
Vision Language Model-Based Solution for Obstruction
Attack in AR: A Meta Quest 3 Implementation

Yanming Xiu1 Maria Gorlatova2

Department of Electrical and Computer Engineering, Duke University

ABSTRACT

Obstruction attacks in Augmented Reality (AR) pose significant chal-
lenges by obscuring critical real-world objects. This work demon-
strates the first implementation of obstruction detection on a video
see-through head-mounted display (HMD), the Meta Quest 3. Lever-
aging a vision language models (VLM) and a multi-modal object
detection model, our system detects obstructions by analyzing both
raw and augmented images. Due to limited access to raw camera
feeds, the system employs an image-capturing approach using Ocu-
lus casting, capturing a sequence of images and finding the raw
image from them. Our implementation showcases the feasibility
of effective obstruction detection in AR environments and high-
lights future opportunities for improving real-time detection through
enhanced camera access.

Index Terms: Mixed / Augmented Reality—Vision Language
Models—Object Detection—Task-Detrimental Content—Scene
Understanding—Head-Mounted Display;

1 INTRODUCTION

Augmented Reality (AR) seamlessly integrates virtual content with
the real world, offering transformative experiences across domains
such as education and entertainment. However, improper placement
of virtual content can obstruct critical real-world objects, leading to
confusion or even hazardous situations [1]. For example, when a user
is working in a factory, a virtual object overlaid on a “flammable”
sign can obscure vital information, jeopardizing user safety.

To address this issue, our recent research introduced ViDDAR
[6], a system using advanced vision language models (VLMs) and
multi-modal object detection techniques to detect obstruction attacks.
While the system has shown promising results on mobile devices,
extending its capabilities to head-mounted displays (HMDs) presents
unique challenges, such as restricted access to raw camera views and
more complex communication procedures. In this demonstration,
we showcase a novel implementation of obstruction detection on
an HMD, specifically the Meta Quest 3, as shown in Fig. 1. By
leveraging a combination of Oculus casting and user-controlled
detection mechanisms, the system overcomes hardware and access
limitations to accurately identify obstructions. The demonstration
highlights the system’s capability to efficiently analyze raw and
augmented views with low latency on HMDs. The demo video can
be accessed via this link.

2 SYSTEM ARCHITECTURE

Fig. 2(a) shows the diagram of our proposed system. It consists of
three components: an HMD, a local device, and a cloud server.
2.1 HMD
The system uses the Meta Quest 3 headset as the HMD, accompanied
by two controllers. The visual experience for users is managed by a
Unity application running on the local device. The headset connects

{yanming.xiu1,maria.gorlatova2}@duke.edu

Figure 1: The setup of our HMD-based obstruction detection system.
The cloud server is accessed remotely via OpenAI API.

to the local device via a Meta Quest Link cable, allowing the Unity
game scene to be rendered and displayed on the headset. Interaction
with the system is facilitated through two controllers. The headset
processes inputs from the controllers and transmits relevant data
to the processing unit. This setup allows users to interact with the
system efficiently and perform various tasks.

2.2 Local Device

The local device performs three roles: hosting Oculus casting, man-
aging the Unity game scene, and controlling the detection process
via the obstruction detection manager. The system uses an Alien-
ware M16 R1 equipped with an RTX 4060 GPU as the local device,
enabling efficient multitasking, including rendering the Unity envi-
ronment and hosting multiple deep learning models.
Oculus Casting: The local device launches a web browser to access
the Oculus casting service [4] provided by Meta. This service en-
ables the Meta Quest 3 to cast its display—representing the AR view
visible to users—to the browser in real-time via a Wi-Fi connection.
Unity Scene: We use Unity 2022.3.28f1 to design an interactive AR
game using the Meta XR Interaction SDK Essentials. The user takes
on the role of a medieval warrior and can interact with virtual objects
in the scene, such as a sword and a shield with a Duke University
icon, by grabbing and moving them. To enable this, the Quest 3 and
the local device are connected via a Meta Quest Link cable. This
setup allows the Unity-rendered game scene to be displayed on the
Quest 3 and stabilizes its communication with the local device.
Obstruction Detection Manager: The obstruction detection man-
ager consists of a communication module and an obstruction detec-
tion module, described in Sect. 3. When a user sends a detection
command via the controller, the command is first received by Unity,
which forwards it to the communication module of the obstruction
detection manager. The detection process begins by capturing im-
ages displayed on the Oculus casting webpage, including both raw
and AR views. These images are processed by the obstruction detec-
tion module, which identifies obstructions of important real-world
objects, especially those related to users’ safety such as a stop sign
shown in Fig. 1, and outputs detection results. Based on the results,
the communication module sends scene management commands
back to Unity, ensuring the virtual content is properly adjusted.

https://youtube.com/playlist?list=PLE-oiu-9uNb-yfziJ_nwouU5BNTaFqEUZ&si=-_atPdGSnOBWFC0u


Figure 2: System architecture of our proposed system. (a) Overall system architecture; (b) detailed structure of obstruction detection module.

