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ABSTRACT
Inaccurate spatial tracking in extended reality (XR) headsets
can cause virtual object jitter, misalignment, and user discom-
fort, limiting the headsets’ potential for immersive content
and natural interactions. We develop a modular testbed to
evaluate the tracking performance of commercial XR head-
sets, incorporating system calibration, tracking data acqui-
sition, and result analysis, and allowing the integration of
external cameras and IMU sensors for comparison with open-
source VI-SLAM algorithms. Using this testbed, we quan-
titatively assessed spatial tracking accuracy under various
user movements and environmental conditions for the latest
XR headsets, Apple Vision Pro and Meta Quest 3. The Apple
Vision Pro outperformed the Meta Quest 3, reducing relative
pose error (RPE) and absolute pose error (APE) by 33.9%
and 14.6%, respectively. While both headsets achieved sub-
centimeter APE in most cases, they exhibited APE exceeding
10 cm in challenging scenarios, highlighting the need for
further improvements in reliability and accuracy.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented
reality.
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1 INTRODUCTION
Recent advancements in XR headsets, including the Apple Vi-
sion Pro (AVP) andMeta Quest 3 (MQ3), have attracted signif-
icant interest from developers, consumers, and researchers.
Most headsets rely on inside-out tracking, using onboard
cameras and inertial measurement unit (IMU) sensors to es-
timate user movements. Specifically, the AVP uses visual-
inertial odometry (VIO) [2, 15], while the MQ3 employs

Figure 1: Our XR headset tracking performance
testbed.
visual-inertial simultaneous localization and mapping (VI-
SLAM) [7, 15]. Compared to outside-in tracking, which re-
quires external beacons and strategic beacon placement in
each new environment, inside-out tracking offers a simpler,
more user-friendly experience [11–13]. However, certain
user movements and environmental conditions are known
to negatively affect the performance of VIO and VI-SLAM
systems [10, 13]. For example, rapid rotations and low-light
environments can significantly challenge accurate tracking,
potentially resulting in hologram instability, which degrade
the overall XR experience [21]. Despite considerable progress
over the past decade [12, 19, 24], the latest XR headsets still
exhibit tracking issues [6, 26], with users and developers
reporting problems such as unexpected hologram drifting.

A comprehensive quantitative evaluation of tracking per-
formance in XR headsets is essential for developers to opti-
mize applications and for users to choose the best headsets
for their needs. However, manufacturers like Apple [1] and
Meta [16] do not disclose performance analysis results or
provide APIs for accessing raw sensor data, nor do they make
their spatial tracking algorithms public. This lack of trans-
parency complicates the evaluation of tracking components,
making it difficult for developers and consumers to make
informed decisions. Previous studies [3, 10, 11, 13, 20] have
validated the tracking performance of earlier headset models.
Building on these works, we developed a modular testbed
to evaluate the tracking accuracy of various XR headsets
in comparison to open-source VI-SLAM baselines, under
different environmental conditions and user movements.

https://doi.org/10.1145/3636534.3696215
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To address these issues, we designed and implemented
a testbed for evaluating XR headset tracking performance
under various user movements and environmental condi-
tions. The testbed includes a complete pipeline for system
calibration, tracking data acquisition, and result analysis. It
also allows for the mounting of an external camera on the
headset, allowing comparisons with open-source VI-SLAM
algorithms. We performed experiments across different en-
vironmental conditions and user motions on the latest XR
headsets, the AVP and MQ3, and reported their tracking per-
formance. The testbed calibration code, headset apps, and
hardware designs are publicly available on GitHub1.
Our main contributions are as follows:

• We design a modular testbed incorporating system cali-
bration, tracking data acquisition, and result analysis for
XR headset tracking performance evaluation with support
of open-source VI-SLAM algorithms as baselines.

• We investigate factors that degrade tracking performance
and design experiments under various user motions and
environmental conditions.

