955 .9809 .9131 .9871
VR → AR .3883 .4693 .3586 .4750

VR .8088 .9352 .8717 .9639
AR → VR .3005 .4093 .5019 .5520

olating known good practices for attentive interfaces [47], such as
violation of common fate and color manipulation [71] to force sep-
aration of attention.

While our findings on attention in XR are intriguing, there are
still limitations that need to be addressed in the future. First, our
task of Sudoku solving was designed to be generalizable, yet as
a task that involves more mental than physical effort, the conclu-
sions drawn from this study might not generalize to use cases that
involve high mobility or high-precision targeting. Second, the par-
ticipants we recruited were mostly from our university, which might
not be representative of the general population, especially in terms
of their attention control ability. Third, the VR app we developed
did not replicate the AR app at “pixel-to-pixel” level, and had dif-
ferences in interaction methods, puzzle size, hint generation latency
and hardware specs. While in essence a precise replication of AR
experiences in VR simulations remains elusive, we recognize that
these disparities may have impacted user experience and, conse-
quently, experimental outcomes (e.g., larger puzzles and heavier
headset may lead to eye fatigue; digit recognition in AR can in-
troduce instability). Further studies on VR simulations need to be
carried out to understand how to successfully replicate both inter-
action and unpredictable scene understanding functions in AR. Fi-
nally, our ML models were trained and tested on a shuffled dataset
with all users’ data combined, yet for deploying such models to
produce personalized contents or mitigate attention-detrimental AR
experience, models with zero-shot inference ability on unseen users
are desired. We will explore ways to generalize the model, not only
to unseen users but also to other tasks, and eventually develop a
plug-and-play model that can be applied to any custom-designed
app for detecting and mitigating suboptimal user attentional states.

7 CONCLUSION
In this paper, we characterized user attention patterns in both AR
and VR using eye tracking data with a custom-designed Sudoku
Helper app. We found that AR contents had an effect of increas-
ing cognitive load and enhancing attention, while opposite findings
on gaze metrics in VR suggested that the two media are not inter-
changeable in terms of replicating user attention patterns. Though
working well on their own domains, ML models trained for pre-
dicting user attention control ability were also found to not work
properly when transferred between AR and VR domains, suggest-
ing making inference on user attention patterns in AR based on VR
simulations might not be appropriate. Our findings reveal intriguing
differences between VR simulations and AR and serve as a starting
point for the development of countermeasures for suboptimal atten-
tional states in XR applications.
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