2.3 Cloud Server
The cloud server is an integral part of the obstruction detection
module. It hosts a VLM to enhance the system’s capability for
scene understanding. To be more specific, the VLM processes an
encoded image and outputs the recognized key objects within it. In
this implementation, we use the GPT-4v by OpenAI [5] as the VLM.

3 SYSTEM IMPLEMENTATION DETAILS

In this section, we provide some details in implementing our system:
Obstruction Detection Module: The detailed design of the pro-
posed obstruction detection module, illustrated in Fig. 2(b), builds
on the ViDDAR framework [6] we recently built. The module contin-
uously listens to the command from the user. To detect obstruction,
the module takes in both the raw image which does not contain any
virtual content, and the AR image. Pixel-wise comparisons generate
a virtual content mask, and upon user request, the raw image is sent
to the cloud server for analysis. The server identifies key objects
and updates the key object list. Simultaneously, each raw image
and the current key object list are further processed by the multi-
modal object detection module, GroundingDINO [3], to produce
bounding boxes, which are further refined into binary masks using
a segmentation module [2]. These masks are then compared with
virtual content masks to detect obstructions. If a certain percentage
of a key object, defined by a configurable threshold, is overlaid by
virtual content, the system classifies the result as “obstructed.”
Raw Image Capturing: As discussed above, the obstruction de-
tection module requires both raw and augmented images to detect
obstructions. However, by casting the user’s view to a webpage,
only augmented images are available. To obtain raw images, when
an obstruction detection command is received, all virtual content
in the scene is temporarily inactivated for 0.05 seconds. During
this window, 15 consecutive frames of the casting screen area are
captured, ensuring both raw and augmented images are included
within these frames. To distinguish between the raw and augmented
images, we calculate the Mean Squared Error (MSE) for each pair of
consecutive frames. A significantly large MSE indicates a transition
between raw and augmented images. If only one large MSE value is
observed, it implies the virtual content disappeared but did not reap-
pear during the capture, with the first image being augmented and
the second raw. Conversely, if two large MSE values are detected,
it indicates the virtual content disappeared and reappeared, making
the first image in the first pair augmented and the second raw.
User Interactive Elements: The system provides intuitive user in-
teractions to enhance usability and feedback. Users can grab virtual
content with the grip button on the controllers, trigger obstruction
detection with button A, and send commands to identify key objects
within the scene and update the key object list with button B. Once
an obstruction is detected, the virtual content in the scene is made
transparent, and red warning text is displayed to warn the user. Ad-
ditionally, audio cues are employed to inform users of key events:
starting obstruction detection, initiating key object identification,

detecting an obstruction, confirming no obstructions, or updating the
key object list. This ensures users remain aware of system updates
without relying solely on visual feedback.

4 FUTURE WORK

The primary challenge in our work is the limited access to the camera
feed, a common restriction among video see-through HMDs. This
prevents direct access to raw images, requiring reliance on an image-
capturing method to identify obstructions. Consequently, obstruction
detection is performed based on user-initiated commands rather
than continuously across every frame. While recent announcements
from the industry suggest that expanded access to camera feeds
may soon be available, we will continue to advance our research
on existing platforms, such as mobile AR devices, to refine our
proposed detection method. Once camera access becomes available
on AR HMDs, our system will be prepared to incorporate real-time
obstruction detection, enhancing operational efficiency and user
experience.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CSR-2312760, CNS-
2112562 and IIS-2231975, NSF CAREER Award IIS-2046072, NSF
NAIAD Award 2332744, a CISCO Research Award, a Meta Re-
search Award, Defense Advanced Research Projects Agency Young
Faculty Award HR0011-24-1-0001, and the Army Research Labo-
ratory under Cooperative Agreement Number W911NF-23-2-0224.
The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced Re-
search Projects Agency, the Army Research Laboratory, or the U.S.
Government. This paper has been approved for public release; distri-
bution is unlimited. No official endorsement should be inferred. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
herein.

REFERENCES

[1] K. Cheng, J. F. Tian, T. Kohno, and F. Roesner. Exploring user reactions
and mental models towards perceptual manipulation attacks in mixed
reality. In Proceedings of USENIX Security, 2023.

[2] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Girshick.
Segment anything. arXiv:2304.02643, 2023.

[3] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su,
J. Zhu, et al. Grounding DINO: Marrying DINO with grounded pre-
training for open-set object detection. arXiv:2303.05499, 2023.

[4] Meta. Oculus casting. [Online]. Available: https://www.oculus.
com/casting/, n.d. Accessed: 2025-01-12.

[5] OpenAI. GPT-4 technical report. arXiv:2303.08774, 2023.
[6] Y. Xiu, T. Scargill, and M. Gorlatova. ViDDAR: Vision language model-

based task-detrimental content detection for augmented reality. IEEE
Transactions on Visualization and Computer Graphics (TVCG), 2025.

https://www.oculus.com/casting/
https://www.oculus.com/casting/

	Introduction
	System Architecture
	HMD
	Local Device
	Cloud Server

	System Implementation Details
	Future Work