• We evaluated two state-of-the-art XR headsets, the Apple
Vision Pro and Meta Quest 3, across 108 trials on our
testbed. Compared to the Meta Quest 3, the Apple Vision
Pro demonstrated a 33.9% reduction in RPE and a 14.6%
reduction in APE. To the best of our knowledge, we are
the first to publicly report their tracking performance.
The rest of this paper is organized as follows: Section 2

reviews related work, while Section 3 presents our testbed
system design. Section 4 details our experimental setups,
followed by Section 5, which reports our experimental results.
Finally, Section 6 provides our conclusions and future work.

2 RELATEDWORK
Factors affecting headset tracking: Research on visual-
inertial odometry (VIO) and visual-inertial simultaneous lo-
calization and mapping (VI-SLAM) has highlighted several
factors that hinder tracking performance. Environmental
conditions such as low-light scenarios, dynamic lighting
changes, and textureless surfaces present significant chal-
lenges to these systems [4, 12]. Conversely, feature-rich en-
vironments enhance pose estimation robustness [8, 23]. Ad-
ditionally, rapid camera movements leading to motion blur
introduce further ambiguity in feature matching [14, 18]. Our
experimental design incorporates these factors to evaluate
headset performance under challenging conditions.
XR headset tracking evaluations: Due to the impor-

tance of accurate tracking, many studies have explored var-
ious methods for evaluating XR headset performance. A
common approach is to mount headsets on robotic arms, al-
lowing precise and reproducible tests with pre-programmed
1https://github.com/hu-tianyi/XRHeadsetTrackingTestbed

movements [10, 13, 20]. While this ensures controlled testing
conditions, the constrained range of motion and inability to
mimic the complexity of natural human movement limit its
effectiveness.
Another approach focuses on hologram drifting, where

studies [22, 25, 28] measure the deviation of a virtual object
from its original position after user movements. Although
drift is primarily caused by pose estimation errors and can af-
fect user experience, this method is labor-intensive, restricts
evaluation to virtual content, and only manifests pose errors
in application-specific contexts, making it less suitable for
comparing headset performance across different settings.
Finally, motion capture (mocap) systems, such as those

used by [3, 11, 17], track infrared markers attached on head-
sets to provide ground truth data for tracking evaluation.
While mocap is effective in capturing head movement, pre-
vious user studies have limitations. Holzwarth et al. [11]
restrict movements to 2D by mounting the headsets on a trol-
ley; Boulo et al. [3] only evaluated straight-line movements;
and Monica et al. [17] tests under the same environmental
conditions. These experimental results, while valuable, do
not fully capture the complexity of both user movement and
environmental factors that affecting tracking performance.
To the best of our knowledge, we are the first to report

tracking evaluation results of the latest XR headsets, the
Apple Vision Pro and Meta Quest 3. Our modular testbed
can adapt to different headsets for tracking performance
evaluations across various user motions and environmental
conditions.

3 SYSTEM DESIGN
Our testbed system comprises three primary hardware com-
ponents: a target XR headset for evaluation, a mocap station
for ground truth trajectories and time synchronization, and a
single-board computer running an open-source VI-SLAM al-
gorithm as a baseline. Figure 4 illustrates our testbed pipeline,
which can be divided into three main stages: system setup
and initialization (§ 3.1), tracking data acquisition (§ 3.2), and
tracking data analysis (§ 3.3).

3.1 System Setup and Initialization
We designed a 3D-printed frame to attach infrared markers
and an external camera with an IMU sensor to the target
headset for obtaining mocap ground truth trajectories and
supporting the VI-SLAM baseline, as shown in Figure 2. The
frame’s rigid body is registered on a mocap tracker, with
its center, denoted as V, set on the external camera. The
world coordinates of the mocap system are denoted by𝑊 ,
with (𝑊

𝑉
R,𝑊

𝑉
P) representing the rotation and translation of

center V relative to𝑊 . Before evaluating the tracking perfor-
mance, two essential steps are required: XR headset extrinsic
calibration and baseline system time synchronization.

https://github.com/hu-tianyi/XRHeadsetTrackingTestbed
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Figure 2: Reference coordinates used in our testbed,
where𝑊 is the Vicon world coordinates, 𝑂 is the head-
set’s coordinate, and 𝑂 ′ is the open-source SLAM’s co-
ordinates.

XR headset extrinsic calibration: As illustrated in Fig-
ure 2, the center of the headset, denoted as H, may differ
from the center of the mocap rigid body, V. To derive the
ground truth trajectory of H from that of V, a constant rela-
tive transform, represented by (𝑉

𝐻
R,𝑉

𝐻
P), must be determined.

However, manufacturers such as Apple and Meta do not dis-
close the exact physical locations of their headset centers H,
complicating the determination of the relative transform. To
compute this transform, we first record ground truth trajec-
tories of V, denoted as (𝑊

𝑉
R,𝑊

𝑉
P), and the headset’s estimated

trajectories of H, denoted as (𝑂
𝐻
R,𝑂

𝐻
P) in a bright, feature-

rich environment with slow motion to minimize drift. The
calibration process is then formulated as an optimization
problem, aiming to adjust the relative transform to mini-
mize the discrepancy between the transformed ground truth
trajectory and the estimated headset trajectory:

𝑉
𝐻P = argmin

P

∑︁
𝑡

(𝑊𝑉 Rt · 𝑉𝐻Rt · P +𝑊
𝑉 Pt

)
−𝑊

𝐻 Pt′
2 (1)

where 𝑡 is timestamp, 𝑉
𝐻
Rt = (𝑊

𝑉
Rt)−1 ·𝑊𝐻 Rt

′ and 𝑊
𝐻
R′,𝑊

𝐻
P′

are the estimated headset rotation and position in world co-
ordinates, obtained by aligning (𝑂

𝐻
R,𝑂

𝐻
P) with the ground

truth trajectory using Umeyama’s alignment method [27].
The results of extrinsic calibration are illustrated in Figure 3,
showing an average point distance of 0.3 cm. This marks a
substantial improvement over the pre-calibration average
distance of 11.0 cm, highlighting the critical role of the cal-
ibration process in ensuring reliable and accurate ground
truth data.

Baseline system time synchronization: Time synchro-
nization is crucial for accurately evaluating trajectories from
different devices, as their local system clocks may differ. We
synchronize the baseline device’s local time with the mocap
station using the Network Time Protocol (NTP) over a single
hop in a local area network. The mocap station functions
as the NTP server, and the baseline device operates as the
client. After synchronization, the time discrepancy between

Figure 3: Alignment between ground truth trajectory
and headset estimated trajectory before and after ex-
trinsic calibration.

the baseline device and the mocap station is reduced to less
than 1 millisecond.

3.2 Tracking Data Acquisition
During the tracking data acquisition stage, the testbed si-
multaneously collects three trajectories: the ground truth
trajectory from the mocap station, the estimated trajectory
from the target XR headset, and the estimated trajectory
from the open-source VI-SLAM system used as a baseline.
Mocap system: The mocap system tracks the target

headset using infrared markers attached to headset. These
markers reflect infrared light, which is captured by Mocap
cameras positioned around the tracking area. The mocap
tracker triangulates the position of each marker in three-
dimensional space, thereby precisely determining the ori-
entation 𝑊

𝑉
R and location 𝑊

𝑉
P of the rigid body’s center V

in real time. In our setup, the center point V is positioned
on the external camera, as shown in Figure 2. By applying
the relative transform (𝑉

𝐻
R,𝑉

𝐻
P)—obtained during extrinsic

calibration—we can derive the ground truth trajectory of the
target headset’s center H, denoted as𝑊

𝐻
R and𝑊

𝐻
P.

XR headset: During runtime, the XR headset uses its
tracking cameras and IMU sensors to estimate user move-
ment. We develop customized apps that invoke headset APIs
to obtain the estimated trajectory of the device center H, de-
noted as (𝑂

𝐻
R,𝑂

𝐻
P). Depending on the operating system, dif-

ferent APIs are used: the ARKit API queryDeviceAnchor() for
the AVP and the Unity Engine API ovrcamerarig.centerEye-
Anchor for the MQ3. Since we do not have system privileges
to synchronize the headset clock via NTP, we implement a
synchronization method that allows the mocap station to
transmit its latest timestamp to the headset over a single-hop
wireless network. The headset apps we developed record the
headset’s estimated trajectory using the mocap timestamp
instead of the headset’s local timestamp. We measure the
roundtrip time for sending the timestamp from the mocap
station to the headset and back. The average roundtrip delay
is 10.57 milliseconds for the AVP and 10.28 milliseconds for
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Figure 4: Testbed pipeline for XR headset tracking performance evaluation.

the MQ3, indicating a one-way latency of about 5 millisec-
onds, which is negligible in trajectory evaluation.
Baseline VI-SLAM system: During the tracking data

acquisition stage, the user wears a tactical vest with a single-
board computer running an open-source VI-SLAM system,
serving as the baseline for tracking performance evaluation.
As illustrated in Figure 1, the computer connects to an ex-
ternal camera and IMU mounted on the target headset. The
baseline VI-SLAM system estimates its rotation and posi-
tion, denoted as (𝑂 ′

𝑉
R,𝑂

′

𝑉
P) in its coordinate system O′, at

runtime. Since the mocap rigid body’s center V is positioned
on the external camera and time synchronization via NTP
is performed during system setup, no further calibration or
synchronization is required for the baseline system.

3.3 Tracking Data Analysis
We evaluate the estimated trajectories from both the baseline
system and the XR headset against the original and extrinsic-
calibrated ground truth trajectories. We use the commonly
employed EVO toolkit [9] for trajectory alignment and per-
formance assessment. We report two metrics: relative pose
error (RPE) and absolute pose error (APE). RPE divides the
estimated trajectory into fixed-length subtrajectories, align-
ing each starting point with the ground truth and measuring
the pose error at the subtrajectory’s endpoint [5, 29]. This
metric captures local drift, preventing error accumulation by
aligning each subtrajectory independently. APE, on the other
hand, aligns the entire estimated trajectory with the ground
truth and calculates the pose error at each timestamp [9, 29].
This metric shows the overall drift, as errors accumulate
without periodic realignment.

4 EXPERIMENT SETUP
To assess XR headset tracking performance relative to an
open-source VI-SLAM baseline, we design experiments in-
volving various user motions and environmental conditions

As detailed in Table 1, our experiments are grouped into
the four categories: Patrol, Inspection, Head Rotation, and

Table 1: Experiment design that covers different user
movement patterns, speeds, environment brightness
levels, and feature levels.

Category Traj.
ID Description Note

Patrol
Movement

P1 Low speed + Feature-rich ∼0.75
m/sP2 Low speed + Featureless

P3 High speed + Feature-rich ∼1.0
m/sP4 High speed + Featureless

Inspection
Movement

I1 Low speed + Feature-rich ∼0.75
m/sI2 Low speed + Featureless

I3 High speed + Feature-rich ∼1.0
m/sI4 High speed + Featureless

Head
Rotation
Movement

R1 Low speed + Feature-rich ∼0.08
m/sR2 Low speed + Featureless

R3 High speed + Feature-rich ∼0.2
m/sR4 High speed + Featureless

Brightness

B1 High light + Feature-rich ∼358
luxB2 High light + Featureless

B3 Low light + Feature-rich ∼133
luxB4 Low light + Less feature

B5 Dim light + Feature-rich ∼24
luxB6 Dim light + Featureless

Brightness—the first three focus on different movement pat-
terns, while the last examines environmental brightness lev-
els. Each movement pattern is evaluated with four trajectory
settings, varying by speeds and environmental feature levels.
The brightness experiments included six trajectory settings
combining three brightness levels and two feature levels.
Each setting was run in three trials to report the mean and
standard deviation of tracking errors. We evaluated the AVP
and MQ3 in these experiments (Figure 1), with a total of 108
trials. Our findings are discussed in Section 5.
All experiments were conducted in a 6 m × 6 m mocap

room equipped with 24 Vicon Vero v2.2 cameras and 4 Vicon
Vantage v5 cameras. The Vicon mocap system was calibrated
to achieve an average error of less than 0.4mm, providing
accurate ground truth for our measurements.
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Figure 5: Testing environment with different feature
levels, where (a) the carpet is covered for a featureless
environment (b) blocks applied to the carpet and walls
for feature-rich environments.

4.1 XR Headset Specifications
Apple Vision Pro: Released in February 2024 [1], the AVP
features two side cameras, four downward cameras, and four
IMU sensors for spatial tracking. It is powered by an M2
processor and a dedicated R1 chip for processing camera and
sensor data. We evaluated the AVP using Vision OS v1.2.

Meta Quest 3: Released in October 2023 [16], the MQ3 is
equipped with four tracking cameras—two front-facing and
two side-facing—and is powered by a Snapdragon XR2 Gen2
processor. We evaluated the MQ3 with Horizon OS v67.
Open-source VI-SLAM platform: We use a NVIDIA

Jetson Xavier NX running an open-source VI-SLAM system,
which employs an Intel RealSense D435i camera to capture
forward-facing stereo frames and IMU data. ORB-SLAM3 [5]
in stereo-inertial mode was used to estimate trajectories,
serving as our baseline.

4.2 Environment Conditions
To evaluate the impact of environmental features, we created
both featureless and feature-rich settings (Figure 5). The
featureless environment included blank walls, whiteboards,
curtains, and craft paper covering the carpet. In the feature-
rich environment, we added distinct features using tape to
create 1m × 1m and 1m × 0.5m blocks on the floor and walls.
To assess the impact of brightness, we conducted low-speed
patrol movements under three lighting conditions: high (358
lux), low (133 lux), and dim (24 lux).

4.3 User Movement
To evaluate the headsets, we employ user motion patterns
established in previous works [12, 22], focusing on three
common movements: patrol, inspection, and head rotation.

Patrol: This pattern reflects a user navigating through an
environment while maintaining their gaze in the direction
of movement. We employ a square trajectory with 3-meter
sides in both clockwise and counterclockwise directions. This
movement presents challenges due to frequent changes in
visual content, especially during turns.

Inspection: This pattern replicates typical user behavior
when examining a virtual object from various angles. To
ensure reproducibility, we use a circular trajectory with a
3-meter diameter, moving in both clockwise and counter-
clockwise directions while maintaining gaze fixed at the
circle’s center.
Head rotation: In this pattern, a user explores virtual

content while remaining stationary. The user stands still
and rotates their head in three clockwise circles, followed by
three counterclockwise circles.

To maintain consistent testing conditions across different
headsets and trials, we employ a single experienced AR user
to complete all 108 trials. We use small stickers on the floor
and walls to guide the user’s movement and gaze. For exper-
iments involving varying movement speeds, such as slow
walking at 0.75 m/s and fast walking at 1.0 m/s, we moni-
tor the user’s speed during each trial and provide real-time
feedback to ensure the desired pace is maintained. This ap-
proach ensures consistent user movement speeds, as detailed
in Table 2 in the Appendix.

5 EXPERIMENTAL RESULTS
We present our experimental results in bar charts in Figure 6
and provide the complete tabulated results in the appendix
in Table 2.2 Our results indicate that the AVP achieved an
average RPE of 0.52 cm and APE of 6.98 cm, outperforming
the MQ3, which recorded an RPE of 0.79 cm and APE of
7.99 cm. In experiment R1, involving slow head rotations in
a bright, feature-rich environment, both headsets showed
RPEs under 0.3 cm and APEs under 0.8 cm. However, under
challenging conditions like experiment B6, conducted in a
dim, featureless environment, both headsets exhibited APEs
exceeding 10 cm, highlighting needs for improvement.

5.1 Device Specifications
Significant performance differences were observed among
the XR headsets. The AVP consistently outperformed the
MQ3, with a 33.9% lower RPE and 14.6% lower APE on av-
erage. The baseline VI-SLAM system exhibited the worst
performance, often losing tracking in low-light and feature-
less environments.
The AVP’s superior performance can be attributed to its

six tracking cameras, compared to the MQ3’s four and the
baseline’s two. This wider camera array provides enhanced
environmental perception, improving robustness under chal-
lenging conditions. Additionally, the AVP’s R1 chip enables
faster sensor data processing at 100 Hz, enhancing feature
matching during rapid movements. In contrast, the baseline

2In Figure 6 and Table 2, certain ORB-SLAM3 settings lack data due to
frequent tracking failures in challenging environments.
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Figure 6: Evaluation results of XR headsets under different user movement and environment conditions with an
open-source VI-SLAM baseline.

system, without hardware acceleration, processes at 30 Hz,
making it more error-prone during fast movements.

5.2 User Movement
Our experiments show that both movement patterns and
movement speeds significantly affect tracking performance.
Movement speed: Faster movement consistently in-

creased tracking errors, especially in RPE. In P1 and P3,
increasing speed from 0.75 m/s (slow walk) to 1.0 m/s (fast
walk) raised RPE by 16.6% for the AVP and 19.9% for the
MQ3. In featureless environments (P2 and P4), the same
speed increase resulted in a 60.6% rise in RPE for the AVP.
Movement pattern: Head rotations yielded the best

tracking accuracy, with RPEs and APEs in the millimeter
range, suggesting that pose errors are primarily due to user
movement. Patrolmovements showed theworst performance,
being more sensitive to environmental changes. Inspection
movements outperformed patrol, indicating that consistent
visual input, like focusing on the same object, improves track-
ing compared to scenes with frequent visual changes.

5.3 Environmental conditions
Our results reveal that environmental factors, such as feature
level and brightness, greatly impact tracking performance.

Feature level: Environmental features are critical for ac-
curate tracking. Both headsets showed reduced performance
in RPE and APE when transitioning from feature-rich to
featureless environments. Featureless settings frequently
caused initialization failures or tracking loss, particularly
for the baseline method. For instance, in high-brightness
conditions, switching from a feature-rich (B1) to a feature-
less (B2) environment increased APE by 11.7% for the AVP.
In low-brightness conditions, this transition (B5 to B6) led
to a more pronounced 40.2% rise in APE.

Brightness level: Tracking performance remained stable
as brightness decreased from 358 lux (B1, B2) to 133 lux (B3,
B4). However, at 24 lux (B5, B6), APE increased significantly,
with larger standard deviations, indicating greater drift and
inconsistent tracking under low-light conditions.

6 CONCLUSIONS
In this work, we present a modular testbed for evaluating the
tracking performance of the latest XR headsets under vari-
ous user movements and environmental conditions, using an
open-source VI-SLAM system as the baseline. Our approach
facilitates the measurement and comparison of devices such
as the AVP and MQ3, offering insights into performance
data typically undisclosed by manufacturers. Results from
our testbed show that the AVP outperforms the MQ3, with
reductions in RPE and APE by 33.9% and 14.6%, respectively.
While both headsets achieve sub-centimeter tracking accu-
racy in most cases, they exhibit considerable degradation in
performance under certain conditions, with APEs exceeding
10 cm. This underscores the need for more robust and precise
spatial tracking systems in XR headsets. Our methodology
not only reveals otherwise safeguarded performance metrics
but also provides valuable data for developers and users who
rely on accurate and reliable tracking. As XR technology
advances, our approach can be adapted to assess future head-
sets, ensuring continued transparency and improvement in
tracking capabilities.
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A APPENDIX

Figure 7: Our experiments encompass three movement patterns: (a) Patrol movement, where the user follows a
square trajectory with their gaze aligned to the direction of movement; (b) Inspection movement, where the user
follows a circular trajectory while keeping their gaze fixed at the center; (c) Head rotation movement, where the
user’s body remains stationary while rotating the head in circles.

Table 2: Tracking evaluation results of Apple Vision Pro, Meta Quest 3, and the open-source baseline, ORB-SLAM3
on Intel RealSense D435i.
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